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We concentrate on the calculation of the shear and bulk viscosities of a hadron gas. They define
its dissipative dynamics and influence its experimentally measurable elliptic flow. Due to the
difficulty of this calculation, the relaxation time approximation (RTA) was used in previous
works. As those results have approached the realistic ones, there is a need to find out how
accurate RTA is. For this sake, we calculate the viscosities in RTA, by using the cross sections
extracted from the ultrarelativistic quantum molecular dynamics (UrQMD) model and compare
them with the same ones calculated without RTA. This allows us to find the estimates of errors
due to the application of RTA in the calculations of viscosities, which are valid also for other
similar models. For instance, in the temperature region 100 MeV � T � 160 MeV at zero
chemical potentials, the shear viscosity becomes smaller up to 1.57 times or up to 1.45 times
if the averaged relaxation time is used. This has important consequences for the interpretation
of the previously made calculations of viscosities and some other related calculations. Within
RTA, we also find estimation of the enhancement of the bulk viscosity of a hadron gas because
of the nonconservation of particle numbers.
K e yw o r d s: relaxation time approximation, bulk viscosity, shear viscosity, hadron gas.

1. Introduction

The bulk and shear viscosities are required for the dis-
sipative hydrodynamic description. This description
finds applications to the strongly interacting matter
created in heavy ion collisions. In particular, its el-
liptic flow can be measured, see review [1].

In this paper, we focus on the calculation of the
shear and bulk viscosity coefficients of a hadron gas at
zero chemical potentials. Ref. [2] provides these calcu-
lations, being close to the realistic ones, with unique
advancement. However, they are done in RTA.

RTA for the Boltzmann equation (BE) is known
for a long time, see, e.g., Ref. [3]. The advantage of
using it is that it provides a simplification in calcu-
lations. However, in all its known realizations, the
errors from its application are not controlled. There
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are some tests and analysis of RTA [4–6], though it is
not sufficient for the estimation of errors from RTA if
the calculations for a hadron gas are required. Thus,
there is a need to verify this approximation. When
the error estimates for it are found, they can be used
in other RTA-based calculations (directly or after a
modification, derivation, or implementation of some
ansatz), e.g., in Ref. [7], or hydrokinetic calculations
[8]. The heat conductivity and diffusion coefficients,
being rather closer by their properties to the shear
viscosity, could be expected to have approximately
the same errors at the chemical potentials small com-
pared to the temperature and with approximately the
same densities.

It turns out that the bulk viscosity enhances much
after the introduction of inelastic (particle number
changing) processes. Taking them into account may
meet some difficulties, though they can be consid-
ered relatively easily in RTA. One could also speak
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about the approximate conservation of particle num-
bers, which has a specific mathematical realization for
the bulk viscosity. Making comparison between the
maximal and minimal enhancements (or between the
cases of minimal and maximal particle number con-
servations) within the same hadron gas model and
within the same approximations, one could find the
error estimates needed in Refs. [2, 7, 9].

2. RTA and Results

The system of Boltzmann equations in the local rest
frame in RTA can be written as [3]
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where fk(t, r, p0
k) and f

(0)
k are the nonequilibrium and

local equilibrium distribution functions, respectively,
τrel,k(t, r, p0

k) ≡ τrel,k(p0
k) is the relaxation time de-

pending on the one-particle energy p0
k of the k-th

species (cf. Ref. [10]), vkl is the relativistic rela-
tive velocity (cf. Ref. [11]), σtot

kl (s) is the total 2 ↔ 2
cross-section (see also comments below), and s is the
usual Mandelstam variable.

We also consider the momentum averaged relax-
ation time as in Ref. [2]. In general, this approxima-
tion should not be better; however, we find it about
as good as with the momentum dependent relaxation
time in our calculations. In Ref. [2], the transport
cross-sections as in Ref. [12] are used. The UrQMD
hadronic cross-sections [13, 14], which we exploit 1,
have some extrapolation of the angular dependence
from nucleons, but we do not just adopt it here. The
expected deviations are of 4% or less. With the im-
proved transport cross-sections as in Refs. [4, 5], the
isotropic total cross-sections would get the extra fac-
tor equal to 2/3 (and the viscosities would get the
factor 3/2). This does not provide a better overall

1 We use improved and extracted UrQMD cross sections as
described in Ref. [9].

description of the viscosities, though it is better at
high enough temperatures, see below.

We use the σtot
kl (s) as 2 ↔ n total cross-sections

(TCSs), by considering also quasielastic and other
than 2 ↔ 2 processes, as in Ref. [9]. So that, some
cross sections add up exactly and some ones add up
approximately into the total ones. This approxima-
tion is a good one, see Ref. [9] for checkups. In ad-
dition to this, we also use the elastic plus quasielas-
tic cross sections (EQCSs) [9] and find approximately
the same error estimates as with the TCSs. Other ap-
proximations which we apply (ideal gas equation of
state, no medium effects, classical statistics) result
in small corrections [2, 9] at least in the tempera-
ture range 100 MeV � T � 160 MeV at zero chem-
ical potentials. If these corrections are not small,
then, in the assumption of absent or weak correla-
tions with the RTA corrections, the latter ones can
be still applicable.

The relaxation time enters the shear η and bulk ξ
viscosities as (cf. Ref. [10])
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where Q̂k is the dimensionless bulk viscosity source
term, which we take in the convenient form as in Ref.
[15]. The approximation of maximal particle number
conservation implies that particles’ charges are equal
to the Kronecker’s delta functions, qak = δak. The
approximation of maximal nonconservation is equiv-
alent to the case qak = 0 at zero chemical potentials.
There are also matching conditions, which can be sat-
isfied modifying additionally the relaxation time [16].
We do not investigate whether this modification of
RTA provides a better overall description. We are in-
terested in the testing of RTA as the one in Ref. [2].

Figures 1 and 2 show the results of calculations
of the shear viscosity and the bulk viscosity, respec-
tively, at zero chemical potentials. In addition to
the calculations in RTA, there are also depicted the
results of calculations within the variational method
with the application of the TCSs [9]. From these re-
sults, one can see the deviations from the application
of RTA. To see how strong is the dependence of these
deviations on the energy dependence of TCSs, we also
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made the same calculations with EQCSs. This almost
does not change the deviations, so that we do not
show the results with EQCSs. As long as the tem-
perature dependence of the viscosities in the SHMC
model [2] and in the one of the present paper are sim-
ilar to each other, the found error estimates from the
application of RTA should be approximately the same
for the SHMC model.

From Fig. 1, one can see that, in the important
temperature range 2 100 MeV � T � 160 MeV,
the shear viscosity becomes smaller up to 1.57 times
because of the application of RTA. If the averaged
relaxation time is used, these deviations are some-
what smaller and reach the factor 1.45, which is
rather an accidental improvement. At smaller tem-
peratures, in a vicinity of the shear viscosity min-
imum, these deviations are somewhat larger in-
stead. Moreover, the 3/2 times larger shear viscos-
ity in RTA (see above) would give a better de-
scription at higher temperatures, but a worse de-
scription in a vicinity of the shear viscosity mini-
mum. This minimum for the hadron gas is attributed
to resonant peaks in the quasielastic cross-sections
of pions, dominating at those energies and tem-
peratures. So this rapid change in the energy de-
pendence of the cross-sections does not permit the
improved RTA description. At higher temperatures,
there are different cross-section energy dependences
canceling each other approximately, which results
in a better description with one constant cross-
section 3 [9].

Figure 2 demonstrates the calculations of the bulk
viscosity in the approximations of minimal and max-
imal particle number conservations (see comments
above). The bulk viscosity calculations using the vari-
ational method are shown only in the approximation
of the maximal conservation, because only this one is
considered in Ref. [9]. As long as the calculations of
the bulk viscosities using RTA with the averaged and
not averaged relaxation times differ by 13% or less,
we do not show the results with the averaged relax-

2 At zero chemical potentials, one has the kinetic freeze-out
temperature T ≈ 120 MeV [17]; and, for both the pseudo-
critical temperature and the chemical freeze-out tempera-
ture, one has T ≈ 160 MeV [17, 18]

3 In this approximation the deviations from application of
RTA are of the factor 1.6–1.7 in the whole considered tem-
perature range.

Fig. 1. Shear viscosity versus the temperature. The calcula-
tions are done using the variational method in the third order
(solid line), using RTA (dashed line) and using RTA with the
averaged relaxation time (dotted line)

Fig. 2. Bulk viscosity versus the temperature. The calcula-
tions are done in the approximation of maximal conservation
using the variational method in the fifth order (solid line) and
using RTA (dashed line). The calculations in the approxima-
tion of maximal nonconservation using RTA are denoted by the
dotted line

ation time. The bulk viscosity in RTA turns out to
be smaller at all the temperatures by 1.4–2.4 times 4.

One can see from Fig. 2 that the enhancement
of the bulk viscosity due to the maximal particle
number nonconservation is large. At the chemical
freeze-out temperature T ≈ 160 MeV, the ratio of the
RTA-based bulk viscosity with the maximal noncon-
servation to the one with the maximal conservation
is equal to 27.27. On the chemical freeze-out line,

4 These numbers are replaced with 2.1–2.6 if the approxima-
tion of one constant cross-section is used.
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where the elastic plus quasielastic rates are equal to
the total rates, we do not know a priori which ap-
proximation dominates in the bulk viscosity, so that
we need to divide this number by two to use it as an
error estimate in the calculations with either of the
approximations. None of the approximations should
be valid beyond its region delimited by the chemi-
cal freeze-out line. At smaller temperatures (and the
same chemical potentials), the same error estimate
amounted to 13.64 can be used, because the inelas-
tic processes become weaker there [9, 19]. One could
also connect the fading of the enhancement of the
bulk viscosity to the collision rates and to multiply
the number 27.27 by 1 − rateEQCSs/rateTCSs (or to
use the corresponding expression with the shear vis-
cosities or the bulk viscosities, being approximately
inversely proportional to the collision rates, from Ref.
[9]; we do not present this result explicitly here for
compactness). The temperatures T � 160 MeV are
less interesting, because they are above the pseudo-
critical temperature [18]; however, a similar extrap-
olation could be made at these temperatures. We
present these estimates with caveat, because the cal-
culations based on the Chapman–Enskog and varia-
tional methods [15] give notably larger estimates.

3. Conclusions

In the direct comparison, we have found that one can
normally expect to have deviations in the viscosities
from the application of RTA up to 2–3 times with the
energy dependence of cross-sections as that for the
hadron gas at the considered temperatures 20 MeV ≤
≤ T ≤ 260 MeV and zero chemical potentials.

At the temperatures T � 100 MeV and zero chem-
ical potentials, the application of RTA decreases the
shear viscosity η. The factor of this deviation reaches
1.57 at T = 160 MeV or 1.45 if the averaged relax-
ation time is used. As long as the temperature depen-
dence of η in the SHMC model [2] and in the present
paper are similar to each other, the found error esti-
mates should be approximately the same. This con-
firms that the multihadron production processes and
some other ones, which are seemingly not taken into
account in Ref. [2], are important to get η/s (s is the
entropy density) well consistent with the experimen-
tal data [9].

Using TCSs, we have found that the ratio of the
bulk viscosity with the maximal nonconservation to

the one with the maximal conservation is equal to
27.27 at the chemical freeze-out temperature T ≈
160 MeV. This number should be divided by two
on the chemical freeze-out line, where neither con-
servation nor nonconservation is preferred a priori.
At other temperatures, some extrapolations could be
used. For this goal, the further investigations are de-
sirable. We present that estimate with caveat, be-
cause the calculations based on the Chapman–Enskog
and variational methods [15] give notably larger esti-
mates. If they are notably larger, this may be the case
of the largest deviations from the application of RTA.
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ЗСУВНА ТА ОБ’ЄМНА В’ЯЗКОСТI
ҐАДРОННОГО ГАЗУ В НАБЛИЖЕННI
ЧАСУ РЕЛАКСАЦIЇ ТА ЙОГО ПЕРЕВIРКА

Р е з ю м е

Обчислено зсувну та об’ємну в’язкостi ґадронного газу. Во-
ни визначають його дисипативну динамiку i впливають
на елiптичний потiк, який вимiрюється експерименталь-
но. Внаслiдок складностi цього обчислення наближення ча-
су релаксацiї (НЧР) було використано в попереднiх ро-
ботах. Оскiльки цi результати наблизились до реалiсти-
чних результатiв, є необхiднiсть знайти, наскiльки точним
є НЧР. Для цього обчислено в’язкостi в НЧР, використо-

вуючи перетини розсiяння, витягнутi з моделi ультрареля-
тивiстської квантової молекулярної динамiки (УрКМД), та
порiвняно їх з цими самими обчисленнями, але без НЧР.
Це дозволяє нам знайти оцiнки похибок через застосуван-
ня НЧР в обчисленнях в’язкостей, якi є вiрними i для iн-
ших схожих моделей. Наприклад, в iнтервалi температур
100 МеВ � T � 160 МеВ при нульових хiмiчних потенцiалах
зсувна в’язкiсть стає меншою до 1,57 разiв через застосува-
ння НЧР або до 1,45 разiв, якщо використовується усере-
днений час релаксацiї. Це має важливi наслiдки для iнтер-
претацiї попередньо зроблених обчислень в’язкостей та для
деяких iнших спорiднених обчислень. В рамках НЧР також
знаходимо оцiнку збiльшення об’ємної в’язкостi ґадронного
газу через незбереження чисел частинок.
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