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In the Lobachevsky hyperbolic and Riemann spherical spaces, generalized potentials describing
a uniform electric field are introduced as solutions of the covariant Maxwell equations. Exact
solutions of the Schrödinger equation in the presence of the electric field are constructed in
both models. The similarity of the energy spectra of the particle against the background of a
spherical space with the electric field and in the Coulomb field is noted.
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1. Introduction

The motion of a quantum mechanical particle in a
homogeneous magnetic and electric fields is a classi-
cal problem in quantum mechanics [1–4]. In [5–12],
the problem of the motion of a particle in a magnetic
field in two-dimensional Lobachevsky and Riemann
spaces was investigated. The generalization to three-
dimensional geometric models was performed re-
cently: exact solutions of the Schrödinger equation for
a particle in an external magnetic field in the three-
dimensional Lobachevsky H3 and Riemann S3 spaces
were found in [13]. The generalized magnetic fields
are considered as an analogue of the uniform mag-
netic field in the flat space: these fields [13] are sim-
ple solutions of Maxwell’s equations in models of H3

and S3; in addition, they are invariant with respect to
the transverse shifts in the curved models (such shifts
cause only special gauge transformations of the corre-
sponding 4-potentials). In the limit of vanishing cur-
vature, the generalized magnetic fields reduce to the
known expression in the flat space. Generalized Lan-
dau energy levels modified by the presence of a space
curvature were found. A characteristic feature of the
spectrum in the case of the Lobachevsky space is the
finite number of bound states for the Schrödinger
particle. The energy spectrum of a particle in the
Riemann space is discrete. In [14] and [15], other
possibilities to generalize the concept of the uniform
magnetic field for spaces of constant curvature were
additionally analyzed in other coordinate systems.

c© E.M. OVSIYUK, O.V. VEKO, 2013

The corresponding system in classical mechanics
was investigated in [16]. In the generalized cylindrical
coordinates, three integrals of motion were found, and
the exact solutions of classical equations of motion for
a particle in Lobachevsky and Riemann spaces were
constructed. A symmetry between the different tra-
jectories was established and described in detail. In
the Lobachevsky space, trajectories in the external
magnetic field belong to generalized cylinder surfaces,
and the angular speed of rotation varies in time. In
the Riemann space, particles move along closed tra-
jectories; the motion is periodic, and the geometric
parameters of the trajectories depend on the physical
characteristics of a particle and the curvature radius
of space models. The constructed solutions may be
of interest to describe the behavior of charged parti-
cles in a macroscopic magnetic fields in cosmological
models, to simulate the behavior of a plasma in the
magnetic field of a special configuration, as well as to
model the behavior of particles on surfaces in nano-
physics problems.

In the present paper, we will solve the problem
of the motion of Schrödinger’s particle in the three-
dimensional Lobachevsky and Riemann spaces in an
external electric field, which is a generalization of the
uniform electric field in a flat space. A similar anal-
ysis is perfomed for a Dirac particle.

2. Schrödinger Equation in the Electric
Field in the Lobachevsky Space H3

In the hyperbolic Lobachevsky space, the following
system of cylindrical coordinates exists (we use di-
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mensionless quantities):

ds2 = dt2 − cosh2 z( dr2 + sinh2 r dφ2)− dz2,

z ∈ (−∞, +∞), r ∈ [0, +∞), φ ∈ [0, 2π],

u1 = cosh z sinh r cosφ, u2 = cosh z sinh r sinφ, (1)

u3 = sinh z, u0 = cosh z cosh r,

(u0)2 − (u1)2 − (u2)2 − (u2)2 = −1, u0 ≥ +1.

We introduce an external electric field along the axis
z by the 4-potential

A0 = ν tanh z, Ar = 0, Az = 0, Aφ = 0, (2)

which is a solution of Maxwell’s equations in the
Lobachevsky space

A0 = ν tanh z, Fz0 =
ν

ch2z
,

1√
−g

∂

∂xβ
√
−gFαβ = 0;

in a flat space, we have A0 = ν tanh z ≈ ν z,

Fz0 =
4ν

(ez + e−z)2
≈ 4ν

2 + (1 + 2z) + (1− 2z)
= ν.

We note that the potential of the electric field in
the Lobachevsky space is very different from that in
the flat space, if we compare them at large z.

The Schrödinger equation in the electric field (2)
has the form(
i
∂

∂t
+ eA0

)
Ψ =

= −1
2

(
1

cosh2 z

∂2

∂r2
+

cosh r
cosh2 z sinh r

∂

∂r
+

+
1

cosh2 z sinh2 r

∂2

∂φ2
+
∂2

∂z2
+ 2

sinh z
cosh z

∂

∂z

)
Ψ. (3)

The variables are separated by the substitution
Ψ = = e−iεt eimφ Z(z)R(r) (λ stands for a separa-
tion constant):

−d
2R

dr2
− cosh r

sinh r
dR

dr
+

m2

sinh2 r
R = λR, (4)

cosh2 z
d2Z

dz2
+ 2 cosh z sinh z

dZ

dz
+

+ 2 cosh2 z

(
ε+ ν

sinh z
cosh z

)
Z = λZ. (5)

The expression for the dimensionless parameters ε
and ν corresponding to the energy E and the ampli-
tude E0 of the electric field are determined by the
relations

ε =
E

~2/Mρ2
, ν =

eE0 ρ

~2/M ρ2
. (6)

3. Solution of the Radial Equation

In Eq. (4), we make change of the variable, x =
= (1 + cosh r)/2, x ∈ [1, +∞), so that

x (1− x) d
2R

dx2
+ (1− 2x)

dR

dx
−

−
(
λ+

1
4
m2

x
+

1
4

m2

1− x

)
R = 0.

We also introduce the substitution R = xa (1−x)b F ,
which results in

x (1− x) d
2F

dx2
+ [2 a+ 1− (2 a+ 2 b+ 2)x]

dF

dx
+

+ [−(a+ b) (a+ b+ 1)− λ+

+
1
4

4 a2 −m2

x
+

1
4

4 b2 −m2

1− x

]
F = 0. (7)

At

a = ±| m |
2

, b = ±| m |
2

, (8)

the equation becomes simpler:

x (1− x) d
2F

dx2
+ [2 a+ 1− (2 a+ 2 b+ 2)x]

dF

dx
−

− [(a+ b) (a+ b+ 1) + λ ] F = 0. (9)

It is the equation for the hypergeometric function F =
= F (α, β, γ;x) with the parameters

α = a+ b+
1
2
− i

2

√
4λ− 1,

β = a+ b+
1
2

+
i

2

√
4λ− 1, λ >

1
4
, (10)

γ = 2 a+ 1.
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Let us use a solution vanishing at the point r = 0:

F = u2 = F (α, β, α+ β + 1− γ; 1− x); (11)

for a and b, we take positive values

a = +
| m |

2
, b = +

| m |
2

; (12)

the full radial function R(r) is given by

R = xa(1− x)bF (α, β, α+ β + 1− γ; 1− x). (13)

To find the behavior of solutions at infinity r →
→ +∞, we use the Kummer relation

u2 =
Γ(α+ β + 1− γ)Γ(β − α)

Γ(β + 1− γ)Γ(β)
e−iπα u3 +

+
Γ(α+ β + 1− γ)Γ(α− β)

Γ(α+ 1− γ)Γ(α)
e−iπβ u4, (14)

where

u2 = F (α, β, α+ β + 1− γ; 1− x),

u3 = (−x)−αF
(
α, α+ 1− γ, α+ 1− β;

1
x

)
, (15)

u4 = (−x)−βF
(
β, β + 1− γ, β + 1− α;

1
x

)
.

Therefore, the asymptotic behavior at x→ 1 (r →
+∞) is given by

R ≈ (−1)a+bΓ(α+ β + 1− γ)×

×
(

Γ(β − α)
Γ(β + 1− γ)Γ(β)

e−iπα (−x)a+b−α +

+
Γ(α− β)

Γ(α+ 1− γ)Γ(α)
e−iπβ (−x)a+b−β

)
.

From whence, we have

x ≈ er

4
, R ≈ (−1)a+bΓ(α+ β + 1− γ)(−x)−1/2×

×
(

Γ(β − α)
Γ(β + 1− γ)Γ(β)

e−iπα (−x)+i
√
λ−1/4+

+
Γ(α− β)

Γ(α+ 1− γ)Γ(α)
e−iπβ (−x)−i

√
λ−1/4

)
. (16)

Thus, these solutions at infinity are standing waves
of the oscillatory type (described by real functions in
the whole space). The factor e−r/2 in the radial wave
function is irrelevant to the physical interpretation of
the probability density

dW =
√
−g ψ∗ψ, (17)

because this factor e−r/2 will be compensated by the
factor sinh r ≈ e+r/2 entering the volume element
dV =

√
−g dr dz dφ.

4. Solution of the Equation for Z(z)

Let us consider Eq. (5) for Z(z):

cosh2 z
d2Z

dz2
+ 2 cosh z sinh z

dZ

dz
+

+ 2 cosh2 z

(
ε+ ν

sinh z
cosh z

)
Z = λZ. (18)

With the substitution

Z(z) =
1

cosh z
f(z),

one removes the first derivative term:(
d2

dz2
+ 2ε− 1 + 2ν tanh z − λ

cosh2 z

)
Z(z) = 0.

This is a one-dimensional Schrödinger equation
with the potential

U(z) = −2ν tanh z +
λ

cosh2 z
.

We now make change of the variable y = (1 +
tanh z)/2. Then (18) takes the form[
y (1− y) d2

dy2
+

1
2
ε− ν
y

+
1
2
ε+ ν

1− y
− λ

]
Z = 0.

Using the substitution Z = yc (1− y)dF , we get

y (1− y) d2

dy2
+ [2 c− 2 y (c+ d) ]

dF

dy
+

+ [(c+ d) (1− c− d)− λ+

+
1

1− y

(
d2 − d+

ε+ ν

2

)
+

+
1
y

(
c2 − c+

ε− ν
2

)]
F = 0. (19)
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At

c =
1± i

√
2 ε− 1− 2 ν

2
, d =

1± i
√

2 ε− 1 + 2 ν
2

,

(20)

Eq. (19) becomes simpler

y (1− y) d2

dy2
+ [2 c− 2 y (c+ d) ]

dF

dy
−

− [(c+ d) (c+ d− 1) + λ]F = 0,

and is the equation for the hypergeometric function
F (A, B, C; y) with parameters

A = c+ d− 1
2

+
i

2

√
4λ− 1,

B = c+ d− 1
2
− i

2

√
4λ− 1, C = 2 c.

The wave function can be represented as

Z =
(

1 + tanh z
2

)c (1− tanh z
2

)d
×

×F
(
A , B C ;

1 + tanh z
2

)
. (21)

In the area of z → −∞, these solutions behave
themselves like

z → −∞, Z =
(

1 + tanh z
2

)c
≈

≈
(

1
1 + e−2z

)c
∼ eze±iz

√
2 ε−1−2 ν ; (22)

and the factor
√
−g becomes e−2z.

There are two physically different situations (for
definiteness, we assume that ν > 0). The first situ-
ation is such that the energy is above the potential
barrier

I, (2ε− 1− 2ν) > 0,

and the far-left solutions are oscillatory (22).
The second situation is such that the energy is

lower than the potential curve at z < 0:

II, (2ε− 1− 2ν) < 0;

in this case, there is a solution that tends to zero:

III, z → −∞, Z =
(

1 + tanh z
2

)c
≈

≈
(

1
1 + e−2z

)c
∼ eze±z

√
−(2 ε−1−2 ν). (23)

To describe the behavior of solutions in the region
z → +∞ (y → 1), we use the Kummer relation

U1 = F (A,B,C, y),

U2 = F (A,B,A+B + 1− C, 1− y),

U6 = (1− y)C−A−B ×

×F (C −A,C −B,C + 1−A−B, 1− y),

U1 =
Γ(C)Γ(C −A−B)
Γ(C −A)Γ(C −B)

U2+

+
Γ(C)Γ(−C +A+B)

Γ(A)Γ(B)
U6. (24)

Allowing for the identities

y =
1 + tanh z

2
, 1− y =

1− tanh z
2

,

we find the behavior of the solutions U1 as z → +∞:

z → +∞, U1(
1 + tanh z

2
) =

Γ(C)Γ(C −A−B)
Γ(C −A)Γ(C −B)

+

+
Γ(C)Γ(−C +A+B)

Γ(A)Γ(B)
(1− y)C−A−B . (25)

Hence, for the full function Z (see (22)), we obtain
the representation

Z = (1− y)d
[
Γ(C)Γ(C −A−B)
Γ(C −A)Γ(C −B)

+

+
Γ(C)Γ(−C +A+B)

Γ(A)Γ(B)
(1− y)C−A−B

]
. (26)

In view of the relation (see (20))

C −A−B = 2c− (2c+ 2d− 1) = 1− 2d,

we arrive at

Z =
Γ(C)Γ(C −A−B)
Γ(C −A)Γ(C −B)

(1− y)d +

+
Γ(C)Γ(−C +A+B)

Γ(A)Γ(B)
(1− y)1−d. (27)
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Given

d =
1± i

√
2 ε− 1 + 2 ν

2
,

(1− y)d =
(

1
1 + e2z

)d
∼ e−2zd = e−ze∓i

√
2ε−1+2ν ,

(1− y)1−d =
(

1
1 + e2z

)1−d
∼

∼ e−2z(1−d) = e−ze±i
√

2ε−1+2ν , (28)

we note that the expression under the square root is
positive, so the solutions are oscillatory. Therefore,
(26) takes the form

Z = Γ(C)e−z
(
Me∓i

√
2ε−1+2ν +N e±i

√
2ε−1+2ν

)
,

M =
Γ(C −A−B)

Γ(C −A)Γ(C −B)
, N =

Γ(−C +A+B)
Γ(A)Γ(B)

.

The signs ± at roots are independent to each other
(that is, there are 4 possibilities). For the coefficients
of M, N, one gets more detailed representations,

M =

=
Γ(∓i

√
2ε− 1 + 2ν)

Γ(c− d+ 1
2 −

i
2

√
4λ− 1)Γ(c− d+ 1

2 + i
2

√
4λ− 1)

,

N =

=
Γ(±i

√
2ε− 1 + 2ν)

Γ(c+ d− 1
2 + i

2

√
4λ− 1)Γ(c+ d− 1

2 −
i
2

√
4λ− 1)

,

where

c =
1± i

√
2 ε− 1− 2 ν

2
, d =

1± i
√

2 ε− 1 + 2 ν
2

.

Let 2ε− 1− 2ν < 0, then, due to the identity

c∗ = c,

(
−d+

1
2

)∗
= d− 1

2
,

we get M∗ = N. This leads, in turn, to the following
statement: the reflection coefficient equals to unity
for a particle going from the right site to the electric
field through the potential barrier (provided 2ε− 1−
2ν < 0):

Rreflection =
MM∗

NN∗
=

NN∗

MM∗
= 1.

5. Schrödinger Equation in the Electric
Field in the Riemann Space S3

In the spherical Riemann space, the system of cylin-
drical coordinates can be introduced:

ds2 = dt2 − cos2 z
(
dr2 + sin2 r dφ2

)
− dz2,

z ∈ [−π/2, π/2], r ∈ [0, π], φ ∈ [0, 2π],

u1 = cos z sin r cosφ, u2 = cos z sin r sinφ, (29)

u3 = sin z, u0 = cos z cos r,

u2
0 + u2

1 + u2
2 + u2

3 = +1.

The external electric field along the axis z is

A0 = ν tan z, (30)

which is a solution of the Maxwell equations in the
Riemann space. The Schrödinger equation in the
presence of the electric field (30) takes the form(
i
∂

∂t
+ eA0

)
Ψ =

= −1
2

(
1

cos2 z
∂2

∂r2
+

cos r
cos2 z sin r

∂

∂r
+

+
1

cos2 z sin2 r

∂2

∂φ2
+

∂2

∂z2
− 2

sin z
cos z

∂

∂z

)
Ψ. (31)

The variables are separated by the substitution Ψ =
e−iεt eimφ Z(z)R(r):

−d
2R

dr2
− cos r

sin r
dR

dr
+

m2

sin2 r
R = λR, (32)

cos2 z
d2Z

dz2
− 2 cos z sin z

dZ

dz
+

+ 2 cos2 z
(
ε+ ν

sin z
cos z

)
Z = λZ. (33)

6. Solution of the Radial Equation

In Eq. (32), we change the variable, x = (1−
− cos r)/2, x ∈ [0, 1]:

x (1− x) d
2R

dx2
+ (1− 2x)

dR

dx
−

−
(
−λ+

1
4
m2

x
+

1
4

m2

1− x

)
R = 0,
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and introduce the substitution R = xa (1 − x)b F .
This gives

x (1− x) d
2F

dx2
+ [2 a+ 1− (2 a+ 2 b+ 2)x]

dF

dx
+

+ [−(a+ b) (a+ b+ 1) + λ+

+
1
4

4 a2 −m2

x
+

1
4

4 b2 −m2

1− x

]
F = 0. (34)

At

a = ±| m |
2

, b = ±| m |
2

(35)

(to get finite solutions, we will use positive values for
a and b), the equation becomes simpler:

x (1− x) d
2F

dx2
+ [2 a+ 1− (2 a+ 2 b+ 2)x]

dF

dx
−

− [(a+ b) (a+ b+ 1)− λ]F = 0. (36)

It is the equation for the hypergeometric function F =
F (α, β, γ; x) with parameters

α = a+ b+
1
2
−
√
λ+

1
4
,

β = a+ b+
1
2

+

√
λ+

1
4
, (37)

γ = 2 a+ 1.

The condition of polynomial solutions, α = −n
(n = 0, 1, 2, ...), leads to the quantization of the pa-
rameter λ:

λ+
1
4

=
(
2 | m | +1

2
+ n

)2

. (38)

The corresponding functions R look as

R(r) =
(
sin

r

2

)+|m| (
cos

r

2

)+|m|
×

×F
(
−n, 2 | m | +1 + n, | m | +1; sin2 r

2

)
. (39)

The constructed solutions vanish at the points r = 0,
π; they provide us with standing waves described by
real functions.

7. Solution of the Equation for Z(z)

Consider Eq. (33) for Z(z)

cos2 z
d2Z

dz2
− 2 cos z sin z

dZ

dz
+

+ 2 cos2 z
(
ε+ ν

sin z
cos z

)
Z = λZ. (40)

By means of the substitution

Z(z) =
1

cos z
f(z),

we remove the first derivative term(
d2

dz2
+ 2ε+ 1 + 2ν tan z − λ

cos2 z

)
f(z) = 0.

This is a one-dimensional Schrödinger-like equation
in the field given by the potential function

U(z) = −2ν tan z.

Changing the variable y = (1 − i tan z)/2 (complex
variable y ranges over a vertical line in the complex
plane passing through the point (1/2, 0)) reduces Eq.
(40) to(
y (1− y) d2

dy2
− 1

2
ε− iν
y
− 1

2
ε+ iν

1− y
+ λ

)
Z = 0.

Using the substitution Z = yc(1 − y)dF , we
arrive at

y (1− y) d
2F

dy2
+ [2 c− 2 y (c+ d) ]

dF

dy
+

+ [(c+ d) (1− c− d) + λ+

+
1

1− y

(
d2 − d− ε+ iν

2

)
+

+
1
y

(
c2 − c− ε− iν

2

)]
F = 0. (41)

At

c =
1±
√

2 ε+ 1− 2 iν
2

, d =
1±
√

2 ε+ 1 + 2 iν
2

,

(42)
Eq. (41) reads

y (1− y) d
2F

dy2
+ [2 c− 2 y (c+ d) ]

dF

dy
−

−

[(
c+ d− 1

2

)2

−
(
λ+

1
4

)]
F = 0.
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It is an equation of the hypergeometric type with pa-
rameters

α = c+ d− 1
2

+

√
λ+

1
4
, β = c+ d− 1

2
−
√
λ+

1
4
,

γ = 2 c.

Let

c =
1−
√

2 ε+ 1− 2 iν
2

, d =
1−
√

2 ε+ 1 + 2 iν
2

.

In this case, the combination c+d in the expression for
parameters of the hypergeometric function permits
the quantization condition

1
2
−
√

2 ε+ 1− 2 iν +
√

2 ε+ 1 + 2 iν
2

+

+
1
2

√
1 + 4λ = −n. (43)

Let us introduce the notation N = 1+2n+
√

1 + 4λ.
From (43), we find the formula for the energy spec-
trum and the corresponding functions Z:

2ε+ 1 =
N2

4
− 4ν2

N2
, Z = yc(1− y)dF (α, β, γ; y),

c =
1
2

(
1− N

2
+

2 iν
N

)
, d =

1
2

(
1− N

2
− 2 iν

N

)
.

(44)

To find the behavior of the solutions at the singular
points
z → +π/2, y → 1− i∞

2
, 1− y → 1 + i∞

2
,

z → −π/2, y → 1 + i∞
2

, 1− y → 1− i∞
2

,

(45)

we use the Kummer identity

F (α, β, γ; y) = (1−y)−αF
(
α, γ − β, γ; y

y − 1

)
. (46)

We note that
y

y − 1
= −e−2iz. (47)

Therefore, this argument at z = ±π/2 has no special
features: it is finite. By (46), solution (44) can be
written as

Z = yc(1− y)d−α F
(
α, γ − β, γ; y

y − 1

)
=

=
(
e−iz

2 cos z

)c(
e+iz

2 cos z

)d−α
F (α, γ − β, γ;−e−2iz).

At the singular points z = ±π/2, the factor

(cos z)α−c−d = (cos z)(−1/2+
√
λ+1/4 )

tends to zero (according to (38),
√
λ+ 1/4 > 1/2).

Note that the energy spectrum of particles in an
electric field in the spherical space is very similar to
the energy spectrum in the Kepler problem on the
sphere [17–25]: compare the formulas

2ε+ 1 = −4ν2

N2
+
N2

4
and

E = − e2

2M~2

1
n2

+
~2

Mρ2

n2 − 1
1

;

this suggests the existence of other connections be-
tween these systems.

The solutions against the background of a compact
spherical space can be used to model the localized
systems (composite particles, quantum dots, etc.) in
the presence of electric fields [24, 25].

This approach can be extended to the case of a
spin-1/2 Dirac particle.
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О.М. Овсiюк, О.В. Веко

ПРО РУХ КВАНТОВИХ ЧАСТИНОК
В ЕЛЕКТРИЧНОМУ ПОЛI В ПРОСТОРАХ
ПОСТIЙНОЇ КРИВИЗНИ, ГIПЕРБОЛIЧНIЙ
ТА СФЕРИЧНIЙ МОДЕЛЯХ

Р е з ю м е

У сферичному просторi Рiмана i гiперболiчному просторi
Лобачевського введено поняття однорiдного електричного
поля як розв’язки загальноковарiантних рiвнянь Максвел-
ла в цих просторах. Знайдено точнi розв’язки рiвняння
Шредiнгера за наявностi електричного поля в обох моде-
лях. Вiдзначено подiбнiсть спектра енергiй частинки на фо-
нi сферичного простору в електричному полi i спектра енер-
гiй частинки в кулонiвському полi.
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