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A brief review of the different ways of the Dirac equation derivation is given. The foundations
of the relativistic canonical quantum mechanics of a fermionic doublet on the basis of the
Schrödinger–Foldy equation of motion are formulated. In our approach, the Dirac equation is
derived from the Schrödinger–Foldy equation.
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1. Introduction

It may seem from the title of the article that the sub-
ject of our investigation is trivial. It may seem for
everybody that he knows the quantum-mechanical
description of spin s = 1

2 doublet! Indeed, the old
imagination that the Dirac equation gives the rela-
tivistic quantum-mechanical description of the fermi-
onic doublet still is widespread.

Nevertheless, in some principal quantum-mecha-
nical problems, such description is not satisfactory.
L. Foldy and S. Wouthuysen [1] suggested the nonlo-
cal canonical formulation of the equation for a spinor
field. In this description [1–3], first of all for an elec-
tron having spin s = 1

2σ, many quantum-mechanical
details were clarified. The equation i∂tf(x) =

=
√
m2 − Δf(x), f =

∣∣∣∣f1

f2

∣∣∣∣, was used. Such de-

scription [1–3] is adequate in the sense of its com-
parison with the nonrelativistic Schrödinger model
of electron. The direct relativistic analogue of the
Schrödinger equation is the spinless Salpeter equation
[4–6] for the one-component wave function: i∂tf(x) =
=

√
m2 − Δf(x).

The relativistic equations mentioned above can be
generalized in an obvious way for the particle multi-
plets with arbitrary spin. In the case of arbitrary
spin and multicomponent wave functions, we sug-
gested [7, 8] to call such type of equations as the
Schrödinger–Foldy equations. The important contri-
bution of L. Foldy [1–3] into the consideration and
the analysis of a spinor field in the nonlocal canoni-

c© V.M. SIMULIK, I.YU. KRIVSKY, 2013

cal representation (and his analysis of the principles
of heredity and correspondence with nonrelativistic
quantum mechanics) was taken into account.

The analysis of a 4-component spinor field [1–
3] enabled the authors of these papers to discern
the quantum-mechanical interpretation of the Dirac
equation. For these purposes, the Dirac equation was
transformed into another representation i∂tf(x) =
= γ0

√
m2 − Δf(x), which is called the Foldy–Wour-

huysen (FW) representation today.
In this article, the Schrödinger–Foldy equation for

the 4-component wave function (in all essential de-
tails) is under consideration. The axiomatic formula-
tion of the corresponding relativistic canonical quan-
tum mechanics (RCQM) is briefly presented. The
derivation of the Dirac equation directly from the
Schrödinger–Foldy equation (without any additional
assumptions) is given.

We started the consideration of this subject in pa-
per [9]. Here, the basic principles of RCQM for a spin
s = 1

2 doublet and the derivation of the Dirac equa-
tion from this model are under the further consider-
ation. The foundations of RCQM were given in [1–4,
7–9]. Here, the mathematically well-defined consid-
eration on the level of modern axiomatic approaches
to the field theory [10] is provided.

In Section 2, a brief review of various ways to derive
the Dirac equation is given. Our motivation and goals
are considered.

1 This work is the contribution to Proceedings of the Inter-
national Conference “Quantum Groups and Quantum Inte-
grable Systems”.
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In Section 3, the main notations and definitions
are fixed.

In Section 4, the difference between the Schrödin-
ger–Foldy equation and the FW equation is demon-
strated. The advantages of the Schrödinger–Foldy
equation in the detailed quantum-mechanical de-
scription of the fermionic doublet are demonstrated.
The reasons for our postulation of the Schrödinger–
Foldy equation to be the RCQM equation of motion
are shown.

In Section 5, the brief axiomatic foundations of
RCQM are formulated.

In Section 6, we present our derivation of the
Dirac equation. We start from the main princi-
ples of RCQM (directly from the Schrödinger–Foldy
equation).

In Section 7, we formulate the main conclusions and
discuss briefly the negative point of view of RCQM
for the possibility of a negative mass of antiparticles.

2. Motivation and Goals

The significance of the Dirac equation and its wide-
range application in different models of theoretical
physics (QED, QHD, theoretical atomic and nuclear
physics, solid systems) is well-known. Let us recall
only that the first analysis of this equation enabled P.
Dirac to give the theoretical prediction of a positron,
which was discovered experimentally by C. Ander-
son in 1932. The recent well-known application of
the massless Dirac equation to graphene ribbons is
an example of possibilities of this equation. In our
recent publications [11–15], we were able to extend
the domain of applications of the Dirac equation. We
proved [11–15] that this equation has not only fermi-
onic but also the bosonic features and can describe
not only the fermionic but also bosonic states.

Therefore, the new ways of derivation of the Dirac
equation are the actual problems. They visualize au-
tomatically the ground principles that are in the foun-
dation of the description of elementary particles on
the basis of this equation. Hence, the active consid-
eration of the various ways to derive the Dirac equa-
tion is the subject of many contemporary publica-
tions. The start from the different basic principles
and assumptions is considered.

Below, a brief review of the different ways to derive
the Dirac equation is given.

It is necessary to mark the elegant derivation given
by P. Dirac in his book [16]. Till now, it is very in-

teresting for readers to feel Dirac’s thinking and to
follow his logical steps. Nevertheless, Dirac’s consid-
eration of the Schrödinger–Foldy equation, which was
essentially used in his derivation [16], was not cor-
rect. Especially, this concerns his assertion that the
Schrödinger–Foldy equation is unsatisfactory from
the point of view of the relativistic theory. Dirac’s
doubts were overcome in [1–3]. Today, this is con-
firmed by more than one hundred publications about
the FW and spinless Salpeter equations, which have
wide-range application in th contemporary theoreti-
cal physics.

In the well-known book [17], one can find the ex-
cellent review of the Dirac theory and two different
ways to derive the Dirac equation. First, it is the pre-
sentation of the Klein–Gordon equation in the form
of a first-order differential system of equations and
the factorization of the Klein–Gordon operator. Sec-
ond, the Lagrange approach is considered, and the
Dirac equation is derived from the variational Euler–
Lagrange least action principle.

In the van der Waerden–Sakurai derivation [18] of
the Dirac equation, the electron spin is incorporated
into the nonrelativistic theory. The representation of
the nonrelativistic kinetic energy operator of a free
spin-1/2 particle in the form HKE = (σ · p)(σ · p)/
/2m and the relativistic expression E2−p2 = m2 are
used. After that, the procedure of transition from the
2-component to 4-component equation is fulfilled and
explained.

In book [19], the Dirac equation is derived from the
manifestly covariant transformational properties of a
4-component spinor.

The derivation of the Dirac equation from the ini-
tial geometric properties of the space-time and an
electron together with the wide-range discussion of
the geometric principles of the electron theory are
the main content of book [20]. The ideas of V. Fock
and D. Iwanenko [21, 22] of the geometric sense of the
Dirac γ-matrices are in the basis of the approach.

The derivation of the Dirac equation based on the
Bargmann–Wigner classification of the irreducible
unitary representations of the Poincaré group should
be mentioned as well (see, e.g., [23]). It is the il-
lustrative demonstration of the possibilities of the
group-theoretic approach to the elementary particle
physics.

In Foldy’s papers [1–3], one can easily find the in-
verse problem, in which the Dirac equation is ob-
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tained from the FW equation. Nevertheless, it is only
the transition from one representation to another one.

H. Sallhofer [24, 25] derived the Dirac equation for
the hydrogen spectrum, by starting from Maxwell’s
equations in a medium. Strictly speaking, only the
stationary equations were considered.

In paper [26], a quaternion measurable process was
introduced, and the Dirac equation was derived from
the Langevin equation associated with a two-valued
process.

L. Lerner [27] was able to derive the Dirac equation
from the conservation law of a spin-1/2 current. The
requirement that this current be conserved leads to a
unique determination of the Lorentz invariant equa-
tion satisfied by a relativistic spin-1/2 field. Let us
briefly comment that the complete list of conservation
laws for the Dirac theory is the Noether consequence
of the Dirac equation. Therefore, the validity of the
inverse problem is really expected. Can it be consid-
ered as the independent derivation?

The Dirac equation has been derived [28] from the
master equation of a Poisson process by analytic con-
tinuation. The extension to the case where a par-
ticle moves in an external field was given. It was
shown that the generalized master equation is inti-
mately connected with the three-dimensional Dirac
equation in an external field.

In paper [29], a method of deriving the Dirac equa-
tion from the Newton’s relativistic second law was
suggested. Such derivation is possible in a new for-
malism, which connects the special form of relativis-
tic mechanics with quantum mechanics. H. Cui sug-
gested a concept of velocity field. At first, Newton’s
relativistic second law was rewritten as a field equa-
tion in terms of the velocity field, which directly re-
veals a new relationship connecting with quantum
mechanics. After that, it was shown that the Dirac
equation can be derived from the field equation in a
rigorous and consistent manner.

In paper [30], a geometric derivation of the Dirac
equation was given, by considering a spin-1/2 parti-
cle traveling with the speed of light in a cubic space-
time lattice. The mass of the particle acts to flip
the multicomponent wave function at the lattice sites.
Starting with a difference equation for the case of one
spatial and one time dimensions, the authors of pa-
per [30] generalized the approach to higher dimen-
sions. Interactions with external electromagnetic and
gravitational fields were also considered. Neverthe-

less, the idea of such derivation is based on Dirac’s
observation that the instantaneous velocity operators
of a spin-1/2 particle (hereafter called by the generic
name “electron”) have eigenvalues ±c. This mistake
of P. Dirac was demonstrated and overcome in [1].

Using the mathematical tool of Hamilton’s biqua-
ternions, the authors of [31] proposed a derivation of
the Dirac equation from a geodesic equation. Such
derivation is given in the program of application of
the theory of scale relativity to microphysics aimed
at recovering the quantum mechanics as a new non-
classical mechanics on a nonderivable space-time.

M. Evans was successful to express his equation
of general relativity (generally covariant field equa-
tion for gravitation and electromagnetism [32]) in the
spinor form, thus producing the Dirac equation in
general relativity [33]. The Dirac equation in special
relativity is recovered in the limit of the Euclidean or
flat space-time.

Ten years ago, we already presented our own
derivation of the Dirac equation [34–36]. The Dirac
equation was derived from the slightly generalized
Maxwell equations with gradient-like current and
charge densities. This form of the Maxwell equations,
which is directly linked with the Dirac equation, is
the maximally symmetric variant of these equations.
Such Maxwell equations are invariant with respect
to a 256-dimensional algebra (the well-known algebra
of the conformal group has only 15 generators). Of
course, we derived only the massless Dirac equation.

Today, we present a new derivation of the Dirac
equation. We derive the Dirac equation from the 4-
component Schrödinger–Foldy equation of RCQM.
We postulate the Schrödinger–Foldy equation and
construct the corresponding formalism of RCQM as
the most fundamental model of fermionic doublet. At
first, the brief axiomatic formulation of the RCQM
foundations is given. After that, the operator, which
transforms the Schrödinger–Foldy equation into the
Dirac equation, is given. Therefore, the new way to
derive the Dirac equation is presented.

Our main goal is following.
To answer the question “Does there exist a more

fundamental model of “particle doublet” (as an ele-
mentary fundamental object), from which the Dirac
equation (and its content) would follow directly and
unambiguously?”, we are able to demonstrate that
the axiomatically formulated RCQM of a particle-
antiparticle doublet of spin s = 1

2 should be chosen
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as such a model. Below, the specific detailed illustra-
tion of this assertion by the example of an electron-
positron doublet, e−e+-doublet, is given.

3. Notations and Main Definitions

The model of RCQM for an elementary particle with
m > 0 and spin s = 1

2 , which satisfies the Schrö-
dinger–Foldy equation i∂tf(x) =

√
m2 − Δf(x); x ∈

∈ M(1, 3),
∫
d3x |ϕ(x)|2 < ∞, was suggested and ap-

proved in [1–3]. This model can be easily generalized
to the case of an arbitrary s-multiplet, i. e. the “ele-
mentary object” with mass m and spin s ≡ (

sj
)

=
= (s23, s31, s12) :

[
sj , sl

]
= iεjlnsn, where εjln is

the Levi-Civita tensor, and sj = εj�ns�n are the Her-
mitian M×M matrices that are the generators of an
M-dimensional representation of the spin group SU(2)
(universal covering of the SO(3)⊂SO(1,3) group).

Here, we present the detalization of such general-
ization by the example of a fermionic doublet with
the spin s = 1

2 . All mathematical and physical de-
tails related to the choice of a specific form of the
spin-s doublet are illustrated by the example of an
e−e+-doublet.

We choose the standard relativistic concepts, defi-
nitions, and notations in the form convenient for our
consideration. For example, in the Minkowski space-
time

M(1, 3) = {x ≡ (xμ) = (x0 = t, x ≡ (xj))}; (1)

μ = 0, 3, j = 1, 2, 3,

the xμ are the Cartesian (covariant) coordinates of
the points of the physical space-time in any fixed in-
ertial frame of reference (IFR). We use the system of
units � = c = 1. The metric tensor is given by

gμν = gμν = gμ
ν , (gμ

ν ) = diag (1,−1,−1,−1) ; (2)

xμ = gμνx
μ,

where the summation over the twice repeated index
is implied.

The analysis of the relativistic invariance of an
arbitrary physical model involves, as the first step,
the consideration of its invariance with respect to
the proper orthochronous Lorentz L↑

+ = SO(1, 3) =
= {Λ = (Λμ

ν )} and Poincaré P↑
+ = T(4)×)L↑

+ ⊃ L↑
+

groups. This invariance in an arbitrary relativistic
model is the realization of Einstein’s relativity prin-
ciple in the form of special relativity. Note that the
mathematical correctness demands one to consider
the invariance mentioned above as the invariance with
respect to the universal coverings L = SL(2,C) and
P ⊃ L of the groups L↑

+ and P↑
+, respectively.

For the group P, we choose the real parameters
a = (aμ) ∈M(1,3) and � ≡ (�μν = −�νμ), whose
physical meaning is well-known. For the standard P
generators (pμ, jμν) , we use the commutation rela-
tions in the manifestly covariant form

[pμ, pν ] = 0, [pμ, jρσ] = igμρpσ − igμσpρ,

[jμν , jρσ] = −i (gμρjνσ+gρνjσμ+gνσjμρ+gσμjρν).
(3)

4. Canonical Equation of Motion
of Relativistic Quantum Mechanics

In this section, we make comparison of the Schrödin-
ger–Foldy and FW equations for a fermionic doublet.
On this bases, we demonstrate why the Schrödinger–
Foldy equation should be chosen as the main equation
of motion in RCQM.

The Schrödinger–Foldy equation for a fermionic
spin-1/2 doublet is given by

i∂tf(x) =
√
m2 − Δf(x), (4)

where

f ≡ column(f1, f2, f3, f4). (5)

This equation, similarly to the nonrelativistic 4-
component Schrödinger equation

i∂tf(x) =
p2

2m
f(x) (6)

(involving also the internal degrees of freedom, spin,
etc.) is considered in the quantum-mechanical
Hilbert space

H3,4 = L2(R3) ⊗ C⊗4 = {f = (fα) : R3 → C⊗4;∫
d3x|f(t,x)|2 <∞}}, (7)

where d3x is the Lebesgue measure in the space
R3 ⊂ M(1, 3) of the eigenvalues of the position op-
erator x of the Cartesian coordinate of the doublet
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in an arbitrary fixed IFR. In (4)–(7) and below, the
two upper components f1, f2 of the vector f ∈ H3,4

are the components of the electron wave function ϕ−,
and the two lower components f3, f4 are those of the
positron wave function ϕ+.

The general solution of the Schrödinger–Foldy
equation (4), similarly to the general solution of
the nonrelativistic 4-component Schrödinger equation
(6), is given by

f(x) =
∣∣∣∣fe−

fe+

∣∣∣∣ =
1

(2π)
3
2

∫
d3ke−ikx×

× [
a−+(k)d1 + a−−(k)d2 + a+

−(k)d3 + a+
+(k)d4

]
, (8)

where

kx ≡ ωt− kx, ω ≡
√

k2 +m2, (9)

the 4-columns dα are the Cartesian orts in the space
C⊗4 ⊂ H3,4,

d1 =

∣∣∣∣∣∣∣∣
1
0
0
0

∣∣∣∣∣∣∣∣, d2 =

∣∣∣∣∣∣∣∣
0
1
0
0

∣∣∣∣∣∣∣∣, d3 =

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣, d4 =

∣∣∣∣∣∣∣∣
0
0
0
1

∣∣∣∣∣∣∣∣, (10)

the functions a−+(k), a−−(k) are the quantum-me-
chanical momentum-spin amplitudes of a particle
with charge −e and the spin projection eigenvalues
+1/2 and -1/2; and a+

−(k), a+
+(k) are the quantum-

mechanical momentum-spin amplitudes of an an-
tiparticle with charge +e and the spin projection
eigenvalues -1/2 and +1/2, respectively.

In the general solution (8), we use the modern ex-
perimentally verified understanding of a positron as
the “mirror mapping” of an electron. Such under-
standing leads to the specific postulation of the ex-
plicit forms of the charge sign and spin operators (see
formula (24) in [7]), which determine the form of so-
lution (8).

Contrary to the Schrödinger–Foldy equation (4),
the FW equation has the form

i∂tf(x) = γ0
√
m2 − Δf(x),

γ0 =
∣∣∣∣ I2 0
0 −I2

∣∣∣∣, I2 =
∣∣∣∣1 0
0 1

∣∣∣∣, (11)

and its general solution is given by

φ(x) =
∣∣∣∣ φe−

φ∗e+

∣∣∣∣ =
1

(2π)
3
2

∫
d3k{e−ikx[a−+(k)d1+

+a−−(k)d2] + eikx[a∗+− (k)d3 + a∗++ (k)d4]}. (12)

Equations (4) and (11) are different due to the pres-
ence of γ0 in (11). Owing to this fact, the general so-
lutions (8) and (12) are also different. Solution (8) is
the direct sum of the electron and positron quantum-
mechanical wave functions. Solution (12) is the direct
sum of the electron and complex conjugated positron
wave functions. Furthermore, solution (8) contains
only positive energetic states both for the electron
and the positron, whereas solution (12) contains the
positive energetic states of the electron and the neg-
ative energetic states of the positron.

Note that solution (8) for the wave function of a
spin-1/2 doublet is expressed in terms of relativistic
de Broglie waves for the electron and the positron,

ϕ�kA(t,x) =
1

(2π)
3
2
e−iωt+i�k�xdA, A = 1, 2, 3, 4. (13)

Expressions (13) are the fundamental (basis) solu-
tions of Eq. (4) and do not belong to the Hilbert
space (7) (their H3,4-norms are equal to the infinity).
The mathematical correctness of the consideration is
ensured by applying the rigged Hilbert space

S3,4 ≡ S(R3) × C4 ⊂ H3,4 ⊂ S3,4∗. (14)

Here, S3,4 is the 4-component Schwartz test function
space over the space R3 ⊂ M(1, 3), and S3,4∗ is the
space of 4-component Schwartz generalized functions,
which is conjugated to the Schwartz test function
space S3,4 by the corresponding topology (see, e.g.,
[37]). Strictly speaking, the mathematical correctness
of the consideration demands us to make calculations
in the space S3,4∗ of generalized functions, i.e. with
the application of cumbersome functional analysis.

Nevertheless, let us take into account that the
Schwartz test function space S3,4 in triple (14) is
kernel. This means that S3,4 is dense both in the
quantum-mechanical space H3,4 and in the space of
generalized functions S3,4∗. Therefore, any physi-
cal state f ∈ H3,4 can be approximated with arbi-
trary precision by the corresponding elements of the
Cauchy sequence in S3,4, which converges to the given
f ∈ H3,4. Further, with regard for the requirement to
measure the arbitrary value of the model with nonab-
solute precision, this means that all specific calcula-
tions can be fulfilled within the Schwartz test function
space S3,4.
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Note that if the general solution f(x) (8) belongs
to S3,4, then the amplitudes a−+(k), a−−(k), a+

−(k),
and a+

+(k) also belong to S3,4. It is enough for the
approximation of any experimental situation.

Contrary to this situation, even if the amplitudes
a from (12) belong to the S3,4, the general solution
(12) of the FW equation (11) does not belong to the
quantum-mechanical Hilbert space (7) (due to the in-
definite metric in the space of solutions). Neverthe-
less, the mathematical correctness of the considera-
tion is achieved (ensured) in the space S3,4 ⊂ S3,4∗

due to the fact that S3,4 is dense in S3,4∗.
Therefore, we are able to demonstrate the differ-

ence between the Schrödinger–Foldy equation (4) and
the FW equation (11) in the quantum-mechanical
description of the fermionic doublet. Despite the
fact that one can discern some quantum-mechanical
aspects in the FW representation, however, the
FW equation does not guarantee generally the de-
tailed quantum-mechanical description of the fermi-
onic doublet (as well as the Dirac equation).

Hence, we postulate the Schrödinger–Foldy equa-
tion (4) to be the RCQM equation of motion for a
fermionic spin-1/2 doublet and construct the corre-
sponding canonical formalism.

5. Relativistic Canonical
Quantum Mechanics of a Fermi Doublet

The axioms of the model are formulated on the level
of correctness of von Neumann’s monograph [38]. The
requirements of such physically verified principles as
the principle of relativity with respect to the tools of
cognition (PRTC), principle of heredity (PH) with
both classical mechanics of single mass point and non-
relativistic quantum mechanics (and the principle of
correspondence (PС) with these theories), and the
Einstein principle of relativity (EPR) are taken into
consideration. The last principle requires, first of all,
the special relativity (SR) to be taken into account.

The basic axioms of the model (we present here the
brief consideration) as mathematical assertions have
the form.

On the space of states. The space of states of
an isolated e−e+-doublet in the arbitrarily fixed IFR
in its x-realization is the Hilbert space H3,4 (7) of
complex-valued 4-component square-integrable func-
tions of x ∈ R3 ⊂ M(1, 3) (similarly, in momen-
tum, p-realization). Here, x and p are the operators

of canonically conjugated dynamical variables of the
e−e+-doublet, and the vectors f , f̃ in x and p realiza-
tions are linked by the 3-dimensional Fourier trans-
formation (the variable t is the parameter of time-
evolution).

The mathematical correctness of the con-
sideration demands the application of the rigged
Hilbert space (14), where the Schwartz test function
space S3,4, which is the verified tool of the PRTC re-
alization, is kernel (i.e., it is dense both in H3,4 and
in the space S3,4∗ of the generalized Schwartz func-
tions). Such application allows us to fulfill, without
any loss of generality, all necessary calculations in the
space S3,4 on the level of correct differential and in-
tegral calculus. The more detailed consideration is
given in paragraphs after formula (14).

On the time evolution of the state vectors.
The time dependence of the state vectors f ∈ H3,4

(time t is the parameter of evolution) is given either
in the integral form by the unitary operator

u (t0, t) = exp [−iω̂(t− t0)] ; ω̂ ≡
√

−Δ +m2 (15)

(below we put t0 = t) or in the differential form
by the Schrödinger–Foldy equation of motion (4).
Here, the operator ω̂ ≡ √−Δ +m2 is the relativis-
tic analog of the energy operator (Hamiltonian) of
nonrelativistic quantum mechanics. The Minkowski
space-time M(1,3) is pseudo-Euclidean with the met-
ric g = diag(+1,−1,−1,−1).

On the fundamental dynamical variables.
The dynamical variable x ∈ R3 ⊂M(1,3)(as well as
the variable k ∈ R3

�k
) represents the external degrees

of freedom of the e−e+-doublet. The spin s of the
e−e+-doublet is the first in the list of carriers of the
internal degrees of freedom. In view of the Pauli prin-
ciple and the fact that the positron is experimentally
observed as the mirror reflection of the electron, the
operators of charge sign and spin of the e−e+-doublet
are taken in the form

g ≡ −γ0 =
∣∣∣∣−I2 0

0 I2

∣∣∣∣, s =
1
2

∣∣∣∣σ 0
0 −CσC

∣∣∣∣, I2 =
∣∣∣∣1 0
0 1

∣∣∣∣,
(16)

where σ are the standard Pauli matrices, and C is the
operator of complex conjugation. The spin matrices
(16) satisfy the commutation relations of the algebra
of SU(2) group

s ≡ (
sj

)
= (s23, s31, s12) :

[
sj , sl

]
= iεjlnsn;
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ε123 = +1. (17)

Here, εjln is the Levi-Civita tensor, and sj = εj�ns�n

are the Hermitian 4 × 4 matrices that are the gen-
erators of a 4-dimensional reducible representation
of the spin group SU(2) (universal covering of the
SO(3)⊂SO(1, 3) group).

On the algebra of observables. Using the op-
erators of canonically conjugated coordinate x and
momentum p (where

[
xj , p�

]
= iδj� in H3,4), being

completed by the operators s and g, we construct the
algebra of observables (according to the PH) as the
Hermitian functions of 10 (x, p, s, −γ0) generating
elements of the algebra.

On the relativistic invariance of the theory.
This invariance (realization of the SR) is ensured
by the proof of the invariance of the Schrödinger–
Foldy equation (4) with respect to the unitary repre-
sentation of the universal covering P ⊃ L=SL(2,C)
of the proper orthochronous Poincaré group P↑

+ =
= T(4) × L↑

+ ⊃ L↑
+. Here, L = SL(2,C) is the uni-

versal covering of the proper orthochronous Lorentz
group L↑

+.
The generators of the fermionic P f representa-

tion of the group P, with respect to which the
Schrödinger–Foldy equation (4) is invariant, are given
by
p̂0 = ω̂ ≡

√
−Δ +m2, p̂l = i∂l,

ĵln = xlp̂n − xnp̂l + sln ≡ m̂ln + sln, (18)

ĵ0l = −ĵl0 = tp̂l − 1
2
{xl, ω̂} − slnp̂n

ω̂ +m
, (19)

in the x-realization of the space H3,4 (7) and

p0 = ω, pl = kl, j̃ln = x̃lkn − x̃nkl + sln; (20)(̃
xl = −i∂̃l, ∂̃l ≡ ∂

∂kl

)
,

j̃0l = −j̃l0 = tkl − 1
2
{x̃l, ω} − slnkn

ω +m
, (21)

in the momentum k-realization H̃3,4 of the space of
doublet states, respectively. The explicit form of the
spin operators sln in formulae (18)–(21), which is used
for the e−e+-doublet, is given in formula (16).

In spite of manifestly noncovariant forms (18)–(21)
of the P f -generators, they satisfy the commutation

relations of the P algebra in the manifestly covariant
form (3).

The P f -representation of the group P in the space
H3,4 (7) is given by the exponential series convergent
in this space,

P f : (a,�) → U(a,�) = exp(−ia0ω̂−iap̂− i

2
�μν ĵμν),

(22)

or, in the momentum space H̃3,4, by the correspond-
ing exponential series given in terms of generators
(20) and (21).

We emphasize that the modern definition of P in-
variance (or P symmetry) of the equation of motion
(4) in H3,4 is given by the following assertion (see, e.g.,
[39]). The set F ≡ {f} of all possible solutions of Eq.
(4) is invariant with respect to the P f -representation
of the group P, if, for an arbitrary solution f and the
arbitrarily fixed parameters (a,�), the assertion

(a,�) → U(a,�) {f} = {f} ≡ F (23)

is valid. Furthermore, assertion (23) is ensured by
the fact that, (as is easy to verify), all the P-genera-
tors (18) and (19) commute with the operator i∂t−
−√−Δ +m2 of Eq. (4).

Not a matter of fact that many manifestly nonco-
variant objects are used in RCQM, the model under
consideration is relativistic invariant in the sense of
the definition given above.

On the main and additional conservation
laws. Similarly to the nonrelativistic quantum me-
chanics, the conservation laws are found in the form
of quantum-mechanical mean values of the operators,
which commute with the operator of the equation of
motion.

The important physical consequence of the asser-
tion about the relativistic invariance is the fact that
10 integral dynamical variables of the doublet

(Pμ, Jμν) ≡
∫
d3xf†(t,x)(p̂μ, ĵμν)f(t,x) = Const

(24)

do not depend on the time, i.e., they are the constants
of motion for this doublet.

Note that the external and internal degrees of
freedom for the free e−e+-doublet are independent.
Therefore, the operator s (16) commutes not only
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with the operators p̂ and x, but also with the orbital
part m̂μν of the total angular momentum operator.
Moreover, both operators s and m̂μν commute with
the operator i∂t −

√−Δ +m2 of Eq. (4). Therefore,
besides 10 main (consequences of 10 Poincaré genera-
tors) conservation laws (24), 12 additional constants
of motion exist for the free e−e+-doublet. These ad-
ditional conservation laws are the consequences of the
operators of the following observables:

sj , s̆l =
slnpn

ω̂ +m
, m̂ln = xlp̂n − xnp̂l,

m̂0l = −m̂l0 = tp̂l − 1
2
{xl, ω̂} .

(25)

Thus, the following assertions can be proved. In
the space HA = {A} of the quantum-mechanical am-
plitudes, the 10 main conservation laws (24) have the
form

(Pμ, Jμν) =
∫
d3kA†(k)(p̃μ, j̃μν)A(k), A(k) ≡

∣∣∣∣a−ra+
ŕ

∣∣∣∣,
(26)

where the density generators of PA, (p̃μ, j̃μν) of (26)
are given by

p̃0 = ω, p̃l = kl, j̃ln = x̃lkn−x̃nkl+sln;
(̃
xl = −i ∂

∂kl

)
,

(27)

j̃0l = −j̃l0 = −1
2
{x̃l, ω} −

(̆̃
sl ≡ slnkn

ω +m

)
. (28)

Note that operators (26)–(28) satisfy the Poincaré
commutation relations in the manifestly covariant
form (3).

It is evident that 12 additional conservation laws

(Mμν , Sμν) ≡
∫
d3xf†(t,x)(m̂μν , sμν)f(t,x) = Const

(29)

generated by operators (25) are the separate terms in
expressions (26)–(28) of the principal (main) conser-
vation laws.

On the Clifford–Dirac algebra. The Clifford–
Dirac algebra of the γ-matrices must be introduced
into the FW representations. The reasons are as
follows.

The part of the Clifford–Dirac algebra operators
is directly related to the spin-1/2 doublet operators
( 1
2γ

2γ3, 1
2γ

3γ1, 1
2γ

1γ2). Only in the FW representa-
tion, these spin operators commute with the Hamil-
tonian and with the operator of the equation of mo-
tion. In the Pauli–Dirac representation, these oper-
ators do not commute with the Dirac equation op-
erator. Only the sums of the orbital and such spin
operators commute with the Diracian. So. if we want
to relate the orts of the Clifford–Dirac algebra with
the real spin, we must introduce this algebra into the
FW representation.

In the quantum-mechanical representation (i.e., in
the space of solutions of the Schrödinger–Foldy equa-
tion), the γ-matrices are obtained by the transforma-
tion v given in formulae (33) and (34) of Section 6.

Moreover, we use the generalized Clifford–Dirac al-
gebra over the field of real numbers. This algebra was
introduced in papers [11–15]. The use of 29 orts of
this proper extended real Clifford–Dirac algebra gives
the additional possibilities in comparison with only 16
elements of the standard Clifford–Dirac algebra (see,
e.g., [11–15]).

The definition of spin matrices (16) determines de
facto the so-called “quantum-mechanical” representa-
tion of the Dirac matrices

γ̄μ : γ̄μγ̄ν + γ̄ν γ̄μ = 2gμν ; γ̄−1
0 = γ̄0, γ̄

−1
l = −γ̄l. (30)

The matrices γ̄μ (30) of this representation are linked
to the Dirac matrices γμ in the standard Pauli–Dirac
(PD) representation:

γ̄0 = γ0, γ̄1 = γ1C, γ̄2 = γ0γ2C,

γ̄3 = γ3C, γ̄4 = γ0γ4C; (31)

γ̄μ = vγμv, v ≡
∣∣∣∣ I2 0
0 CI2

∣∣∣∣ = v−1, Cφ = φ∗,

where the standard Dirac matrices γμ are given by

γ0 =
∣∣∣∣ I2 0
0 −I2

∣∣∣∣, γk =
∣∣∣∣ 0 σk

−σk 0

∣∣∣∣, μ = 0, 1, 2, 3. (32)

Note that, in terms of γ̄μ matrices (31), the spin op-
erator (16) have the form s = i

4 (γ̄2γ̄3, γ̄3γ̄1, γ̄1γ̄2).
The γ̄μ matrices (31) together with the matrix

γ̄4 ≡ γ̄0γ̄1γ̄2γ̄3, imaginary unit i ≡ √−1, and the op-
erator C of complex conjugation in H3,4 generate the
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quantum-mechanical representations of the extended
real Clifford–Dirac algebra and the proper extended
real Clifford-Dirac algebra, which were put into con-
sideration in [11] (see also [12–15]).

On the principles of heredity and correspon-
dence. The explicit forms (24)–(29) of the main and
additional conservation laws demonstrate evidently
that the model of RCQM satisfies the principles of
heredity and correspondence with the nonrelativistic
classical and quantum theories. The deep analogy be-
tween RCQM and these theories for the physical sys-
tem with a finite number degrees of freedom (where
the values of the free dynamical conserved quantities
are additive) is also evident.

6. Derivation of the Foldy–Wouthuysen
and the Standard Dirac Equations

We consider briefly the derivation of the FW and
Dirac equations on the basis of the start from the
the Schrödinger–Foldy equation (4). This means that
the Dirac equation is a consequence of the quantum-
mechanical spin-1/2 doublet model.

The link between the the Schrödinger–Foldy equa-
tion (4) and the FW equation (11) is given by the
operator v,

v =
∣∣∣∣ I2 0
0 CI2

∣∣∣∣; v2 = I4, I2 =
∣∣∣∣1 0
0 1

∣∣∣∣, (33)

C is the operator of complex conjugation, the oper-
ator of involution in the space H3,4. The operator
v (33) transforms an arbitrary operator q of RCQM
into the operator Q in the FW representation for the
spinor field and vice versa:

Q = vqv ↔ q = vQv. (34)

The only warning is that formula (34) is valid only
for the anti-Hermitian operators! This means that,
in order to avoid the mistakes, one must apply this
formula only for the prime (anti-Hermitian) energy-
momentum, angular momentum, and spin quanti-
ties. The justification and the use of the conception
of the prime generators of the Lie groups are given
in [11–15].

The role of anti-Hermitian operators in physics is
well-known. As well as the physical parameters of
groups and algebras are real, it is convenient to asso-
ciate just the anti-Hermitian generators with them.

For example, the real parameters aμ, �μν of trans-
lations and rotations of the Poincaré group are as-
sociated with the anti-Hermitian generators p̂μ, ĵμν ,
where p̂μ = ∂μ, etc. The mathematical correctness of
appealing to the anti-Hermitian generators is consid-
ered in [40, 41] in detail. In our papers, just the use
of the anti-Hermitian generators allowed us [11–15]
to find the additional bosonic properties of the FW
and Dirac equations. The details are not the subject
of this consideration.

Here, in order to work with the mathematically
well-defined relationship between the Schrödinger–
Foldy and FW equations, we slightly rewrite these
equations and present them in completely equivalent
forms in terms of the anti-Hermitian operators. Thus,
we consider the Schrödinger–Foldy equation (4) in the
form

(∂0 + iω̂) f(t,x) = 0; (35)

ω̂ ≡
√

p2 +m2 =
√

−Δ +m2 ≥ m > 0,

and the FW equation in the form(
∂0 + iγ0ω̂

)
φ(t,x) = 0. (36)

We also rewrite the Dirac equation similarly in the
form

(∂0 + i(α · p + βm))ψ(t,x) = 0 (37)

only for the reasons of analogy and orderliness. Note
that the FW transformation between the FW and
Dirac models

V ± ≡ ±iγl∂l + ω̂ +m√
2ω̂(ω̂ +m)

(38)

is well-defined both for the Hermitian and anti-
Hermitian operators.

It is easy to verify that the FW equation (36) fol-
lows from the Schrödinger–Foldy equation (35)

v (∂0 + iω̂) v =
(
∂0 + iγ0ω̂

) ↔ v
(
∂0 + iγ0ω̂

)
v =

= (∂0 + iω̂) , (39)

and the general solution of the FW equation (36) fol-
lows from the general solution (8) of the Schrödinger–
Foldy equation (35)

φ(t,x) = vf(t,x) ↔ f(t,x) = vφ(t,x). (40)
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Corresponding links between the FW and Dirac equa-
tions are well-known from [1].

Thus, we are able to find the general transfor-
mation, which gives relationship directly between
RCQM and the Dirac model

W = V +v, W−1 = vV −; WW−1 = W−1W = 1, (41)

and to derive the Dirac equation from RCQM (from
the Schrödinger–Foldy equation)

W (∂0 + iω̂)W−1 = ∂0 + i(α · p + βm), (42)

ψ(t,x) = Wf(t,x). (43)

The inverse links also exist as well-defined mathemat-
ical transformations

W−1(∂0 + i(α · p + βm))W = ∂0 + iω̂, (44)

f(t,x) = W−1ψ(t,x), (45)

but are not so interesting for our purposes as the di-
rect transformations (42) and (43). The direct trans-
formations derive the Dirac equation from a more el-
ementary model of the same physical reality.

7. Conclusions

The model of relativistic canonical quantum me-
chanics on the level of axiomatic approaches to the
quantum field theory is considered. The main in-
tuitive physical principles, reinterpreted on the level
of modern physical methodology, are mapped math-
ematically correctly into the basic assertions (ax-
ioms) of the model. The Einstein principle of rel-
ativity is mapped as a requirement of special rel-
ativity. The principles of heredity and correspon-
dence of the model with respect to the nonrela-
tivistic classical and quantum mechanics are supple-
mented by the clarifications of the carriers of ex-
ternal and internal degrees of freedom. The prin-
ciple of relativity of the model with respect to the
means of cognition is realized by the applications of
the rigged Hilbert space. The Schwartz test func-
tion space S3,4 is shown to be sufficient to sat-
isfy the requirements of the principle of relativity
of the model with respect to the means of cogni-
tion. Moreover, the fulfilment of calculations in
S3,4 does not lead to the loss of generality of the
consideration.

It is shown that the algebra of experimentally
observed quantities, which is associated with the
Poincaré-invariance of the model, is determined by
the nine functionally independent operators x,p, s,
which have the unambiguous physical sense in the
relativistic canonical quantum mechanics model of a
doublet. It is demonstrated that the application of
the stationary complete sets of operators of the ex-
perimentally measured physical quantities guarantees
the visualization and the completeness of the consid-
eration.

The derivation of the Foldy–Wouthuysen and Dirac
equations from the Schrödinger–Foldy equation of rel-
ativistic canonical quantum mechanics is presented
and briefly discussed. We prove that the Dirac equa-
tion is the consequence of a more elementary model of
the same physical reality. The relativistic canonical
quantum mechanics is suggested to be such funda-
mental model of the physical reality. Moreover, it is
suggested to be the most fundamental model of the
Fermi spin-1/2 doublet.

An important assertion is that an arbitrary
physical and mathematical information, which is con-
tained in the model of relativistic canonical quantum
mechanics, is translated directly and unambiguously
into the information of the same physical content in
the field model of the Dirac equation.

Hence, the Dirac equation is the unambiguous con-
sequence of the relativistic canonical quantum me-
chanics of the Fermi spin-1/2 doublet (e.g., e−e+-
doublet). Nevertheless, the model of relativistic
canonical quantum mechanics of the Fermi doublet
has the evident independent application.

We pay attention to the fact that the model of
relativistic canonical quantum mechanics of a Fermi
doublet does not need the application of the positron
negative mass concept [42–45]. It is natural due to
the following reasons. It is only the energy that de-
pends on the mass. The total energy together with
the momentum are associated with the external de-
grees of freedom, which are common and the same
for the particle and the antiparticle (for the elec-
tron and the positron). The difference between e−
and e+ is contained only in the internal degrees
of freedom such as the spin s and the charge sign
g = −γ0. Thus, if the mass of the particle is taken
positive in the relativistic canonical quantum me-
chanics, then the mass of the antiparticle must be
taken positive too.
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On the other hand, the comprehensive analysis
[43] of the Dirac equation for a doublet had led
the authors of paper [43] to the concept of the
negative mass of the antiparticle. Therefore, our
consideration in the last paragraph gives the addi-
tional arguments that the Dirac model (or the Foldy–
Wouthuysen model associated with it) is not the
quantum-mechanical one. Furthermore, in the prob-
lem of the relativistic hydrogen atom, the use of
negative-frequency part ψ−(x) = e−iωtψ(x) of the
spinor ψ(x) in the “role of the quantum-mechanical
object” is not a valid. In this case, neither |ψ(x)|2,
nor ψ(x)ψ(x) is the probability distribution den-
sity with respect to the eigenvalues of the Fermi
doublet coordinate operator. It is due to the fact
[1] that, in the Dirac model, the x is not the ex-
perimentally observable Fermi doublet coordinate
operator.

The application of the relativistic canonical quan-
tum mechanics can be useful for the analysis of the
experimental situation found in [46]. Such analysis is
interesting due to the fact that (as it is demonstrated
here in Sections 4 and 5) the relativistic canonical
quantum mechanics is the most fundamental model
of a Fermi-doublet.

Another interesting application of the relativistic
canonical quantum mechanics is inspired by paper
[47], where the quantum electrodynamics is reformu-
lated in the Foldy–Wouthuysen representation. The
author of paper [47] used essentially the result of
paper [43] about the negative mass of antiparticles.
Starting from the relativistic canonical quantum me-
chanics, we are able not to appeal to the conception
of the negative mass of antiparticles.
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КВАНТОВОМЕХАНIЧНИЙ ОПИС ФЕРМIОННОГО
ДУБЛЕТУ ТА ЙОГО ЗВ’ЯЗОК З РIВНЯННЯМ ДIРАКА

Р е з ю м е

Представлено короткий огляд рiзних способiв виводу рiв-
няння Дiрака. На базi рiвняння руху Шредiнгера–Фолдi
сформульовано основи релятивiстської канонiчної кванто-
вої механiки фермiонного дублету. Рiвняння Дiрака у на-
шому пiдходi виведено з рiвняння Шредiнгера–Фолдi.
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