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We have studied the microstructure of a system of interacting Bose particles under zero bound-
ary conditions and have found two possible orderings. One ordering is traditional and is char-

acterized by the Bogolyubov dispersion law 𝐸(𝑘) ≈
√︂(︁

~2𝑘2

2𝑚

)︁2
+ 𝑞𝑛𝜈3(𝑘)

~2𝑘2

𝑚
(𝑞 = 1) at a weak

interaction. The second one is new and is characterized by the same dispersion law, but with
𝑞 = 2−𝑑, where 𝑑 is the number of noncyclic coordinates. At a weak interaction, the ground-
state energy is less for the new solution. The boundaries affect the bulk microstructure due to
the difference of the topologies of closed and open systems.
K e yw o r d s: Bose particles, Bogolyubov dispersion law, Bose liquid, Bose gas.

1. Introduction

In the Nature, all systems are finite, and the formulas
deal with finite values. However, the explicit account
for boundaries leads frequently to significant difficul-
ties in the analysis. Therefore, the physicists use a
special trick that allows one to avoid the consideration
of boundaries, namely the passage to the thermody-
namic limit (Т-limit): 𝑁,𝑉 → ∞, 𝑁/𝑉 = const [1].
This is the passage to infinite𝑁 and 𝑉 , rather than to
very large ones: we increase infinitely the size of the
system, the boundaries go to infinity and as if disap-
pear. However, this reasoning contains a simple error:
while the system is increasing, the boundaries cannot
disappear, since they represent the topological prop-
erty. By means of the continuous increase of a system
with boundaries, it is impossible to obtain an infinite
system without boundaries. The latter would occur
at some topological jump, which we cannot imagine.
This means that the passage to the T-limit assumes
that such jump does not affect the bulk properties of
the system. But it can affect in principle (no general
proof of the opposite exists). To clarify the existence
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of such effect, it is necessary to study various systems.
The goal of the present work is to study whether the
boundaries affect the bulk microstructure of a Bose
liquid and an interacting Bose gas.

In three models of interacting bosons [2–6], the so-
lutions for a system with boundaries and a cyclic sys-
tem are the same: for a homogeneous system at a
weak interaction, they coincide with the Bogolyubov
solution [7, 8]. In these models, the interatomic in-
teraction was considered point-like (see Section 7 for
details). But the interaction is not point-like in the
Nature. We will find the solutions for a non-point in-
teraction of the general form with a potential, which
can be expanded in a Fourier series. It turns out
that two solutions exist: traditional and new. We
will study both solutions and compare them with the
results of other models and with experiment.

2. Ground State of He II: Equations

Several methods of determination of the wave func-
tion (WF) Ψ0 of the ground state (GS) of helium-II
are available [8–20] (see also reviews [21–23]). In or-
der not to take the boundaries into account, they used
periodic boundary conditions (BCs) with passing to
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the T-limit. We will find the solutions for a system
in a box with zero BCs. The influence of boundaries
on the structure of the WF can be nontrivial. There-
fore, it is expedient to use one of the exact analytic
methods for the determination of Ψ0 [10–12,15], since
the numerical methods may not catch the effect. We
will operate within the method of collective variables
[12, 24] used by us in [20, 25].

We transit to the collective variables

𝜌k =
1√
𝑁

𝑁∑︁
𝑗=1

𝑒−𝑖kr𝑗 (k ̸= 0), (1)

where 𝑁 is the total number of atoms, and r𝑗 are
the coordinates of atoms. For convenience, we intro-
duce the following notation. The sums over the wave
vectors

k = 2𝜋

(︂
𝑗𝑥
𝐿𝑥

,
𝑗𝑦
𝐿𝑦
,
𝑗𝑧
𝐿𝑧

)︂
, (2)

where 𝑗𝑥, 𝑗𝑦, 𝑗𝑧 are integers, and 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are the
sizes of the system, are denoted by the index (2𝜋):∑︀(2𝜋); whereas the sums

k = 𝜋

(︂
𝑗𝑥
𝐿𝑥

,
𝑗𝑦
𝐿𝑦
,
𝑗𝑧
𝐿𝑧

)︂
(3)

are denoted by the index (𝜋):
∑︀(𝜋).

Under the periodic BCs with the subsequent pass-
ing to the T-limit, the solution for Ψ0 was obtained
by I. Yukhnovskii and I. Vakarchuk [12]:

Ψ0 = 𝐴𝑒𝑆𝑏 , (4)

𝑆𝑏 =

(2𝜋)∑︁
k1 ̸=0

𝑎2(k1)

2!
𝜌k1

𝜌−k1
+

+

(2𝜋)k1+k2 ̸=0∑︁
k1,k2 ̸=0

𝑎3(k1,k2)

3!
√
𝑁

𝜌k1𝜌k2𝜌−k1−k2+

+

(2𝜋)k1+k2+k3 ̸=0∑︁
k1,k2,k3 ̸=0

𝑎4(k1,k2,k3)

4!𝑁
𝜌k1

𝜌k2
𝜌k3

𝜌−k1−k2−k3
+

+ ..., (5)

where the functions 𝑎𝑗(k1, ...,k𝑗−1) satisfy the chain
of equations

𝐸𝑏
0 =

𝑁 − 1

2𝑁
𝑛𝜈3(0)−

(2𝜋)∑︁
k ̸=0

𝑛𝜈3(𝑘)

2𝑁
−

(2𝜋)∑︁
k̸=0

~2𝑘2

2𝑚𝑁
𝑎2(k),

(6)

𝑛𝜈3(𝑘)𝑚

~2
+ 𝑎2(k)𝑘2 − 𝑎22(k)𝑘

2 =

=

(2𝜋)∑︁
q̸=0

𝑎3(k,q)
𝑁

(𝑞2 + kq) +
(2𝜋)∑︁
q̸=0

𝑞2
𝑎4(q,−q,k)

2𝑁
, (7)

𝑎3(k,q) ≈ −2
𝑅(k,q)

𝜖0(𝑘) + 𝜖0(𝑞) + 𝜖0(k + q)
, (8)

𝑅(k,q) = kq𝑎2(k)𝑎2(q)− k(k + q)𝑎2(k)𝑎2(k + q)−

−q(k + q)𝑎2(q)𝑎2(k + q), (9)

𝜖0(k) = 𝑘2(1− 2𝑎2(k)). (10)

Here, 𝑛 = 𝑁/𝑉 , 𝑉 is the volume of the system, 𝐸𝑏
0 is

the “bulk” energy of the GS per atom, and

𝜈3(k) ≡ 𝜈3(𝑘) =

𝐿𝑥∫︁
−𝐿𝑥

𝑑𝑥

𝐿𝑦∫︁
−𝐿𝑦

𝑑𝑦

𝐿𝑧∫︁
−𝐿𝑧

𝑑𝑧𝑈3(𝑟)𝑒
−𝑖kr (11)

is the Fourier-transform of the interaction potential
𝑈3(𝑟) of two He4 atoms. The equation for 𝑎3 is writ-
ten in the zero approximation not involving the cor-
rections 𝑎4 and 𝑎5, and the equations for higher cor-
rections 𝑎𝑗≥4(k1, ...,k𝑗−1) are not presented.

Consider He II in a rectangular vessel 𝐿𝑥×𝐿𝑦×𝐿𝑧

in size. The Hamiltonian has the form

�̂� = − ~2

2𝑚

∑︁
𝑗

△𝑗 +
1

2

𝑖 ̸=𝑗∑︁
𝑖𝑗

𝑈3(|r𝑖 − r𝑗 |) + 𝑈2, (12)

𝑈2 =
∑︁
𝑗

[𝑈𝑤(𝑥𝑗) + 𝑈𝑤(𝐿𝑥 − 𝑥𝑗) + 𝑈𝑤(𝑦𝑗)+

+ 𝑈𝑤(𝐿𝑦 − 𝑦𝑗) + 𝑈𝑤(𝑧𝑗) + 𝑈𝑤(𝐿𝑧 − 𝑧𝑗)] . (13)

Here, 𝑈2 is the interaction potential of helium atoms
with all walls. The potentials of the walls are similar
by form [26] to the interaction potential of two helium
atoms. The free surface of liquid helium creates an
energy barrier also, and we consider it as a wall. Be-
low, we assume all barriers identical with the simple
potential

𝑈𝑤(𝑥) =

{︃
𝑈𝑠 > 0, 𝑥 ≤ 0,

0, 𝑥 > 0.
(14)

We take 𝑈𝑠 finite, and the transition 𝑈𝑠 → ∞ will be
made in final formulas.
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Atoms polarize walls, and, therefore, the “reflecti-
ons” of atoms arise on the walls. But since the po-
tential of a wall is infinitely high, it absorbs the ref-
lections, and we omit them in �̂� (12).

Works [12, 24] used the non-Hermitian Bogolyu-
bov–Zubarev Hamiltonian. Since the absence of the
Hermitian property induces the questions [27], we will
start from the ordinary Hermitian Hamiltonian (12).

Under zero BCs, the WF is nonzero inside the ves-
sel and is equal to zero outside of it and on the boun-
dary. Therefore, we seek the WF of helium atoms
inside the vessel. In this case, all functions in the
Schrödinger equation should be expanded in a Fourier
series with regard for the fact that the coordinates r𝑗
of atoms are defined only inside the vessel. Let the
system occupies a volume 𝑥 ∈ [0, 𝐿𝑥], 𝑦 ∈ [0, 𝐿𝑦],
𝑦 ∈ [0, 𝐿𝑧]. The function 𝐹 (r1, r2) = �̃�(|r1 − r2|)
can be expanded in a Fourier series in three ways: as
a function of independent arguments r1 and r2, as a
function of the argument (r1 − r2) (modulus is con-
sidered as a part of the function), or as a function of
|r1 − r2|. In the first case,

�̃�(|𝑥1−𝑥2|)=
1

𝐿2
𝑥

(2𝜋)∑︁
𝑘𝑗1

𝑘𝑗2

𝜈2(𝑘𝑗1 , 𝑘𝑗2)𝑒
𝑖𝑘𝑗1𝑥1+𝑖𝑘𝑗2𝑥2 , (15)

𝜈2(𝑘𝑗1 , 𝑘𝑗2)=

𝐿𝑥∫︁
0

𝑑𝑥1

𝐿𝑥∫︁
0

𝑑𝑥2�̃�(|𝑥1 − 𝑥2|)𝑒−𝑖𝑘𝑗1
𝑥1−𝑖𝑘𝑗2

𝑥2

(16)

(for simplicity, we restrict ourselves by the one-
dimensional case). After some transformations, we
obtain

𝜈2(𝑘𝑗1 , 𝑘𝑗2) = 𝐿𝑥𝜈(𝑘𝑗1)𝛿𝑘𝑗1
,−𝑘𝑗2

+ 𝜈2(𝑘𝑗1 , 𝑘𝑗2), (17)

𝜈(𝑘𝑗1) =

𝐿𝑥∫︁
−𝐿𝑥

𝑑𝑥�̃�(|𝑥|)𝑒−𝑖𝑘𝑗1𝑥. (18)

For a cyclic system, we have

�̃�(|𝑥1 − 𝑥2|)=𝑈(|𝑥1 − 𝑥2|)+𝑈(𝐿𝑥 − |𝑥1 − 𝑥2|) (19)

(on a ring, one atom acts on another one from two
sides, which yields the “image” 𝑈(𝐿𝑥 − |𝑥1 − 𝑥2|)),
and the nondiagonal part 𝜈2(𝑘𝑗1 , 𝑘𝑗2) is equal to zero.
From whence (in 3D):

�̃�3(|r1 − r2|) =
1

𝑉

(2𝜋)∑︁
k

𝜈3(k)𝑒𝑖k(r1−r2) (20)

with 𝜈3(k) (11). Note that (11) contains the potential
without images. At the transition to the T-limit, the
images in �̃�3 are omitted. Then relations (11) and
(20) set the standard Fourier-transformation for the
T-limit.

For the system with boundaries, �̃�3(|r1 − r2|) =
= 𝑈3(|r1−r2|) (no images) and 𝜈2(𝑘𝑗1 , 𝑘𝑗2) ̸= 0. How-
ever, formulas (11) and (20) are valid only for a poten-
tial with images, and their application to a potential
without images distorts the initial potential: in the
1D case, series (20) gives potential (19) with image
instead of the initial potential 𝑈(|𝑥1−𝑥2|). This point
is of importance, since the image 𝑈(𝐿𝑥 − |𝑥1 − 𝑥2|)
is unphysical for the system with boundaries, and its
consideration causes the closure of the system by in-
teraction.

When the nondiagonal part 𝜈2(𝑘𝑗1 , 𝑘𝑗2) ̸= 0 for
the system with boundaries is considered, then the
Fourier series (15), (17) reproduces the potential
𝑈(|𝑥1−𝑥2|) exactly, without image. But the calcula-
tion of 𝜈2(𝑘𝑗1 , 𝑘𝑗2) is difficult. We can use a Fourier
series, where the vector (|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|)
is the argument. But then the moduli will enter also
in the exponent, and we cannot use the method of
collective variables. Therefore, the best way is to use
the expansion

𝑈3(|r1 − r2|) =
1

2𝑑𝑉

(𝜋)∑︁
k

𝜈3(k)𝑒𝑖k(r1−r2), (21)

with 𝜈3(k) (11). Here, the expansion argument is
(r1 − r2), and 𝑥𝑖 and 𝑥𝑗 take values from [0, 𝐿𝑥],
whereas 𝑥𝑖 − 𝑥𝑗 ∈ [−𝐿𝑥, 𝐿𝑥]. By the rules of Fourier
analysis, the function 𝑈3(|r𝑖 − r𝑗 |) is expanded in se-
ries (11), (21): with k (3) and with the volume equal
to 2𝐿𝑥×2𝐿𝑦×2𝐿𝑧 = 2𝑑𝑉 . This series is the simplest
one, reproduces the initial potential exactly (with-
out images, in particular), and is convenient for the
method of collective variables. For the total inter-
atomic potential, we obtain

1

2

∑︁
𝑖 ̸=𝑗

𝑈3(|r𝑖 − r𝑗 |) =
(𝜋)∑︁
k̸=0

𝑛𝜈3(𝑘)

2𝑑+1
𝜌k𝜌−k +

+(𝑁 − 1)
𝑛𝜈3(0)

2𝑑+1
−

(𝜋)∑︁
k ̸=0

𝑛𝜈3(𝑘)

2𝑑+1
. (22)
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Under periodic BCs (in the T-limit or without it), we
have [8]

1

2

∑︁
𝑖 ̸=𝑗

𝑈3(|r𝑖 − r𝑗 |) =
(2𝜋)∑︁
k̸=0

𝑛𝜈3(𝑘)

2
𝜌k𝜌−k +

+(𝑁 − 1)
𝑛𝜈3(0)

2
−

(2𝜋)∑︁
k̸=0

𝑛𝜈3(𝑘)

2
(23)

(for a finite system, 𝑈3 → �̃�3: we consider the
images).

This is a key point. If the traditional expansion
(11), (20), (23) is used, then we will obtain, obviously,
the traditional solution for 𝐸0 and 𝐸(𝑘) (with small
“surface” corrections). But if expansion (11), (21),
(23) is applied, we obtain, probably, a solution with
𝜈3(𝑘) → 𝜈3(𝑘)/2

𝑑 and
∑︀(2𝜋) →

∑︀(𝜋), since the bulk
equations (5)–(8) are “generated” by the total poten-
tial. The solution cannot depend, of course, on the
expansion. But some solution is better seen with the
use of certain variables, whereas another one can be
better seen in the language of other variables. Since
the traditional solution was studied many times, we
will consider a new solution following from expansion
(11), (21).

Let us determine the ground state WF, which sat-
isfies the Schrödinger equation

�̂�Ψ0 = 𝑁𝐸0Ψ0 (24)

with Hamiltonian (12), (22). The main question is
in which form we should seek Ψ0. Solution (4), (5)
for periodic BCs is obtained from the requirement of
the translation invariance and the functional indepen-
dence [12] of the following collections of variables 𝜌k:

𝜌−k1 , 𝜌−k1𝜌−k2 , 𝜌−k1𝜌−k2𝜌−k3 , ... . (25)

But the boundaries break the translation invariance.
However, solution (4), (5) can be obtained without
regard for the translation invariance, by substitut-
ing the bare function Ψ0 = const, describing the free
bosons, in the Schrödinger equation. The equation it-
self “sets” the form of corrections, which appear in the
exponent. We will seek Ψ0 analogously, by substitut-
ing the solution for free particles in the Schrödinger
equation.

The WFs of the system of 𝑁 free Bose particles
located in a rectangular box with potential (13), (14)

are known. For identical states of all particles, the
WFs are [28]

Ψ𝑓
l =

𝑁∏︁
𝑗=1

[︀
sin (𝑘𝑙𝑥𝑥𝑗 + 𝛿𝑙𝑥) sin (𝑘𝑙𝑦𝑦𝑗 + 𝛿𝑙𝑦 ) ×

× sin (𝑘𝑙𝑧𝑧𝑗 + 𝛿𝑙𝑧 )] , (26)

where 𝑙𝑥, 𝑙𝑦, 𝑙𝑧 = 1, 2, 3, ..., and 𝑘𝑙𝑥 and 𝛿𝑙𝑥 satisfy the
equations

sin 𝛿𝑙𝑥 =
𝛾𝑥𝑘𝑙𝑥𝐿𝑥

2
,

sin (𝑘𝑙𝑥𝐿𝑥 + 𝛿𝑙𝑥) = ±𝛾𝑥𝑘𝑙𝑥𝐿𝑥

2
, (27)

which yields

𝑘𝑙𝑥𝐿𝑥 = 𝜋𝑙𝑥 − 2𝛿𝑙𝑥 , 𝛿𝑙𝑥 = arcsin (𝛾𝑥𝑘𝑙𝑥𝐿𝑥/2). (28)

Here, we denote 𝛾𝑥 = ~
𝐿𝑥

√︁
2

𝑚𝑈𝑠
, and the values of

arcsin are taken between 0 and 𝜋/2. For the realistic
systems, 𝛾𝑥 ≪ 1. For example, for He4 atoms at 𝑈𝑠 =
= 100 K and 𝐿𝑥 = 10 cm we have 𝛾𝑥 ≈ 4.92× 10−10.
At 𝑙𝑥 ≪ 1/𝜋𝛾𝑥, relation (28) yields

𝑘𝑙𝑥 ≈ 𝑙𝑥𝑘1𝑥 = 𝑙𝑥(1− 𝛾𝑥)𝜋/𝐿𝑥, (29)

𝛿𝑙𝑥 ≈ 𝑙𝑥𝛿1𝑥 = 𝑙𝑥𝜋𝛾𝑥/2. (30)

The maximally possible values of 𝛿𝑙𝑥 and 𝑘𝑙𝑥 are de-
termined from the condition sin 𝛿𝑙𝑥 = 1:

𝛿max
𝑙𝑥 = 𝜋/2, 𝑘max

𝑙𝑥 = 𝑘1𝑥/𝛿1𝑥. (31)

The WF of the GS of a single atom inside of the box,

Ψ𝑓
0,1(r)=sin(𝑘1𝑥𝑥+𝛿1𝑥) sin(𝑘1𝑦𝑦+𝛿1𝑦) sin(𝑘1𝑧𝑧+𝛿1𝑧),

is positive and nonzero. Outside of the box, the WF
decays exponentially.

With regard for the above consideration, the WF
of the ground state of 𝑁 interacting Bose particles
located in the box can be sought in the form

Ψ0 = 𝐴1Ψ
𝑓
0𝑒

𝑆(1)
𝑤 +𝑆𝑏 , (32)

where Ψ𝑓
0 is the WF of the GS of 𝑁 free Bose parti-

cles in the box (function (26) with 𝑙𝑥 = 𝑙𝑦 = 𝑙𝑧 = 1),
𝑒𝑆𝑏 is a WF of the form (4), (5) with the sums

∑︀(𝜋)
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instead of
∑︀(2𝜋) (this is seen from expansion (22)),

and 𝑒𝑆
(1)
𝑤 describes the cross terms arising at the sub-

stitution of Ψ𝑓
0𝑒

𝑆𝑏 in the Schrödinger equation. By
the theorem on nodes, if the GS is nondegenerate,
then Ψ0 is nonzero in all points in the box. There-
fore, it is convenient to lift the function 𝑆

(1)
𝑤 to the

exponent. The factor 𝑒𝑆𝑏 appears due to the inter-
atomic interaction, and Ψ𝑓

0 ensures the fulfillment of
BCs and the transition to the WF of free particles at
the switch-off of the interaction.

Note that structure (32) was proposed previously
by S. Yushchenko [29].

The function Ψ0 (32) must satisfy the Schrödinger
equation (24) and be zero at the boundaries. The
last property is ensured at 𝑈𝑠 → ∞ by the factor Ψ𝑓

0
which satisfies the equations

− ~2

2𝑚

∑︁
𝑗

△𝑗Ψ
𝑓
0 + 𝑈2Ψ

𝑓
0 = 𝑁𝐸𝑓

0Ψ
𝑓
0, (33)

𝐸𝑓
0 =

~2𝑘21
2𝑚

, 𝑘21 = 𝑘21𝑥 + 𝑘21𝑦 + 𝑘21𝑧. (34)

The function 𝑆𝑏 satisfies the equation

− ~2

2𝑚

∑︁
𝑗

△𝑗𝑒
𝑆𝑏 +

1

2

∑︁
�̸�=𝑗

𝑈3(|r𝑖 − r𝑗 |)𝑒𝑆𝑏 = 𝑁�̃�𝑏
0𝑒

𝑆𝑏 .

(35)

Then Eq. (24) is reduced to the equation for 𝑆(1)
𝑤 :

− ~2

2𝑚

∑︁
𝑗

[︃
△𝑗𝑆

(1)
𝑤 + (∇𝑗𝑆

(1)
𝑤 )2 + 2∇𝑗𝑆

(1)
𝑤

∇𝑗Ψ
𝑓
0

Ψ𝑓
0

+

+ 2∇𝑗𝑆𝑏

(︃
∇𝑗𝑆

(1)
𝑤 +

∇𝑗Ψ
𝑓
0

Ψ𝑓
0

)︃]︃
=

= 𝑁(𝐸0 − �̃�𝑏
0 − 𝐸𝑓

0 ), (36)

∇𝑗Ψ
𝑓
0

Ψ𝑓
0

= i𝑥𝑘1𝑥 cot (𝑘1𝑥𝑥𝑗 + 𝛿1𝑥)+

+ i𝑦𝑘1𝑦 cot(𝑘1𝑦𝑦𝑗+𝛿1𝑦)+i𝑧𝑘1𝑧 cot(𝑘1𝑧𝑧𝑗+𝛿1𝑧). (37)

By seeking Ψ0 inside of the vessel, we set
cot (𝑘1𝑥𝑥+ 𝛿1𝑥) on the interval [0, 𝐿𝑥]. In order to

apply the method of collective variables, we expand
the cotangent in the Fourier series:

cot (𝑘1𝑥𝑥+ 𝛿1𝑥) =

(2𝜋)∑︁
𝑗𝑥

𝐶1𝑥(𝑗𝑥)𝑒
𝑖2𝜋𝑗𝑥𝑥/𝐿𝑥 , (38)

where 𝑗𝑥 runs all integers. We have

𝐶1𝑥(𝑗𝑥)=−𝐶1𝑥(−𝑗𝑥)=
𝐿𝑥∫︁
0

𝑑𝑥

𝐿𝑥
cot (𝑘1𝑥𝑥+𝛿1𝑥)𝑒

−𝑖𝑞𝑥𝑥 =

= −2𝑖

1/2∫︁
0

𝑑𝑥 sin (2𝜋𝑗𝑥𝑥) cot (𝜋𝑥− 2𝛿1𝑥𝑥+ 𝛿1𝑥). (39)

From whence, 𝐶1𝑥(0) = 0, and the function 𝐶1𝑥(𝑗𝑥)
is approximated by the formula

𝐶1𝑥(𝑗𝑥 > 0) ≈ −𝑖+ 𝑖4𝑗𝑥𝛿1𝑥
𝜋

ln

(︂
1 +

𝜋

4𝑗𝑥𝛿1𝑥

)︂
, (40)

which is valid at 𝑗𝑥 <∼ 𝑗𝑚 = 1/𝛿1𝑥 with an error
of ≤ 3%.

We note that cot (𝑘1𝑥𝑥+ 𝛿1𝑥) satisfies the require-
ments to functions expanded in the Fourier series. At
𝛿1𝑥 = 0, we obtain cot (𝜋𝑥/𝐿𝑥), which does not sat-
isfy these requirements, since

∫︀ 𝐿𝑥

0
| cot (𝜋𝑥/𝐿𝑥)|𝑑𝑥 =

= ∞. In view of this difficulty, we preserve all 𝛿 to
be nonzero in calculations and set 𝛿 → 0 in final for-
mulas.

Using the difference of the functional structure of
the collections 𝜌k (25), we determine the structure of
the solution for 𝑆(1)

𝑤 from (36)–(38) and (5):

𝑆(1)
𝑤 =

(2𝜋)∑︁
q ̸=0

𝑆
(1)
1 (q)𝜌−q+

q+q1 ̸=0∑︁
q,q1 ̸=0

𝑆
(1)
2 (q,q1)√

𝑁
𝜌q1

𝜌−q1−q +

+

q+q1+q2 ̸=0∑︁
q,q1,q2 ̸=0

𝑆
(1)
3 (q,q1,q2)

𝑁
𝜌q1

𝜌q2
𝜌−q1−q2−q + ...,

(41)

where q and q𝑗 run values (2) and (3), respectively
(the first fact follows from (38), and the second does
from (21), (49)). The functions 𝑆(1)

𝑗 satisfy the sym-
metry relations

𝑆
(1)
2 (q,q1) = 𝑆

(1)
2 (q,−q − q1), (42)
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𝑆
(1)
3 (q,q1,q2) = 𝑆

(1)
3 (q,q2,q1) =

= 𝑆
(1)
3 (q,q1,−q − q1 − q2) =

= 𝑆
(1)
3 (q,−q − q1 − q2,q2), (43)

and the analogous ones can be written for higher 𝑆(1)
𝑗 .

The equations for 𝑆(1)
𝑗 can be found from Eq. (36),

if we substitute all functions in it and collect all terms
referred to each collection in (25) and the constant. In
view of the functional difference of collections in (25),
we equate these groups of terms to zero. This yields
the chain of equations for 𝐸0 and the functions 𝑆(1)

𝑗 :

𝐸0 = �̃�𝑏
0 +𝐴1, (44)

𝐴1 =
~2

2𝑚

⎡⎣𝑘21 − 1

𝑁

(2𝜋)∑︁
q̸=0

𝑞2𝑆
(1)
1 (q)𝑆(1)

1 (−q)−

− 𝑖√
𝑁

(2𝜋)∑︁
𝑞𝑥 ̸=0

2𝑘1𝑥𝑞𝑥𝐶1𝑥(𝑞𝑥)𝑆
(1)
1 (−q𝑥)+(𝑥→𝑦, 𝑧)

⎤⎦, (45)

𝑆
(1)
1 (q)𝜖0(q) =

= −𝑖
√
𝑁2𝑘1𝑥𝑞𝑥𝑎2(−q𝑥)𝐶1𝑥(𝑞𝑥)𝛿q,q𝑥

+ (𝑥→ 𝑦, 𝑧)+

+
2

𝑁

(𝜋)∑︁
q1 ̸=0

{︁
(𝑞21 + q1q)𝑆

(1)
2 (q,q1)+

+3𝑞21𝑆
(1)
3 (q,q1,−q1)+

+
√
𝑁2𝑞21𝑆

(1)
1 (q1)𝑆

(1)
2 (q − q1,q1)+

+ 0.5
√
𝑁(𝑞21 − q1q)𝑆

(1)
1 (q1)𝑆

(1)
1 (q − q1)

}︁
+

+

{︃
(2𝜋)∑︁
𝑝𝑥 ̸=0

2𝑖𝑘1𝑥𝐶1𝑥(𝑝𝑥)
[︁
(𝑞𝑥 − 𝑝𝑥)𝑆

(1)
1 (q − p𝑥)−

− 2𝑝𝑥𝑆
(1)
2 (q − p𝑥,−q)

]︁
+ (𝑥→ 𝑦, 𝑧)

}︃
, (46)

𝑆
(1)
2 (q,q1) [𝜖0(q1) + 𝜖0(q + q1)] +

+2𝑆
(1)
1 (q)𝑎2(−q1)qq1 − 𝑞2𝑆

(1)
1 (q)𝑎3(q,q1) =

= 𝛿q,q𝑥

√
𝑁𝑖𝑘1𝑥𝐶1𝑥(𝑞𝑥) {2𝑞1𝑥𝑎2(q1)− 𝑞𝑥𝑎3(q1,q𝑥)}+

+

(2𝜋)∑︁
𝑝𝑥 ̸=0

𝑖𝑘1𝑥𝐶1𝑥(𝑝𝑥)
[︁
4(𝑞𝑥+ 𝑞1𝑥− 𝑝𝑥)𝑆

(1)
2 (q− p𝑥,q1)−

− 6𝑝𝑥𝑆
(1)
3 (q − p𝑥,q1,−q − q1)

]︁
+ (𝑥→ 𝑦, 𝑧)+

+
1√
𝑁

(𝜋)∑︁
q2 ̸=0

{︃
2√
𝑁

(𝑞22 − q1q2)𝑆
(1)
3 (q,q1 − q2,q2)+

+
4√
𝑁

q2(q1 + q2 + q)𝑆(1)
3 (q,q1,q2)−

− 4q2(q1 − q2 + q)𝑆(1)
1 (q2)𝑆

(1)
2 (q − q2,q1)+

+6𝑞22𝑆
(1)
1 (q2)𝑆

(1)
3 (q − q2,q1,−q − q1)+

+4(q1 +q2)
2𝑆

(1)
2 (q2,q1)𝑆

(1)
2 (q−q2,q1 +q2)

}︃
. (47)

For brevity, we do not give the equations for the
higher functions 𝑆(1)

𝑗≥3(q). Equation (47) should be
symmetrized to satisfy (42). For the validity of re-
lation (36), it is sufficient to consider only 𝑆(1)

𝑗 with
the first even argument. We have the rule: the first
argument of 𝑆(1)

𝑗 is quantized by the even law (2).
Otherwise, we set 𝑆(1)

𝑗 = 0.
Analogously, (35) yields the chain of equations for

�̃�𝑏
0 and the functions 𝑎𝑗 :

�̃�𝑏
0 =

𝑁 − 1

2𝑑+1𝑁
𝑛𝜈3(0)−

(𝜋)∑︁
k ̸=0

𝑛𝜈3(𝑘)

2𝑑+1𝑁
−

(𝜋)∑︁
k̸=0

~2𝑘2

2𝑚𝑁
𝑎2(k),

(48)
𝑛𝜈3(𝑘)𝑚

2𝑑~2
+ 𝑎2(k)𝑘2 − 𝑎22(k)𝑘

2 = 𝐴2(k)+

+

(𝜋)∑︁
q̸=0

𝑎3(k,q)
𝑁

(𝑞2 + kq) +
(𝜋)∑︁
q̸=0

𝑞2
𝑎4(q,−q,k)

2𝑁
, (49)

𝑎3(k,q) ≈ 𝐴3(k,q)−
2𝑅(k,q)

𝜖0(𝑘) + 𝜖0(𝑞) + 𝜖0(k + q)
. (50)

These equations can be found from (6)–(9) by the

changes 𝜈3(𝑘) → 𝜈3(𝑘)/2
𝑑,

(2𝜋)∑︀
→

(𝜋)∑︀
and the addi-

tion of “surface” corrections 𝐴𝑗 . The latter are related
to the appearance of the terms

− ~2

2𝑚

(𝜋)∑︁
k ̸=0

𝐴2(k)𝜌k𝜌−k,

− ~2

2𝑚

(𝜋)k1+k2 ̸=0∑︁
k1,k2 ̸=0

𝐴3(k1,k2)𝜌k1
𝜌k2

𝜌−k1−k2
, ...
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in Eq. (36), which have the structure of terms of Eq.
(35). In particular,

𝐴2(k) =
(2𝜋)∑︁
𝑞𝑥 ̸=0

𝑖𝑘1𝑥𝐶1𝑥(−𝑞𝑥)√
𝑁

[︁
4(𝑞𝑥 + 𝑘𝑥)𝑆

(1)
2 (q𝑥,k)+

+ 6𝑞𝑥𝑆
(1)
3 (q𝑥,−q𝑥,k)

]︁
+ (𝑥→ 𝑦, 𝑧)+

+
1

𝑁

(2𝜋)∑︁
q̸=0

[︁
4(𝑞2 + qk)𝑆(1)

1 (−q)𝑆(1)
2 (q,k)+

+4(k + q)2𝑆(1)
2 (q,k)𝑆(1)

2 (−q,−k)+

+ 6𝑞2𝑆
(1)
1 (−q)𝑆(1)

3 (q,k,−k)
]︁
. (51)

Though the majority of terms in (35) and (36) has
the structure of the collections 𝜌k, which is inherent
only in the given equation ((35) or (36)), a small part
of terms in (36) has the structure of terms in (35).
The criterion for the construction of the chains of
equations for 𝑆(1)

𝑗 and 𝑎𝑗 is the functional difference of
the collections 𝜌k (25). Basically, the structures of the
terms in (35) and (36) are different. Therefore, the
partition of Eq. (24) into (35) and (36) is justified and
simplifies the determination of 𝑆(1)

𝑤 . The collections
𝜌k, which are present in both equations, should be
analyzed with the use of the initial equation (24).
We can verify that Ψ0 (32) satisfies Eq. (24), if 𝑎𝑗
and 𝐴𝑗 satisfy Eqs. (48)–(51).

As 𝑈𝑠 → ∞ and 𝛿 → 0, relations (32), (41),
(44)–(51) are the required solution for the WF of the
ground state of 𝑁 interacting Bose particles filling a
rectangular vessel.

The analysis of Eqs. (46) and (47) indicates that
the functions 𝑆(1)

1 (q) and 𝑆
(1)
2 (q,q1) can be consid-

ered “one-dimensional”:

𝑆
(1)
1 (q)≈𝛿q,q𝑥

𝑆
(1)
1 (q𝑥)+𝛿q,q𝑦

𝑆
(1)
1 (q𝑦)+𝛿q,q𝑧

𝑆
(1)
1 (q𝑧),

(52)

𝑆
(1)
2 (q,q1) ≈ 𝛿q,q𝑥

𝑆
(1)
2 (q𝑥,q1)+

+ 𝛿q,q𝑦
𝑆
(1)
2 (q𝑦,q1) + 𝛿q,q𝑧

𝑆
(1)
2 (q𝑧,q1) (53)

(q ≡ (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) = q𝑥 + q𝑦 + q𝑧), since the nonone-
dimensional 𝑆(1)

𝑗 with q = (𝑞𝑥, 𝑞𝑦, 0) (with possible
permutations of the 𝑥-, 𝑦-, and 𝑧-components) and
q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) are less than one-dimensional ones
by, respectively, 𝑁1/3 and 𝑁2/3 times. Due to the
smallness of nonone-dimensional terms, their inclu-
sion in the equations does not influence the values of

one-dimensional ones and the value of 𝐸0. For the
one-dimensional parts of the functions 𝑆(1)

𝑗 , all terms
in Eqs. (46) and (47) are of the same order, as it is
easy to verify. Therefore, all they should be taken
into account. But, in this case, (44)–(47) is a compli-
cated system of nonlinear integral equations difficult
to be solved. Below, we will use the simplest zero
approximations for 𝑆(1)

1 and 𝑆(1)
2 :

𝑆
(1)
1 (q𝑥) ≈ − 𝑖

√
𝑁𝑘1𝑥𝐶1𝑥(𝑞𝑥)2𝑎2(−q𝑥)

𝑞𝑥 − 2𝑞𝑥𝑎2(q𝑥)
, (54)

𝑆
(1)
2 (q𝑥,q1) ≈

≈ 𝑖
√
𝑁𝑘1𝑥𝐶1𝑥(𝑞𝑥)

1− 2𝑎2(q𝑥)

2𝑞1𝑥𝑎2(q1)− 𝑞𝑥𝑎3(q1,q𝑥)

𝜖0(q1) + 𝜖0(q𝑥 + q1)
. (55)

It is easy to verify that the surface corrections 𝐴1

and 𝐴2 have no effect on the solutions for 𝐸0 and
𝑎2(𝑘). We expect that 𝐴𝑗≥3 do not affect the solu-
tions for 𝑎𝑗≥3. However, the boundaries change the
“bulk part” of the equations for 𝐸0 and 𝑎𝑗 : the net-
work of vectors k becomes by a factor of 2𝑑 denser,
and the Fourier-transform of the potential is mul-
tiplied by 1/2𝑑. For this reason, the boundaries
strongly influence the values of 𝐸0 and 𝑎𝑗 .

Besides WF (32), WFs of the form (32) with Ψ𝑓
0 →

→ Ψ𝑓
l (and k1 → kl) are also the solutions. But

such WFs are equal to zero at many points inside the
vessel.

3. Ground State of He II: Solutions

The sines standing before the exponential function in
Ψ0 (32) set an inhomogeneous arc-like distribution of
atoms in the vessel. For this reason, the anxieties
arose [30–32] that the use of bare sines will not allow
one to construct the series of perturbation theory so
that a reasonable behavior of the density (the con-
stant density of He II in the whole volume except for
a narrow strip near the wall) be obtained. Appar-
ently, namely for this reason, the problem was solved
with periodic BCs, rather than with zero BCs; and
the above-obtained solution was lost. Therefore, it is
important to verify solution (32) in this aspect. Let
us find the behavior of the density. Since the func-
tion 𝑒𝑆𝑏 sets a homogeneous distribution of atoms, we
need to consider the behavior of the ansatz Ψ𝑓

0𝑒
𝑆(1)
𝑤 in

(32). The function 𝑆
(1)
𝑤 (r1, ..., r𝑁 ) (41) contains the

one-particle dependence in each sum, and the values
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Fig. 1. Values of the functions 𝑓(𝑥) (∘) and 𝑠1(𝑥) (⋆) by
formulas (56), (58) for potentials (14) and (59) at 𝑎 = 2 Å,
𝑈𝑏 = 1600K, 𝑈𝑏𝑑 = 0K, 𝑈𝑠 → ∞, and the vessel size 𝐿𝑥 =

= 104�̄�. Values of 𝑓(𝑥) and 𝑠1(𝑥) at 𝑥/𝐿𝑥 ∈ [0.5, 1] are ob-
tained by the reflection of the curves in an upright mirror po-
sitioned at 𝑥 = 0.5𝐿𝑥

Fig. 2. Values of the function 𝑓(𝑥) (56), (58) near the wall
(𝑥 = 0) at 𝐿𝑥 = 104�̄�, 𝑈𝑠 → ∞, and potential (59) with
𝑎 = 2 Å, 𝑏 = 4 Å, 𝑈𝑏𝑑 = −9K, and three barriers: 𝑈𝑏 = 800K
(∘), 𝑈𝑏 = 2000K (⋆), and 𝑈𝑏 = 2900K (◇). At 𝑥 >∼ 6 Å, curves
∘ ∘ ∘ and ⋆ ⋆ ⋆ almost merge. Values of 𝑥 are given in Å

are of the same order. But taking the sums with 𝑆(1)
𝑗≥2

into account is a complicated task, and we neglect it.
Then

Ψ0(𝑥1) ∼ 𝑓(r1) = sin (𝑘1𝑥𝑥1 + 𝛿1𝑥)𝑒
𝑠1(r1), (56)

𝑠1(r1) =
(2𝜋)∑︁
𝑞𝑥 ̸=0

𝑆
(1)
1 (q𝑥)√
𝑁

𝑒𝑖𝑞𝑥𝑥1 +

+

(2𝜋)∑︁
𝑞𝑥,𝑞𝑦 ̸=0

𝑆
(1)
1 (q𝑥 + q𝑦)√

𝑁
𝑒𝑖𝑞𝑥𝑥1+𝑖𝑞𝑦𝑦1 +

+

(2𝜋)∑︁
𝑞𝑥,𝑞𝑧 ̸=0

𝑆
(1)
1 (q𝑥 + q𝑧)√

𝑁
𝑒𝑖𝑞𝑥𝑥1+𝑖𝑞𝑧𝑧1 +

+

(2𝜋)∑︁
𝑞𝑥,𝑞𝑦,𝑞𝑧 ̸=0

𝑆
(1)
1 (q𝑥 + q𝑦 + q𝑧)√

𝑁
𝑒𝑖𝑞𝑥𝑥1+𝑖𝑞𝑦𝑦1+𝑖𝑞𝑧𝑧1 . (57)

As was noted in Sec. 2, we have 𝑆(1)
1 (q𝑥+q𝑦 +q𝑧) ∼

∼ 𝑆
(1)
1 (q𝑥 + q𝑦)/𝑁

1/3 ∼ 𝑆
(1)
1 (q𝑥)/𝑁

2/3. Therefore,
three last sums in (57) are of the order of the first
one, but they depend additionally on 𝑦1 and 𝑧1. Let
us consider only the first sum:

𝑠1(r1) = 𝑠1(𝑥1) =

(2𝜋)∑︁
𝑞𝑥=2𝜋𝑗𝑥/𝐿𝑥

𝑆
(1)
1 (q𝑥)√
𝑁

𝑒𝑖𝑞𝑥𝑥1 , (58)

where 𝑗𝑥 = ±1,±2,±3, ... . For 𝑆(1)
1 (q𝑥), we use the

zero approximation (54). In view of the property
𝑆
(1)
1 (−q𝑥) = 𝑆

(1)
1 (q𝑥) and since 𝑆(1)

1 (q𝑥) is real, the
imaginary part of (58) is cancelled, and we can change
𝑒𝑖𝑞𝑥𝑥1 → cos (𝑞𝑥𝑥1). In this paper, we study only the
qualitative behavior of the solutions. Therefore, we
choose the interatomic potential of two He4 atoms in
the simple form

𝑈3(r) ≈

⎧⎨⎩
𝑈𝑏 > 0, 𝑟 ≤ 𝑎,
𝑈𝑏𝑑 < 0, 𝑎 ≤ 𝑟 ≤ 𝑏,
0, 𝑟 > 𝑏.

(59)

For the modern potentials [33, 34], 𝑎 ≈ 2.6 Å, 𝑈𝑏𝑑 ≈
≈ −11K, but the barrier and the well are more flat
than steps (59). Therefore, we will use the lower val-
ues of 𝑎 and |𝑈𝑏𝑑| in (59): 𝑎 = 2 Å, 𝑈𝑏𝑑 = −9K, and
𝑏 = 4 Å.

The Fourier-transform (11) of potential (59) is

𝜈3(𝑘) =
4𝜋

𝑘3
{[𝑈𝑏 − 𝑈𝑏𝑑][sin (𝑎𝑘)− 𝑎𝑘 cos (𝑎𝑘)] +

+ 𝑈𝑏𝑑[sin (𝑏𝑘)− 𝑏𝑘 cos (𝑏𝑘)]}. (60)

In the two-particle approximation, we have from (49):

𝑎2(𝑘) =
1

2
−
√︂

1

4
+
𝑛𝜈3(𝑘)𝑚

2𝑑~2𝑘2
. (61)

We chose the sign “minus” before the root in Eq. (61).
At the sign “plus,” we have nonphysical result
𝐸0 = −∞.

The results for the functions 𝑓(𝑥1) and 𝑠1(𝑥1) (56),
(58) at 𝐿𝑥 = 104�̄� and several potentials are given
in Figs. 1 and 2; here, �̄� ≈ 3.58 Å is the mean in-
teratomic distance for He II. The values of the func-
tions at 𝐿𝑥 = 105�̄� and 𝐿𝑥 = 103�̄� differ from the
drawn ones very slightly (by <∼ 0.1%). So, the curves
in the figures are true for all 𝐿𝑥 >∼ 103�̄�. As seen
from Fig. 1, 𝑓(𝑥1) is equal to 0.5 everywhere, except
for a narrow region near the wall. While approaching
the wall, 𝑓(𝑥1) oscillates with constant period and in-
creasing amplitude and becomes zero on the wall. An

130 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 2



Microstructure of He II in the presence of boundaries

increase of the interatomic barrier 𝑈𝑏 causes a growth
of the amplitude of oscillations 𝑓(𝑥1). The well depth
𝑈𝑏𝑑 does not affect the results, if |𝑈𝑏𝑑| ≪ 𝑈𝑏. As the
distance to the wall increases, 𝑓(𝑥1) approaches the
constant 0.5 with a high accuracy increasing with 𝐿𝑥.
For example, at 𝐿𝑥 = 104�̄�, the deviation from 0.5
occurs only in the sixth decimal point. As 𝑥1 → 𝐿𝑥,
the function 𝑓(𝑥1) behaves itself as at 𝑥1 → 0.

It is of interest that 𝑓(𝑥1) oscillates near the wall.
This is due to the short-range order, and the period
is proportional to 𝑎/�̄�. Large oscillations at 𝑈𝑏 =
= 2900K are, most likely, nonphysical and are related
to the neglect of corrections, which are large at such
a potential. This reflects the behavior of the density
𝜌 of helium, since 𝜌(𝑥1) ∼

∫︀
𝑑𝑦1𝑑𝑧1𝑑r2...𝑑r𝑁 |Ψ0|2 ∼

∼ 𝑓2(𝑥1) (the behavior of 𝜌(𝑥1) near the wall is also
affected by 𝑒𝑆𝑏 , but we did not study it). Similar
oscillations were obtained in [16], while modeling
the properties of a film of helium adsorbed on the
substrate.

We obtained the solutions also at finite 𝑈𝑠. At
𝑈𝑠 >∼ 1000K, they are practically invariable with in-
crease in 𝑈𝑠, except for the values on a wall, where
𝑓 ̸= 0. As 𝑈𝑠 increases, 𝑠1(𝑥) approaches a constant
(≃ 10) at 𝑥 = 0, and sin (𝑘1𝑥𝑥+ 𝛿1𝑥) → 0.As a result,
we have 𝑓(𝑥 → 0)|𝑈𝑠→∞ → 0. With regard for the
higher corrections, such behavior will be conserved:
as 𝑈𝑠 → ∞, we have 𝛿 → 0, such 𝛿 affects slightly
𝐶1(𝑞) and all results, because 𝛿 enters the equations
through the function 𝐶1(𝑞). In addition, the terms
with large 𝑞 are cut in sums by 𝑎𝑗 . Due to such prop-
erties, the transition 𝑈𝑠 → ∞, 𝛿 → 0 is correct and
makes Ψ0 to be arbitrarily close to zero on the walls.

Thus, though the bare function sin (𝑘1𝑥𝑥+ 𝛿1𝑥) is
far from to be a constant, the account for 𝑆(1)

1 (𝑞𝑥)
makes the theoretical density of atoms to be con-
stant everywhere, except for a narrow (∼Å) region
near walls. Sines are the best bare functions, be-
cause 1) their use gives the simplest equations; 2) if
the interatomic interaction is “switched-off,” Ψ0 is
reduced to the product of bare sines, which is the
ground-state WF of 𝑁 free Bose particles in the box.
The circumstance that the correction 𝑆

(1)
1 (𝑞𝑥) “im-

proves” the behavior of 𝑓(𝑥1) seems natural, because
the Schrödinger equation (24) involves the interaction
of atoms and must make their distribution uniform,
but 𝑆

(1)
1 (𝑞𝑥) is generated just by the Schrödinger

equation.

4. Excited State of He II

We now find the WF of helium II in a vessel for the
state with one phonon. Under periodic BCs, the exact
solution for the WF takes the form [24]

Ψk(r1, ..., r𝑁 ) = 𝜓kΨ0, (62)

𝜓k ≡ 𝜓𝑏
k = 𝜌−k +

(2𝜋)∑︁
k2 ̸=0,−k

𝑏2(k2,k)√
𝑁

𝜌k2𝜌−k2−k +

+

(2𝜋)k2+k3+k̸=0∑︁
k2,k3 ̸=0

𝑏3(k2,k3,k)
𝑁

𝜌k2𝜌k3𝜌−k2−k3−k + ... .

(63)

A solution in the zero approximation

𝜓𝑏
k = 𝜌−k (64)

with a simplified first correction with 𝑏2 was first pro-
posed by R. Feynman [35,36]. The arguments in favor
of solution (62), (63) are as follows: 1) it satisfies the
Schrödinger equation for 𝑁 interacting Bose parti-
cles and 2) it is an eigenfunction of the momentum
operator P̂ = −𝑖~

∑︀
𝑗 ∇r𝑗 with the eigenvalue ~k;

3) at the “switching-off” of the interaction, it is re-
duced to WF (64) describing 𝑁 free Bose particles,
from which 𝑁 − 1 particles are immovable, and the
single one moves with the momentum k; 4) an anal-
ogous solution is obtained in the operator approach
[8]; 5) the completeness [12] of collections (25) im-
plies that the solution for 𝜓k should have only such a
form. However, the structure of (62) is the assump-
tion, though no solution with another structure was
found. The solution for 𝜓k with “shadow” variables
[17, 18] is equivalent to (62), (63).

The simplest way to find solution (62), (63) is to
assume the structure of (62) and to substitute the
WF of free particles (64), as the bare 𝜓k, in the
Schrödinger equation for interacting particles. The
equation prompts the form of corrections to 𝜓k.

In a similar manner, we start for the liquid in a
vessel from (62) with Ψ0 (32). The study of different
possibilities has shown that 𝜓k must be sought in the
form

𝜓kr =
8√
𝑁

𝑁∑︁
𝑗=1

cos (𝑘𝑟𝑥𝑥𝑗) cos (𝑘𝑟𝑦𝑦𝑗) cos (𝑘𝑟𝑧𝑧𝑗)+

+ 𝛿𝜓kr = 𝜌−kr + 7 permutations + 𝛿𝜓kr (65)
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with the unknown 𝛿𝜓kr . The permutation means 𝜌−kr

with the different sign of one or several components
of kr. In this case, kr takes values (3), since we must
obtain the solution for free particles at the switching-
off of the interaction. We now represent 𝜓k in the
form

𝜓k = 𝜓0
k + 7 permutations, (66)

𝜓0
k = 𝜌−k + 𝛿𝜓0

k. (67)

Solution (66), (67) describes a 3D standing wave de-
caying into eight counterrunning waves.

Substituting WF (62) in the Schrödinger equa-
tion with Hamiltonian (12), we obtain the equa-
tions for 𝜓k:

− ~2

2𝑚

∑︁
𝑗

{△𝑗𝜓k + 2(∇𝑗𝜓k)×∇𝑗𝑆} = 𝐸(k)𝜓k, (68)

𝑆 = 𝑆(1)
𝑤 + 𝑆𝑏 + 𝑆0, (69)

𝑆0 = lnΨ𝑓
0, (70)

where 𝐸(k) = 𝐸 −𝑁𝐸0 is the energy of a quasipar-
ticle; 𝐸(k) is obviously independent of the signs of
components of k. Therefore, Eq. (68) is separated
into 8 equations: for 𝜓0

k and 7 permutations with the
same energy 𝐸(𝑘).

The analysis indicates that the solution for 𝜓0
k has

the following form:

𝜓0
k = 𝜓𝑏

k + 𝑏0(k) +
(2𝜋)∑︁

q ̸=0,−k

𝑄1(q,k)𝜌−q−k +

+

q+q1+k̸=0∑︁
q,q1 ̸=0

𝑄2(q,q1,k)√
𝑁

𝜌q1
𝜌−q−q1−k +

+

q+q1+q2+k̸=0∑︁
q,q1,q2 ̸=0

𝑄3(q,q1,q2,k)
𝑁

𝜌q1
𝜌q2

𝜌−q−q1−q2−k +

+..., (71)

where 𝜓𝑏
k is of the form of solution (63) for periodic

BCs (but with k𝑗 running series (3)), 𝑏0 and 𝑄𝑙 are
the corrections from boundaries. Here, q is quan-
tized according to (2) (like 2𝜋𝑗/𝐿), and q𝑗 and k are
quantized by (3) (like 𝜋𝑗/𝐿).

With regard for the properties of 𝜌k, we can di-
rectly verify that Ψk (62), (66), (71) is the exact so-
lution of the Schrödinger equation, if the functions
𝐸(𝑘), 𝑏𝑗 , and 𝑄𝑙 satisfy the equations

𝑏0(k)𝜖(𝑘) = −2𝑘2𝑆
(1)
1 (−k)𝛿k,k𝑒 −

− 2𝑘1𝑥𝑘𝑥𝑖𝐶1𝑥(−𝑘𝑥)
√
𝑁𝛿k,k𝑒

𝑥
−

− 2√
𝑁

(𝜋)∑︁
q̸=0

𝑞2𝑄2(−k,q,k)𝛿k,k𝑒 −

−
(2𝜋)∑︁

q̸=0,−k

2(k + q)2𝑄1(q,k)𝑆
(1)
1 (−k − q)𝛿k,k𝑒 +

+

(2𝜋)∑︁
𝑞𝑥 ̸=0

2
√
𝑁𝑘1𝑥𝑞𝑥𝑖𝐶1𝑥(𝑞𝑥)𝑄1(−k − q𝑥,k)𝛿k,k𝑒 +

+(𝑥→ 𝑦, 𝑧), (72)

𝜖(𝑘) = 𝜖0(𝑘)−
1

𝑁

(𝜋)∑︁
k2 ̸=0

𝑏2(k2,k)2k2(k2 + k)−

− 1

𝑁

(𝜋)∑︁
k2 ̸=0

6𝑘22𝑏3(k2,−k2,k)−

−
(2𝜋)∑︁
𝑞𝑥 ̸=0

2𝑘1𝑥(𝑘𝑥 + 𝑞𝑥)𝑖𝐶1𝑥(−𝑞𝑥)𝑄1(q𝑥,k)−

− 2√
𝑁

(2𝜋)∑︁
q̸=0

𝑄1(q,k)(k + q)×

×
[︁
q𝑆(1)

1 (−q) + 2(k + q)𝑆(1)
2 (−q,−k)

]︁
+

+

(2𝜋)∑︁
𝑞𝑥 ̸=0

4𝑘1𝑥𝑞𝑥𝑖𝐶1𝑥(𝑞𝑥)𝑄2(−q𝑥,q𝑥,k)−

− 4√
𝑁

(2𝜋)∑︁
q̸=0

𝑞2𝑄2(−q,q,k)𝑆(1)
1 (q) + (𝑥→ 𝑦, 𝑧), (73)

𝑄1(q,k) [𝜖(𝑘)− 𝜖0(k + q)] =

= 2𝑖𝑘1𝑥𝐶1𝑥(𝑞𝑥)𝛿q,q𝑥
[−𝑘𝑥 + 2𝑞𝑥𝑏2(q,k)] +

+
2𝑆

(1)
1 (q)√
𝑁

[qk− 2𝑞2𝑏2(q,k)]−
4𝑘2√
𝑁
𝑆
(1)
2 (q,−q−k)−

− 1

𝑁

(𝜋)∑︁
q1 ̸=0

{2q1(q1 + q + k) ×

× [𝑄2(q,q1,k) +𝑄1(q + q1,k)
√
𝑁𝑆

(1)
1 (−q1)] +
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+6𝑞21𝑄3(q,q1,−q1,k)+

+4𝑞21𝑄2(q− q1,q1,k)
√
𝑁𝑆

(1)
1 (q1) +𝑄1(q+ q1,k)×

× 4(q1 + q + k)2
√
𝑁𝑆

(1)
2 (−q1,−q − k)

}︁
+

+

(2𝜋)∑︁
𝑝𝑥 ̸=0

2𝑘1𝑥𝑖𝐶1𝑥(𝑝𝑥) [(−𝑘𝑥 − 𝑞𝑥 + 𝑝𝑥)𝑄1(q − p𝑥,k) +

+ 2𝑝𝑥𝑄2(q − p𝑥,p𝑥,k)] + (𝑥→ 𝑦, 𝑧), (74)

𝑏2(k2,k) [𝜖(𝑘)− 𝜖0(k2)− 𝜖0(k + k2)] =

= kk2𝑎2(k2)− k(k + k2)𝑎2(k + k2)− 𝑘2𝑎3(k,k2)−

− 2√
𝑁

(𝜋)∑︁
k3 ̸=0

{︂
3k3(k2 + k3 + k)√

𝑁
𝑏3(k2,k3,k)+

+𝑄1(k3,k)(k3 + k)
[︁
2(k3 − k2)𝑆

(1)
2 (−k3,k2) +

+ 3(k3 + k)𝑆(1)
3 (−k3,k2,−k2 − k)

]︁
+

+2𝑄2(−k3,k2 + k3,k)(k2 + k3)×

×
[︁
k3𝑆

(1)
1 (k3) + 2(k2 + k3)𝑆

(1)
2 (k3,k2)

]︁
+

+3𝑘23𝑆
(1)
1 (k3)𝑄3(−k3,k2,−k2 − k,k)

}︂
+

+

(2𝜋)∑︁
𝑝𝑥 ̸=0

2𝑘1𝑥𝑖𝐶1𝑥(𝑝𝑥) [3𝑝𝑥𝑄3(−p𝑥,k2,−k2 − k,k) +

+ 2(𝑘2𝑥 + 𝑝𝑥)𝑄2(−p𝑥,k2 + p𝑥,k)] +

+ higher corrections + (𝑥→ 𝑦, 𝑧), (75)

where 𝜖(𝑘) = 2𝑚𝐸(𝑘)/~2, k𝑒 is the wave vector with
even components (i.e., they are multiple to 2𝜋/𝐿),
q𝑥 = 𝑞𝑥i𝑥,q𝑦 = 𝑞𝑦i𝑦,q𝑧 = 𝑞𝑧i𝑧, and analogously for
p𝑥, p𝑦, and p𝑧. By (𝑥 → 𝑦, 𝑧), we denote the same
terms as that with the separated 𝑥-component, but
with the changes 𝑥→ 𝑦 and 𝑥→ 𝑧.

Equations (72)–(75) are written in the approxima-
tion of “two sums in the wave vector”, at which the
series contain the functions 𝑎2, 𝑎3, 𝑏2, 𝑏3, 𝑆

(1)
𝑗≤3, and

𝑄𝑙≤3 and do not include the corrections 𝑎𝑗≥4, 𝑏𝑗≥4,
𝑆
(1)
𝑗≥4, and 𝑄𝑙≥4 (they change the equation for 𝑏2, by

adding the correcting sums with 𝑏4, 𝑆
(1)
4 , and 𝑄4).

If the interaction is switched-off, Ψk reveals a com-
plicated structure, which should be reduced to the
solution for free particles; but we omit this point.

Let us consider the properties of Eqs. (71)–(75).
Solution (63) was obtained under periodic BCs and
contains only the functions 𝑏𝑗≥2. Solution (71) cor-
responds to the zero BCs and contains the additional
functions 𝑏0 and 𝑄𝑙. In view of the “one-dimensional”
form (52), (53) of the functions 𝑆(1)

𝑗 , relations (72)–
(75) imply that the functions 𝑄𝑙 can be also consid-
ered “one-dimensional.” In particular,

𝑄1(q,k) ≈ 𝑄1(q𝑥,k)𝛿q,q𝑥
+

+𝑄1(q𝑦,k)𝛿q,q𝑦
+𝑄1(q𝑧,k)𝛿q,q𝑧

. (76)

The “two-dimensional” 𝑄1 with q of the form
(𝑞𝑥, 𝑞𝑦, 0) and the “three-dimensional” ones with q =
= (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) are less than the one-dimensional ones
by ∼𝑁1/3 and ∼𝑁2/3 times, respectively. Due to the
smallness of “non-1D” 𝑄1, their inclusion in the equa-
tions does not affect the values of one-dimensional
ones. The estimates indicate that 𝑄𝑙 affects 𝜖(𝑘) neg-
ligibly. In Eq. (75), the surface corrections for 𝑏2 are
also less than the bulk ones by ∼𝑁1/3 times. The
smallness of surface corrections 𝐴𝑙 and 𝑄𝑙 is related
to the thinness of a near-surface fluid layer as com-
pared with the sizes of a system.

Therefore, we set 𝑄𝑙 = 0 in Eqs. (71)–(75). Then
we obtain the Vakarchuk–Yukhnovskii equations [24]
for 𝜖(𝑘) and 𝑏𝑗 . However, k𝑗 in these equations should
be quantized by the 𝜋/𝐿-law (3) instead of the usu-
ally used 2𝜋/𝐿-law (2), which is valid for the periodic
BCs. In the zero approximation for Ψ0 and Ψk, we
set 𝑎𝑗≥3 = 0 and 𝑏𝑗 = 0 in the equations. Then we
obtain the formula for the energy of quasiparticles:

𝐸(𝑘) ≈

√︃(︂
~2𝑘2
2𝑚

)︂2

+
𝑛𝜈3(𝑘)

2𝑑
~2𝑘2
𝑚

, (77)

which is close to the Bogolyubov one, but it contains
the additional factor 1/2𝑑 due to the boundaries (in
the general case, 𝑑 is the number of nonperiodic co-
ordinates). This formula is true at a weak interac-
tion. Comparing formula (77) at potential (59) with
the dispersion curve of He II as 𝑘 → 0, we obtain
𝑈𝑏 ≃ 283K, whereas we have 𝑈𝑏 ≃ 35K without the
factor 1/2𝑑. The first estimate is more plausible.

The Bogolyubov–Zubarev model [8] gives the same
results, if we expand the potential in the Fourier
series (21): in [8], we replace 𝜈3(𝑘) → 𝜈3(𝑘)/2

𝑑,∑︀(2𝜋) →
∑︀(𝜋) and obtain 𝐸(𝑘) (77) and 𝐸0 (48)

with 𝑎2(𝑘) (61).
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Relations 𝜕⟨�̂�⟩/𝜕𝜈3(𝑘) = ⟨𝜕�̂�/𝜕𝜈3(𝑘)⟩, 𝑆(𝑘) =
= ⟨𝜌k𝜌−k⟩ and (22) yield [24] 𝑆(𝑘) = 1 + (2𝑑+1/𝑛)×
× (𝜕𝐸0/𝜕𝜈3(𝑘)). Using this result, (44), and (48), we
find the connection between 𝑎2(𝑘) and the structural
factor 𝑆(𝑘). In the zero approximation, this connec-
tion is the same as for periodic BCs: 1 − 2𝑎2(𝑘) ≈
≈ 1/𝑆(𝑘). With regard for this relation and (61), for-
mula (77) is transformed into the Feynman formula

𝐸(𝑘) ≈ ~2𝑘2

2𝑚𝑆(𝑘)
, (78)

which agrees approximately with the experiment.
If one particle is in the box, 𝑘 is restricted from

above by the value 𝑘max =
√
6𝑚𝑈𝑠/~ (see (31)). For

He4 atoms at 𝑈𝑠 = 25𝐾, we have 𝑘max ≈ 3.6 Å
−1

.
So, the observed break of the dispersion curve of He
II at 𝑘 ≈ 3.6 Å

−1
can be caused, in principle, by that

a phonon has also some 𝑘max at a finite 𝑈𝑠, rather
than by the decay mechanism [37].

5. Comparison
of the New and Traditional Solutions

Expansion (11), (20) yields the traditional solution.
For the transition to it, it is necessary to replace
1/2𝑑 → 1,

∑︀(𝜋) →
∑︀(2𝜋) in the equations. The

curves in Figs. 1 and 2 are true also for the tradi-
tional solution, but for 𝑈𝑏 which is less by a factor
of 8. For a cyclic system, we have only this tradi-
tional solution. But, for a system with boundaries,
we obtain the traditional and new solutions.

The principal question is as follows: Which of the
solutions is realized in the Nature for systems with
boundaries? We found numerically that, at a weak
interaction, 𝐸0 is noticeably less for the new solution
(usually by ∼ 2𝑑 times): in 2D and 3D cases for all
parameters, and in 1D case almost for all ones. We
studied potentials (59) and 𝑈𝑏𝛿(𝑥/𝑎) for 1D and po-
tential (59) for 2D. For 3D, we took (59) and

𝑈3(r) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈𝑏(1− 𝑟2/𝑎2), 𝑟 ≤ 𝑎,

𝑈𝑏𝑑

[︃(︂
1− 𝑎

𝑟0

)︂2
−
(︂
𝑟

𝑟0
− 1

)︂2]︃
, 𝑎 ≤ 𝑟 ≤ �̃�,

0, 𝑟 > �̃�,

(79)
where �̃� = 2𝑟0 − 𝑎. The quantity 𝐸0 was calculated
by formulas (48) and (61). In 2D, potential (59) has
the Fourier-transform

𝜈2(k) =
2𝜋𝑎

𝑘
(𝑈𝑏 − 𝑈𝑏𝑑)𝐽1(𝑘𝑎) +

2𝜋𝑏

𝑘
𝑈𝑏𝑑𝐽1(𝑘𝑏). (80)

Here, 𝐽1(𝑝) is the Bessel function. We consider the
weakness of the interaction as the smallness of the
barrier 𝑈𝑏 and (for 3D) of the concentration 𝑛. At a
nonweak interaction, 𝐸0 for the new solution is some-
times less than that for the traditional one. But the
opposite is also possible; this depends on the approx-
imation, the parameters and, possibly, the error of
calculations.

The solution with larger 𝐸0 corresponds to the un-
stable ordering. Therefore, the new solution is true
at a weak interaction; but we don’t know which solu-
tion is true at a strong interaction. As was mentioned
above, the traditional solution for the systems with
boundaries follows from expansion (11), (20), which
creates 2𝑑−1 fictitious images and makes the total in-
teratomic potential cyclic. In such system, there is no
symmetry breaking that corresponds to the bound-
ary, besides the hand-imposed condition Ψ = 0. Such
statement of the problem is not quite self-consistent,
since we are interested in the topological effect, but
the topology is modeled unproperly. This calls into
question the traditional solution. However, this so-
lution was found [38] also from the exact expansion
(11), (21) in the Gross–Pitaevskii approach. There-
fore, the traditional solution can also exist in our ap-
proach.

6. Why Can the Boundaries
Affect the Bulk Properties?

To argue why the boundaries should not affect the
bulk properties, the following general arguments are
presented: 1) for large systems, the volume of the
near-boundary region is negligibly small as compared
with the total volume of the system; 2) the dimen-
sional formulas of the form 𝐸 = 𝑁𝑓(𝑆/𝑁, 𝑉/𝑁) [39];
3) the proofs [40] of the existence of a thermodynamic
limit. These are not simple questions, and they are
slightly studied. We will try now to clarify them.
First, the above-obtained effect of boundaries has the
bulk character (see below); in this case, argument (1)
is not valid. We now answer item (3), which will also
answer item (2). It was proved in monograph [40] that
if, for a cyclic system or a system with boundaries, 𝑁
and 𝑉 are unboundedly increased at 𝑁/𝑉 = const,
then the partition function approaches some limit-
ing value. If we perform the same transition in the
above-obtained formulas for a cyclic or noncyclic sys-
tem, then the equations remain invariant, i.e., the
limits exist too. Therefore, our results agree with
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those in [40]. However, such limit is almost obvious
[40] without calculations. The following is not ob-
vious: Do the limits for initially cyclic and initially
noncyclic systems coincide? This was not considered
in [40]. In our approach, these limits turn out dif-
ferent. Another question is as follows: Do the limits
[40] mean the transition to the infinite system? The
passage to limit was performed by Van Hove and by
Fisher. In both cases, the finite system was consid-
ered, and the passage to infinity is realized in the
meaning of the continuous limit 𝑁,𝑉 → ∞. For a
cyclic system, we can continuously pass to the in-
finite system, whereas it is impossible for a system
with boundaries: a boundaries cannot disappear at
increasing the system size, because the boundary is
a topological property (this can be referred to a lot
of remarkable paradoxes for infinite sets [41]). In this
case, the transition to the infinite system assumes a
topological jump. Therefore, the Ruelle limit for a
system with boundaries is the passage to an arbitrar-
ily large, but finite system. Hence, the validity of the
transition from a system with boundaries to the infi-
nite system was not proved in [40]. But the T-limit is
used in physics as a way to avoid the consideration of
boundaries, and it means the transition to namely the
infinite system (without boundaries). Such “strong”
T-limit assumes that the properties of four following
different systems are identical: finite large cyclic, in-
finite cyclic, finite large with boundaries, and infinite
noncyclic. This strong assumption is not proved in
the general case, and our result indicates that this
assumption is erroneous for some systems. Systems
with different topologies are described by different
(generally speaking) eigenfunctions. As a result, the
values of 𝐸/𝑁 (e.g.) for them can be different. From
the four above-mentioned systems, the topologies of
only two first systems are identical. Therefore, the
transition between them is rightful, but the transi-
tion between any other systems can lead to a jump
of bulk properties. The analysis in the previous sec-
tions indicates that the transition from a finite cyclic
system to a finite system with boundaries leads to a
jump by a factor of 2−𝑑. The jump at the transition
from an infinite cyclic system to the infinite noncyclic
one consists in the neglect of images (see Section 2).
Sometimes, a cyclic infinite system is described with-
out the account for images, but this is wrong, in our
opinion. Thus, arguments (1)–(3) do not imply that
the boundaries cannot affect the bulk properties. The

weak point of the T-limit is the neglect of the jump
due to the topology; eventually, the main source of
difficulties is the passage to infinity, which is contra-
dictory [41]. Here, we consider only the finite systems,
for which all things can be properly defined.

We note that the function 𝑓 in the formula 𝐸 =
= 𝑁𝑓(𝑆/𝑁, 𝑉/𝑁) can depend on the shape of a
boundary, at least as 𝑇 → 0. Our calculation for a
vessel-parallelepiped has shown that 𝐸0 and the dis-
persion law are independent of the ratio of the sizes
of a vessel. Most likely, no dependence on the shape
of a boundary exists for vessels of any shape.

How can the topology affect the bulk properties of
a system? We indicate two ways. 1) “The effect of
images”. If two particles are placed on a finite one-
dimensional ring, then a particle acts on another one
from two sides (from 2𝑑 sides in 𝑑 dimensions). Af-
ter we unclose the ring, the action will be only from
one side. By expanding the interatomic potential in
the exact series (11), (21), one can show that the ac-
count for 2𝑑−1 images transfers expansion (11), (21)
in the traditional one (11), (20). We think that just
this is the reason for the difference by the factor 2𝑑

in the dispersion law. 2) “The effect of modes”. On
a closed 1D string, the standing waves with 𝜆 = 𝐿/𝑗
(𝑗 is an integer) are possible; whereas an unclosed
string admits additionally the standing waves with
𝜆 = 2𝐿/𝑗. In other words, the number of eigenmodes
for a 𝑑-dimensional system with boundaries is more
by 2𝑑 times, than that for the same cyclic system.
It is known [8, 9] that the ground-state WF for in-
teracting bosons Ψ0 ≃ exp (

∑︀
k 𝑎2(k)𝜌k𝜌−k/2 + ...)

is similar to the WF of the system of interacting os-
cillators. Mechanics implies that the eigenfrequencies
of the system of interacting oscillators differ from the
frequencies of free oscillators. Moreover, the frequen-
cies of the system of 𝑁 oscillators differ from those
of the system of 2𝑑𝑁 oscillators of the same type.
Therefore, the energies of the lowest states of these
two systems must be different. We note that a phonon
can be considered as one more oscillator. It is clear
that if we add the same oscillator to the system of
𝑁 interacting oscillators and to the system of 2𝑑𝑁
oscillators, then the frequencies of these systems shift
by different values. This shift is the phonon energy.
Therefore, the frequencies of phonons with the same
k in systems with different topologies can be different,
though it seems strange at the first sight. Our solu-
tion indicates that the influence of modes is strong at
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a strong interatomic interaction. This conclusion is
natural. For example, for the ground state of He II,
the stronger the interatomic interaction, the stronger
is the interaction between “oscillators”. The influence
of modes is manifested in that whether k is quantized
as 𝜋/𝐿 or as 2𝜋/𝐿.

The physics of condensed systems is determined by
collective modes (waves). Therefore, the boundaries
must (or, at least, can) affect the dispersion law and
the ground-state energy. At high temperatures, the
physics is determined by atoms. The standing waves
are modulated by a wall and therefore preserve the
memory of the wall, whereas the atoms lose the mem-
ory after several collisions with other atoms. There-
fore, at high 𝑇, the effect of modes must not hold. As
for the influence of “images”, the answer is not obvi-
ous. We expect that, at high 𝑇, the topology has no
influence on the bulk properties.

K. Huang [32] noted that the boundaries must have
no effect (most probably), since the correlation length
𝜆𝑐 is much less than the size of the system. But this
𝜆𝑐 is obtained from the binary correlation function
of all atoms. For the condensate subsystem, 𝜆𝑐 is
equal to the size of the system, as follows from the
definition of a condensate and from the experiments
with gases in a trap. Therefore, if the condensate is
“pricked” at some place, this will be felt by all conden-
sate atoms. This consideration led the author to the
idea of a possibility of the effect of boundaries. Now,
we suppose that the effect of boundaries has a more
general character and is possible without condensate.

The main point consists in that the effect of bound-
aries is related to the topology of a system as a whole,
rather than to the influence of a thin layer of near-
surface atoms. This effect is a bulk one.

7. Comparison with Other Models

The influence of boundaries was studied within sev-
eral models [2–6], but no effect was found. Let us clar-
ify, why. In Section 6, we have considered two sources
of the effect of boundaries: images and modes.

In the exactly solvable 1D model [2, 3] for bosons
with the point interaction, the cyclic and noncyclic
systems are described by the Hamiltonian

�̂� = −
∑︁
𝑗

𝜕2

(𝜕𝑥𝑗)2
+ 2𝑐

∑︁
𝑖<𝑗

𝛿(|𝑥𝑖 − 𝑥𝑗 |) (81)

without images 𝑈(𝐿𝑥 − |𝑥𝑖 − 𝑥𝑗 |). The account for
images means the necessity to explicitly consider the
interaction of the first and 𝑁 -th atoms for the cyclic
system. This adds one equation. However, one can
show that it is satisfied identically. The reason is
the following. In order to describe the point interac-
tion of the first and 𝑁 -th atoms, we must consider
both atoms on the segment 𝑥 > 0 (then the 𝑁 -th
atom becomes the first one, and the first atom be-
comes the second one) or on the segment 𝑥 < 𝐿 (then
the first atom becomes the 𝑁 -th one, and the 𝑁 -th
atom becomes the 𝑁 − 1-th one). But such interac-
tions have been already included in the equations [2].
For nonpoint atoms, the influence of images would be
nonzero.

Can the modes affect? The solution for the WFs of
a cyclic system of point particles is [2]:

Ψ(𝑘)(𝑥) =
∑︁
𝑃

𝑎(𝑃 )𝑃𝑒
𝑖

𝑁∑︀
𝑙=1

𝑘𝑃𝑙
𝑥𝑙

, (82)

where 𝑃 are all permutations of 𝑘𝑙. WF (82) is a su-
perposition of states of 𝑁 free particles. The energy,

𝐸 = 𝑘21 + 𝑘22 + ...+ 𝑘2𝑁 , (83)

is the same for all these states. Since the atom in-
teracts only with the neighbors on the left and on
the right, the ground-state WF for cyclic boundaries
must have the form

Ψ0 =
∑︁
𝑃

𝐹 (𝑥1,2, 𝑥2,3, ..., 𝑥𝑁−1,𝑁 , 𝑥𝑁,1), (84)

where 𝑃 are the permutations of 𝑥𝑗 , and 𝑥𝑖,𝑗 = 𝑥𝑖 −
−𝑥𝑗 . For noncyclic boundaries, 𝑥𝑁,1 should be re-
placed by 𝑥𝑁 , 𝑥1 in (84). WF (82) can be rewritten as

Ψ(𝑘)(𝑥) =
∑︁
𝑃

𝑎(𝑃 )𝑃𝑒
𝑖
𝑁−1∑︀
𝑗=1

𝑝𝑗(𝑘)𝑥𝑗,𝑗+1+𝑖𝑝𝑁 (𝑘)𝑥𝑁

, (85)

where 𝑝𝑗(𝑘) =
∑︀𝑗

𝑙=1 𝑘𝑙. For the GS, 𝑝𝑁 = 0 [2].
Therefore,

Ψ(𝑘)(𝑥) =
∑︁
𝑃

𝑎(𝑃 )𝑃𝑒
𝑖
𝑁−1∑︀
𝑗=1

𝑝𝑗(𝑘)𝑥𝑗,𝑗+1+𝑖𝑝𝑁 (𝑘)𝑥𝑁,1

, (86)

which is structure (84). In the presence of bound-
aries, the ground-state WF is more complicated, but
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it is constructed on the basis of (82). We now have
𝑝𝑁 ̸= 0 [3], and, therefore, (85) does not transit in
(86). These ground-state WFs have nonoscillatory
structure, as opposed to Ψ0 of a Bose liquid. There-
fore, there is no effect of modes.

Thus, the effect of boundaries is absent in the mod-
els by Lieb [2] and Gaudin [3] due to the point inter-
action.

Though Ψ0 for the systems with point and non-
point interactions are different, the Bogolyubov ap-
proach [7] does not use WFs and allows to describe
these systems in the same way. Therefore, the so-
lutions by Lieb [2] and Gaudin [3] at a low-strength
interaction are close to Bogolyubov ones. To con-
sider boundaries, the Bogolyubov method [7] should
be modified.

In the Gross–Pitaevskii approach with point poten-
tial, the solutions [4,5] correspond to the Bogolyubov
mode, changed due to the inhomogeneity and (for
low-lying modes) a geometry. For a nonpoint inter-
action, two solutions were found [38]: the Bogolyubov
mode and the new one (77).

In work [6], Haldane’s harmonic-fluid approach is
applied to Bose and Fermi systems, and the exact
Hamiltonian with the potential 𝑈(r−r′) was replaced
by an approximate one (Luttinger liquids). In this
Hamiltonian, the interaction singularities are present
only in constants, and the difference character (r −
r′) of the potential is absent. However, the effects
of images and modes are characteristic of a nonlocal
Hamiltonian with the interaction term of the type
𝑓(r − r′).

8. Thermodynamics

Under periodic BCs, the thermodynamic quantities
are calculated from the free energy [42]:

𝐹 = −𝑘𝐵𝑇
∫︁

ln(1 + 𝑛𝑞)
𝑑k

(2𝜋)3
. (87)

Under zero BCs, law (3) holds. Therefore, the quan-
tity 2𝜋 in (87) should be replaced by 𝜋. However,
eight states of a standing phonon with different signs
of the components of k are equivalent. Therefore,
we must integrate only over the sector 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 > 0.
We arrive at formula (87) and the known formulas for
entropy, heat capacity, etc.

9. Experimental Tests

Which of two solutions corresponds to experiments?
It is not easy to give a reply. For He II, the basic
problem consists in that the higher corrections to the
equations are large, but they are omitted. We can es-
timate 𝐸0 (44), (48) for He II with regard for 𝐴1 ≈ 0
and 𝑎2 (61) (two-particle approximation). We use

𝑑 = 3 and
(𝜋)∑︀

for the new solution in (48), (61) and

𝑑 = 0 and
(2𝜋)∑︀

for the traditional one. For the new
solution, 𝐸0 coincides with the experimental value
𝐸exp

0 = −7.16K for 𝑈𝑏 = 64K and 142K for poten-
tials (59) and (79), respectively (for 𝑎 = 2 Å, 𝑏 = 4 Å,
𝑟0 = 3.5 Å, 𝑈𝑏𝑑 = −9K, and �̄� = 3.58 Å). For the
traditional solution, 𝐸0 does not coincide with 𝐸exp

0

at potential (59) (for all 𝑈𝑏) and coincides at poten-
tial (79), if 𝑈𝑏 = 92K. These estimates do not involve
the higher corrections, which can change strongly the
results. For the dispersion law in the first approx-
imation [10, 19, 25, 43], the traditional solution cor-
responds to experiments for 𝑈𝑏 ∼ 100 − 300K, and
the new solution should correspond to experiments
for 𝑈𝑏 ∼ 2000K due to the factor 2−𝑑 = 1/8.

The modern data on the potential give 𝑈𝑏 ∼ 106 K
[33,34]. The large distinction from the theoretical es-
timates (𝑈𝑏 ∼ 100−2000K) is related to the neglect of
higher corrections and to the possibly overestimated
value 106 K. However, the new solution is closer to
106 K. The calculations by the Monte-Carlo method
were performed under cyclic BCs; for 𝑈𝑏 ∼ 106 K,
they give the results in approximate agreement with
experiments (see review [22]).

A gases in traps are nonuniform and strongly local-
ized in space. Under such conditions, the boundaries
should probably not affect the bulk microstructure of
a system (see [38] for more details).

We propose several direct tests. According to (48)
and (77), a system with boundaries has the smallest
values of 𝐸0 and 𝐸(𝑘) in 2D at a weak interaction.
At the closure of one of the coordinates, 𝐸0 and 𝐸(𝑘)

increase (in this case,
∑︀

k =
∑︀(𝜋)

𝑘1

∑︀(2𝜋)
𝑘2

in (48)),
and they increase more at the closure of the second
coordinate. Therefore, the dispersion curve should
be different for a monoatomic dilute He II film on a
plane surface (𝑑 = 2 in Eqs. (48), (77)), on the lateral
surface of a cylinder (𝑑 = 1), and on the surface of a
torus (𝑑 = 0). The heat capacity of these films at the
same temperature must be significantly different. A
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more interesting effect is also possible. It is necessary
to form a monoatomic film of He II on the surface
of a torus and then to cut the torus (similarly to the
breaking of a ring). As a result, some boundaries
must arise (it is important that the film would not
flow through the boundary and would not join itself
inside the torus; to this end, it is possible to use a Cs
knife, since Cs is not wetted by helium). In this case,
the system passes from the state with 𝑑 = 0 to that
with 𝑑 = 1. Therefore, the energies of phonons and of
the ground state are sharply changed, the ensemble of
phonons will be rearranged, and the temperature of
the system will jump by a value comparable with the
initial 𝑇 . If we restore the slit torus, the inverse pro-
cesses will run. These phase transitions can be called
topological ones. One can also compare the surface
phonon-roton dispersion curve for a thick closed He
II film with that one for an open film.

Our analysis shows that if the film thickness is more
than several atomic layers, the properties of a he-
lium film on the cylinder surface must probably be
the same as those of helium in the cylinder bulk.

10. A Few Comments

Of interest is the following property. The ground
state is described by WF (32) with the product of
𝑁 triple sines with the wave vector k1, and the ex-
cited state is presented by the same WF with the
factor 𝜓k. The sines of the GS set a standing wave in
the probability field. In the zero approximation, 𝜓k
is equal to 𝜌−k with permutations and “is convolved”
with the sines of the GS, by resulting in a superposi-
tion of states, whose structure coincides with that of
Ψ0 with the difference that the wave vector for some
sines differs from k1. We may roughly say that the ex-
citation is simply the replacement of one of the stand-
ing waves of the GS by a wave with larger k. Such a
structure of WFs means that the GS is formed by 𝑁
identical standing “phonons” with smallest wave vec-
tor k1 (for which a half-wave occupies the system). In
the excited states, a part of phonons is replaced by
phonons with different k. In this case, the meaning
of the notion of “excitation” is changed, because the
GS becomes, in a certain sense, “excited”.

With regard for corrections, the harmonics of the
GS are not identical by structure to the harmonics of
excited states. But the GS is the state with 𝑁 iden-
tical interacting “phonons”, and their structure may

be different from the structure of a single “ordinary”
phonon.

While being scattered in He II, neutrons create
phonons. This process occurs with the conserva-
tion of the momentum. In our solution, phonons are
standing waves without definite momentum. How-
ever, the WF of a phonon is a sum of eight traveling
waves, each with a definite momentum. In a small re-
gion of helium, we see a lot of quasiparticles as mov-
ing localized wave packets with a certain momentum.
Neutrons create, apparently, just such quasiparticles.
However, each quasiparticle is a part of the total sys-
tem of standing waves filling the vessel.

We now return to the method. Under periodic BCs,
the collections of 𝜌k𝑗

(25) are functionally indepen-
dent [12, 24], and k𝑗 are quantized by the 2𝜋/𝐿-law
(2). But, for the new solution, k𝑗 are quantized some-
times by the 𝜋/𝐿-law (3); in this case, the collections
of 𝜌k𝑗

(25) are not functionally independent. How-
ever, this is not a problem. Indeed, let us consider a
function

𝐹 (𝑥) =
∑︁
𝑗

𝐴𝑗𝑓𝑗(𝑥). (88)

If the Schrödinger equation with Ψ(𝑥) = 𝐹 (𝑥) is re-
duced to the form∑︁
𝑙

𝐵𝑙({𝐴𝑗})𝑓𝑙(𝑥) = 0, (89)

and we determine coefficients 𝐴𝑗 such that 𝐵𝑙 = 0 for
all 𝑙, then it is obvious that 𝐹 (𝑥) is a solution irre-
spective of whether the functions 𝑓𝑗(𝑥) are indepen-
dent and whether they form a full collection. We have
acted just in this manner. Under a certain structure
of the equation, it is easier to find solutions if 𝑓𝑗(𝑥)
have some special structure and are dependent. It
seems that this is our case. We have used the expan-
sion in the collections of 𝜌k𝑗

(25) with k ∼ 𝜋𝑗/𝐿. A
part of them, namely the collections with k ∼ 2𝜋𝑗/𝐿,
forms the full collection.

While this work was under a thorough considera-
tion, we have solved the problem in an approach with
independent basic functions [44]. The solutions coin-
cide with those obtained above.

Additional comments can be found in the arXiv
version (v. 5) of this paper (in Section X and Ap-
pendix).
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11. Conclusions

We have studied the influence of boundaries on
the microstructure of He II and obtained two so-
lutions for the wave functions and the dispersion
law: the traditional and new ones. They corre-
spond to two different orderings of the system. The
new solution is obtained from a more exact expan-
sion of the interatomic potential. At a weak inter-
action, the ground-state energy is less for the new
solution. Thus, the boundaries affect strongly the
bulk microstructure of the system. So, the mod-
els with periodic boundary conditions should be
reconsidered. Their agreement with the experiment
may be related to the approximate character of the
models and to the human psychology (fitting pa-
rameters, the tuning of a model or interrupting
the study, when the agreement with the experi-
ment appears, rather than when the model becomes
exact).

Here, we recall the Casimir effect [45] caused by
the influence of the boundaries, geometry, and topol-
ogy on the eigenmodes of vacuum of the system (see
review [46]).

Because the effect of boundaries is related to the
topology, it should be valid for all interacting sys-
tems at 𝑇 → 0. The effect must be also present
in quantum field theory. Since the Nature has no
infinite and point objects, the elementary particles
must have nonzero sizes. In view of this, the La-
grangian should contain the interaction term of the
form 𝑈(r − r′), which leads to the effect of bound-
aries (for the Universe as a whole as well). The fur-
ther studies will help us to better understand this
phenomenon.

The author thanks N. Iorgov, Yu. Shtanov, K. Sza-
lewicz, and S. Yushchenko for valuable discussions.
He is grateful also to the anonymous referees for use-
ful remarks.
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М.Д. Томченко

МIКРОСТРУКТУРА He II ЗА НАЯВНОСТI ГРАНИЦЬ

Р е з ю м е

Дослiджено мiкроструктуру системи взаємодiючих бозе-
частинок за нульових граничних умов, i знайдено два мо-
жливих впорядкування. Одне традицiйне, та при слабкiй
взаємодiї характеризується законом дисперсiї Боголюбова

𝐸(𝑘) ≈
√︂(︁

~2𝑘2

2𝑚

)︁2
+ 𝑞𝑛𝜈3(𝑘)

~2𝑘2

𝑚
(𝑞 = 1). А друге – но-

ве та характеризується тим самим законом дисперсiї, але
з 𝑞 = 2−𝑑, де 𝑑 – кiлькiсть нециклiчних координат. При
слабкiй взаємодiї енергiя основного стану менша для ново-
го розв’язку. Границi впливають на об’ємну мiкрострукту-
ру внаслiдок вiдмiнностi топологiї замкненої та вiдкритої
систем.
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