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Nonlinear ferromagnetic resonance in yttrium iron garnet films have been studied both experi-
mentally and theoretically. It is shown that the application of Landau–Lifshitz equation with a
relaxation term in the Gilbert form brings about a qualitatively incorrect result in the determi-
nation of the Q-factor for a magnetostatic microwave resonator, because the theory predicts a
growth of the Q-factor, when the pump signal power increases to a critical value, above which
the foldover phenomenon occurs. When using a modified relaxation term in the form of a
power series in the time derivative of the magnetization, the results of calculations coincide
with experimental ones to a sufficient accuracy. The nonlinearity term (coefficient) in the
equation for the uniform precession is shown to depend on the fields of uniaxial anisotropy
of the first and second orders. This fact can be used to affect the characteristics of nonlinear
processes in ferromagnets.
K e yw o r d s: nonlinear ferromagnetic resonance, relaxation term, magnetic crystallographic
anisotropy.

1. Introduction

To describe the dynamics of magnetization, the
Landau–Lifshitz equation [1] with a relaxation term
is applied. As a rule, the latter is used in the Gilbert
form [2]. However, modern experiments [3–6] testify
that the application of this term at large precession
angles gives rise to a discrepancy with experimen-
tal data even at the qualitative level. There are at
least a few ways to modify the relaxation term in
the Landau–Lifshitz equation. In particular, in work
[7], the method aimed at constructing the dissipative
function and finding the relaxation term with regard
for the type of crystal symmetry was developed. An-
other approach consists in representing the relaxation
Gilbert term as a series expansion in the time deriva-
tive of the magnetization [6].

The relaxation substantially affects the precession
with large deviation angles, so that a possibility for
such nonlinear phenomenon as the bistability associ-
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ated with the microwave power absorption and called
the foldover [8–10] has to be taken into account. A
necessary condition for this phenomenon to be ob-
served is that the amplitude of a pumping microwave
field should achieve a threshold value. The mag-
nitude of threshold field was obtained theoretically
in work [11] for an ellipsoid of revolution taking the
shape anisotropy into account. However, the foldover
threshold can depend not only on this parameter but
also on the cubic crystallographic anisotropy [12].

This work aimed at the experimental verification
of the nonlinear relaxation theory, which includes the
modified relaxation term [6]. As an object of investi-
gations, we used film specimens of yttrium-iron gar-
net (YIG) grown up on a substrate of gadolinium
gallium garnet with the orientation (111). The re-
searches concerned, in particular, a comparison of the
dependences of the resonator Q-factor and the shift
of the resonator resonance frequency on the pump
power. In addition, the influence of the magnetic
crystallographic anisotropy on nonlinear processes is
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studied in the framework of three-parameter model
with rgard for the cubic anisotropy fields and the uni-
axial anisotropy of the first and second orders. The
amplitudes of pumping fields in our researches were
comparable with the threshold amplitudes needed for
the foldover to start.

2. Landau–Lifshitz Equation
with a Modified Relaxation
Term in the Gilbert Form

The general form of the Landau–Lifshitz equation
looks like

𝜕m

𝜕𝑡
= −𝛾

[︀
m×Heff

]︀
+R, (1)

where m = M/𝑀0 is the normalized magnetization,
Heff an effective field defined as the variational deriva-
tive of the functional of the total ferromagnet energy
with respect to the magnetic moment, 𝛾 the gyro-
magnetic ratio, and R the relaxation term [13]. The
latter is taken in the form [6]

R = 𝛼 (𝜂)

[︂
m × 𝜕m

𝜕𝑡

]︂
, (2)

where the function 𝛼 (𝜂) is given by the series

𝛼 (𝜂) = 𝛼G
(︀
1 + 𝑞1𝜂 + 𝑞2𝜂

2 + ...
)︀
, 𝜂 =

1

𝜔2
𝑀

(︂
𝜕m
𝜕𝑡

)︂2
,

𝛼G is the standard Gilbert relaxation constant, and
𝑞𝑖 are empirical coefficients. Basing on the follow-
ing estimation of 𝜂 for YIG made by shifting the
resonance frequency by the characteristic quantity
Δ𝜔 = 10 MHz:

(𝑚2)𝜔2

𝜔2
𝑀

=
(1−𝑚2

𝑧)𝜔
2

𝜔2
𝑀

=
(2Δ𝜔)𝜔2

𝜔3
𝑀

= 4× 10−3,

the further consideration can be confined to the first
two terms in the 𝛼-series.

Let us change in Eq. (1) to the circular variables
𝑎0 = 𝑚𝑥 + 𝑖𝑚𝑦 and consider only the uniform pre-
cession of a magnetization. Let the uniform oscilla-
tions occur with the frequency 𝜔, i.e. 𝑎0 ∼ 𝐴𝑒𝑖𝜔𝑡. In
the general case, this frequency can differ from the
pump one, 𝜔𝑝. The effective magnetic field is formed
by the external magnetic bias field 𝐻0, the circularly
polarized transverse microwave pumping field ℎ0, and
the demagnetizing field associated with the specimen

shape. Let the resonator have the disk shape. Then
the diagonal tensor of demagnetizing coefficients �̂�
has the components 𝑁𝑇 in the direction orthogonal
to the rotation axis and the components 𝑁𝑍 in the
parallel direction. For the specimen anisotropy to be
made allowance for, the fields of the cubic anisotropy,
𝐻𝑐, and the uniaxial anisotropy of the first, 𝐻𝑢1, and
second, 𝐻𝑢2, orders [14] were taken into considera-
tion. Keeping the terms not higher than those of
the third order in 𝑎0, the nonlinear equation for the
uniform precession written down in terms of circular
variables looks like[︂
𝑖+ 𝛼G

(︂
1 +

𝑞1
𝜔2
𝑀

|�̇�0|2
)︂]︂

�̇�0 +

+
(︀
𝜔0 + 𝜎|𝑎0|2

)︀
𝑎0 = 𝛾ℎ0𝑒

𝑖𝜔𝑝𝑡, (3)

where

𝜔0 = 𝛾 [𝐻0 + 4𝜋𝑀0(𝑁𝑇 −𝑁𝑍)−𝐻𝑐 +𝐻𝑢1 +𝐻𝑢2],

𝜎 = 𝛾

[︂
4𝜋𝑀0

2
(𝑁𝑍 −𝑁𝑇 )−

1

2
(𝐻𝑢1 + 3𝐻𝑢2)

]︂
.

Equation (3) is a partial case of the equation of
motion for a magnetization in the S-theory [15], when
the coupling between the uniform precession and spin
waves, as well as between the spin waves themselves,
is neglected. The account for spin waves in this prob-
lem should increase power losses for the uniform pre-
cession in comparison with the considered model and
somewhat change the curves of resonance absorption.

In Eq. (3), the nonlinear coupling between the
modes of the right and left circular polarizations is
neglected. It can be done if⃒⃒⃒⃒

𝛼G𝜔0

4𝜋𝑀0𝛾 (𝑁𝑇 −𝑁𝑍)− 𝛾 (𝐻𝑢1 + 3𝐻𝑢2)

⃒⃒⃒⃒
≪ 1.

As a rule, the anisotropy fields that enter the nonlin-
earity coefficient 𝜎 are lower than 𝑀0 by an order of
magnitude. If they are neglected, then, for a speci-
men in the form of a planar disk, the condition given
above is reduced to

𝛼G𝜔0

4𝜋𝑀0𝛾
≪ 1. In our problem,

this criterion is obeyed, so that the coupling between
oscillators can be neglected.

First, let us obtain a solution for the homogeneous
equation (3), i.e. let us determine the characteristic
frequency of a nonlinear ferrimagnetic resonator. For
this purpose, we use perturbation theory [16]. The
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solution is sought as a series 𝑎0 =
∑︀3

𝑗=1 𝜅
𝑗𝑎

(𝑗)
0 with

the linear approximation 𝑎
(1)
0 = 𝐴𝑒𝑖𝜔𝑡 and the exact

frequency value 𝜔 = 𝜔(0) + 𝜅𝜔(1) + 𝜅2𝜔(2), where 𝜅
is a small parameter, and 𝜔(0) = 𝜔0 (1 + 𝑖𝛼G) is the
oscillation frequency in the linear approximation. In
the higher-order approximations, we obtain the first
and second frequency corrections, 𝜔(1) = 0 and 𝜔(2) =
=[𝜎+𝑖𝛼G𝜔0𝑞1𝑟] |𝐴|2, respectively, where 𝑟=𝜔2

0/𝜔
2
𝑀 .

In the linear approximation, the dependence of the
amplitude of forced oscillations produced by a non-
linear oscillator on the amplitude and the frequency
of an external force is given by the relation [16]

|𝐴| = 𝛾ℎ0√︀
𝜀2 + 𝛼2

G𝜔
2
0

, (4)

where the detuning parameter 𝜀 = 𝜔𝑝 − 𝜔0 was in-
troduced. If the correction 𝜔(2) to the resonance
frequency 𝜔0 is made allowance for, Eq. (4) can be
rewritten in the form

|𝐴| = 𝛾ℎ0√︁
(𝜀− 𝜎|𝐴|2)2 + 𝛼2

G𝜔
2
0 (1 + 𝑞1𝑟|𝐴|2)2

.

By solving this quadratic equation for 𝜀, we obtain
the following two branches of the resonance curve:

𝜀1,2 = 𝜎|𝐴|2 ±

√︃
𝛾2ℎ2

0

|𝐴|2
− 𝛼2

G𝜔
2
0 (1 + 𝑞1𝑟|𝐴|2)2. (5)

The threshold field amplitude, at which the foldover
begins, can be determined from the condition that a
vertical section appears in the dependence 𝜀(|𝐴|),

ℎ0 𝑡ℎ =
Δ𝐻𝐵2

2
√
2

√︂
𝐵2
[︁
𝜌2 − 4 (𝑞1𝑟)

2
]︁
− 4𝑞1𝑟, (6)

where

𝐵 =
8𝑞1𝑟 + 2

√︁
𝜌2 + 20 (𝑞1𝑟)

2

𝜌2 + 4 (𝑞1𝑟)
2 ,

𝜌 =
2𝜎

𝛼G𝜔0
,

and Δ𝐻 =
2𝛼G𝜔0

𝛾
is the ferromagnetic resonance

(FMR) line width.
The analysis of the threshold foldover fields for

an ellipsoid of revolution was carried out in works
[11, 13]. The threshold field values were obtained by

Fig. 1. Normalized dependences of the foldover threshold
fields on the magnetic bias field for YIG and Ga-YIG speci-
mens. The corresponding saturation magnetization values are
indicated near the curves

exactly solving the Landau–Lifshitz equation with re-
gard for the shape anisotropy

ℎ0 cr =
Δ𝐻√
2𝜌

√︁√︀
𝜌2 + 1− 1.

At 𝑞1 = 0, formula (6) corresponds to the result of
works [11, 13], if 𝜌 ≫ 1; the latter condition being
well satisfied for disks:

ℎ0 th =
Δ𝐻
√
𝜌
.

Formula (6) makes it possible to plot the depen-
dences of the threshold pumping field amplitude on
the magnetic bias field for materials with various
magnetic parameters. The range of bias fields was
selected to satisfy the condition 𝑞1𝜂 . 1. Pure and
Ga-substituted yttrium iron garnets (Fig. 1) and bar-
ium hexaferrites (Fig. 2) fabricated in the disk form
were studied. In the plots, the threshold field is nor-
malized by the FMR line width.

The material parameters of Ga-substituted YIGs
were taken from work [17], the parameters of hexa-
ferrites from work [18], and the parameters of hexa-
ferrite doped with scandium to 𝑥 = 0.3 and 0.6 were
obtained by interpolation. Figure 1 demonstrates the
influence of a relaxation term in the Gilbert form
and its modification, as well as the fields of magnetic
crystallographic anisotropy, on the foldover thresh-
old value. In the case of a modified relaxation term,
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Fig. 2. Normalized dependences of the foldover threshold
fields on the magnetic bias field for barium hexaferrites (𝑞1 = 0)

the critical field is higher, this result being in a bet-
ter agreement with the experiment. The account for
anisotropy fields also affects the foldover threshold
value.

One can see from Fig. 2 that, in the case of hexa-
ferrites doped with aluminum (the higher uniaxial
anisotropy field), the normalized value of foldover
threshold field changes insignificantly, whereas, at the
doping with scandium (the anisotropy decreases), the
threshold considerably grows.

From the Landau–Lifshitz equation, it follows that
the nonlinearity coefficient 𝜎 in Eq. (3) depends on
the fields of uniaxial anisotropy of the first and sec-
ond orders. This fact is interesting for applica-
tions, because it assumes a capability of control-
ling the nonlinear properties of a ferromagnetic res-
onator. For instance, according to the estimations
carried out in work [19], if an YIG film is used
as a component of the planar two-layer structure
ferrite/piezoelectric material, there exists a possi-
bility to change the first-order uniaxial anisotropy
field, 𝐻𝑢1, in the interval ±20 Oe. This circum-
stance, in its turn, makes it possible to vary the
value of nonlinearity coefficient within the limits of
±28 MHz. The calculations show that the thresh-
old amplitude for the foldover to start changes by
6% at that. For pump powers higher than 12 dBm,
the theory predicts that the Q-factor should change
by 4%, and the resonance frequency by no more
than 5%.

3. Comparison
between Theory and Experiment

In order to verify our theory, we experimentally de-
termined the Q-factor for a nonlinear disk resonator
1.6 mm in diameter and 23 𝜇m in thickness in the
normal magnetic biasing mode with the bias field
𝐻0 = 3300 Oe. The resonator was fabricated from
a (111) YIG film with a saturation magnetization of
1750 Gs, and the anisotropy fields 𝐻𝑐 = −50 Oe,
𝐻𝑢1 = −50 Oe, and 𝐻𝑢2 = 45 Oe. The measurement
cell was a microstrip wave guide [14] that provided
the linearly polarized microwave pumping to a mag-
netostatic resonator, the latter playing the role of an
inhomogeneity in the transmission line. The relation
between the amplitude of a microwave field and the
transmitted power is

𝑃 =
120𝑑2
√
𝜀𝑑

ln

(︂
𝑟𝐵
𝑟𝐴

)︂
ℎ2,

where 𝜀𝑑 is the dielectric permittivity of a transmis-
sion line material, and 𝑟𝐴 and 𝑟𝐵 are the roots of the
transcendental equation

𝑟 − ln 𝑟 − 1− 𝜋𝑏

2𝑑
−

(︃
2Δ

𝑑
+

√︂
2Δ

𝑑

)︃
(𝑟 − 1) = 0,

where the following notations are introduced: 𝑑 is
the thickness of the dielectric layer, and Δ and 𝑏 are
the thickness and the width, respectively, of the strip
with the current. The magnetic field directed nor-
mally to the specimen surface was created by a dc
NdFeB magnet; in such a way, field pulsations in-
herent to electromagnets were avoided. Under those
conditions, oscillations of forward volume magneto-
static waves were excited in the ferrite resonator. In
the course of experiment, the transmission coefficient
of the microstrip line with the resonator was mea-
sured making use of a Rohde & Schwarz ZVA8 vector
network analyzer.

It is known that, when studying nonlinear pro-
cesses, the duration of a probing signal must be much
longer than the characteristic time of establishment
of a stationary mode for nonlinear oscillations, which
is reciprocal to the relaxation frequency. We experi-
mentally determined the required regime of measure-
ments. For this purpose, we measured the depen-
dence of the nonlinear frequency shift, 𝐹

(2)
0 − 𝐹

(1)
0 ,

of a magnetostatic resonator on the time of scanning
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over the frequency (all other device tunings remained
invariable). Here, 𝐹

(2)
0 and 𝐹

(1)
0 are the resonance

frequencies measured at pump powers of +15 and
−30 dBm, respectively. The corresponding results
are shown in Fig. 3. One can see that the frequency
shift saturates when the scanning duration exceeds
30 s. All experimental results reported in this work
were obtained when the frequency scanning time was
equal to 30 s, which corresponds to a scanning rate
of 6.5 Hz/s and agrees with previous works [9, 10].

To compare the theoretical resonance curves with
the experimental data, let us consider the nonlinear
absorption at the FMR, which is associated with the
microwave part of the Zeeman energy. In this case,
the power losses Im

(︀
𝜔0

2 𝑀0

∫︀
ℎ0𝑎0d𝑉

)︀
(see work [13]),

provided that magnetization oscillations are uniform,
can be written down in the form

𝑃𝑎 = 𝑉𝑀0
𝛼G𝜔

2
0

2𝛾
|𝐴|2

(︀
1 + 𝑞1𝑟|𝐴|2

)︀
.

Some examples of nonlinear absorption curves ob-
tained experimentally are depicted in Fig. 4. The
inclusion of the modified relaxation term (2) into the
Landau–Lifshitz equation results in the frequency de-
pendence of losses in the system, in contrast to the
standard Gilbert model. The growth of power losses
restricts the precession angle amplitude and reduces
the Zeeman absorption of a microwave pump power at
the resonance. The larger width of resonance curves
obtained in the experiment can be explained by ex-
tra losses in the metallic surfaces of a wave guide,
in the dielectric layer, and by reemission losses in a
ferrite resonator. At the same time, the examined
theoretical model makes allowance for only the intrin-
sic losses in ferrite, whereas the losses arising owing
to parametrical processes and the interaction of spin
waves with one another and also affecting the reso-
nance width are omitted.

The nonlinear Q-factor of a resonator was de-
termined experimentally following the technique de-
scribed in work [20], namely, from the scalar
amplitude-frequency characteristic of a resonator in-
serted into the transmission line as an inhomogene-
ity. The loaded Q-factor, 𝑄𝐿, was determined from
the formula 𝑄𝐿 = 𝐹0/Δ𝐹 , where 𝐹0 is the resonance
frequency, and Δ𝐹 is the resonant linewidth corre-
sponding to a half power absorption. The unloaded
Q-factor, 𝑄0, is related to the loaded one by means of
the coefficient 𝐾 of resonator coupling with the wave

Fig. 3. Nonlinear shift of the magnetostatic resonator fre-
quency as a function of the frequency scanning time

Fig. 4. Contours of energy absorption by the ferrimagnetic
resonator at the pump power 𝑃 = 4, 8, and 15.8 mW. Experi-
mental (solid curves) and theoretical (dashed curves, 𝑞1 = 250)
results

guide, 𝑄0 = (1+𝐾)𝑄𝐿. At low levels of pump power,
the unloaded Q-factor of a resonator was found to
equal 𝑄0max = 1300. This parameter was also calcu-
lated theoretically from the curves of resonance ab-
sorption (Fig. 4) using the formula 𝑄0 = 𝐹0/Δ𝐹 .
Formula (5) can be analyzed in two approximations:
when only the first term proportional to 𝛼G is taken
into consideration in function (2) – this way corre-
sponds to the application of a relaxation term in the
Gilbert form; and when the modified relaxation term
𝛼 (𝜂) = 𝛼G

(︀
1 + 𝑞1ṁ

2/𝜔2
𝑀

)︀
is used.

In the former case, the Q-factor of a nonlinear disk
resonator grows with the pump power 𝑃0 (Fig. 5,
dashed curve). It should be noted that, although the
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Fig. 5. Normalized unloaded Q-factor of a resonator
(𝑄0max = 1300). Points correspond to experimental data; the
dashed curve displays the result of calculations with a relax-
ation term in the Gilbert form (𝑞1 = 0), and the solid curve
with the modified relaxation term (𝑞1 = 250)

Fig. 6. Dependences of the resonance frequency shift on the
pump power for a nonlinear magnetostatic resonator: (dashed
curve) the results of theoretical calculations with a relaxation
term in the Gilbert form, (solid curve) the results of theoreti-
cal calculations with the modified relaxation term (𝑞1 = 250),
(points) experimental results

growth of Q-factor is insignificant, this result is physi-
cally incorrect even at the qualitative level. However,
if the modified relaxation term is included into consid-
eration and the first coefficient in the series expansion
is put equal 𝑞1 = 250, the behavior of the Q-factor
corresponds to the experimental data (Fig. 5, solid
curve).

The theory presented above also makes it possible
to calculate the resonance frequency shift Δ𝐹0(𝑃 ) =

= 𝐹0(𝑃 ) − 𝐹
(1)
0 for various versions of a relaxation

term and to compare the results obtained with ex-
perimental data (see Fig. 6). It is evident that the
application of a modified relaxation term provides a
good quantitative agreement between them.

At the qualitative level, the difference between two
relaxation models can be explained as follows. The
application of a relaxation term in the Gilbert form
brings about lower power losses in comparison with
the modified variant. As a result, the amplitude of
magnetization oscillations and, accordingly, the res-
onance frequency shift are larger at identical values
of pump power 𝑃 . However, the experimental results
testify in favor of the modified variant.

4. Conclusions

It is demonstrated that the application of a modi-
fied relaxation Gilbert term in the Landau–Lifshitz
equation in the form of a series expansion and the
proper choice of relevant parameters make it possible
to explain, both qualitatively and quantitatively, the
experimental data obtained for the unloaded Q-factor
and the frequency shift of a nonlinear magnetostatic
resonator. The value of empirical coefficient 𝑞1 that
provided the best agreement with the experiment is
found. The equation for the nonlinear uniform preces-
sion is analyzed, and analytical expressions describ-
ing the resonance absorption curve for the nonlinear
ferrimagnetic resonator are obtained. A possibility
to control the nonlinearity coefficient by selecting the
first- and second-order uniaxial anisotropy fields is
pointed out.
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РЕЛАКСАЦIЯ ПРИ НЕЛIНIЙНОМУ
ФЕРОМАГНIТНОМУ РЕЗОНАНСI

Р е з ю м е

Наведено результати експериментальних i теоретичних до-
слiджень нелiнiйного феромагнiтного резонансу в плiвках
залiзо-iтрiєвого гранату. Показано, що використання в рiв-
няннi Ландау–Лiфшица релаксацiйного члена в формi Гiль-
берта дає якiсно невiрний результат при визначеннi до-
бротностi магнiтостатичного НВЧ-резонатора, адже в цьо-
му випадку теорiя передбачає зростання добротностi при
збiльшеннi потужностi сигналу накачки до критичного зна-
чення, вище якого спостерiгається явище фолдоверу. При
застосуваннi модифiкованого релаксацiйного члена, в фор-
мi ряду по ступенях похiдної по часу вiд намагнiченостi,
результати розрахункiв з достатньою точнiстю збiгаються
з експериментом. Показано, що в рiвняннi для однорiдної
прецесiї коефiцiєнти, що визначають нелiнiйнiсть, залежать
вiд полiв одновiсної анiзотропiї першого та другого поряд-
кiв. Цей факт можна використати для впливу на характе-
ристики нелiнiйних процесiв в феромагнетиках.
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