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The separate and combined influences of the spin-orbit and electron-electron interactions on
the electron magnetization in quantum rings have been studied theoretically on the basis of the
spin-density-functional theory and the Kohn–Sham equation used for the calculation of electron
states in two-dimensional parabolic quantum rings containing from two to six electrons. The
magnetization of electrons in a quantum ring is calculated at zero temperature. The revealed
abrupt changes in the ring magnetization are associated with the crossing of electron states
that occurs if the spin-orbit and/or electron-electron interactions are taken into consideration.

K e yw o r d s: Kohn–Sham, qubit, Hartree–Fock, Broyden, Rashba, quantum dots, spin-orbit
splitting.

1. Introduction

Spintronics is a branch of electronics, in which the
principle of device operation is based on the use of
electron’s spin degree of freedom. Some devices be-
longing to this group have already proved their im-
portance even at the commercial level. In particular,
spin-valve reading heads of hard disks can serve as
an example of such an application. The review of
this direction can be found in work [1].

This research is devoted to quantum rings (QRs).
The study of those systems is challenging, because
both QRs and quantum dots (QDs) can be regarded
as artificial atoms. In contrast to ordinary atomic
systems, QRs possess a variety of features including
the possibility to manipulate their magnetic proper-
ties with the use of an external electric field [2, 3].
Quantum rings can be used as qubits in quantum
computers. Therefore, their properties studied in this
work should be taken into consideration when design-
ing such devices.

The aim of this work is to analyze the influence of
the spin-orbit interaction in weak magnetic fields on
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the magnetic properties of small semiconducting QRs.
The magnetization of QRs in a quasiparabolic poten-
tial for electrons was calculated with regard for for
the spin-orbit (SO) and electron-electron (EE) inter-
actions. In the previous works, theoretical researches
of the magnetic properties of QDs with regard for the
SO [4] and EE [5] couplings were carried out. The
magnetic properties of QRs taking the SO interac-
tion into account were also calculated [6], but the EE
coupling for QRs was not considered.

To describe the influence of spin-orbit interaction
on QR magnetization, the Rashba approximation was
applied [7, 8]. While calculating the influence of EE
coupling in quantum-sized structures, the Hartree
and Hartree–Fock approximations, as well as the the-
ory of spin density functional are used [9–13]. In work
[14], various approaches to the calculation of electron
ground state energies in QDs were compared in detail
(the cases of filling a QD with two to thirteen elec-
trons were examined). In particular, it was shown
that the calculation error for the energies of elec-
tron ground states obtained in the framework of the
spin-density functional theory does not exceed 2.5%.
Therefore, the mentioned theory is also applied in this
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a b c
Fig. 1. Schematic images of a quantum ring and the corresponding potential profiles

work to describe the EE interaction in structures of
the same class.

2. Method

To describe the properties of magnetic rings, a simple
model potential for an insulated two-dimensional ring
located in the plane XY was used [15,16] (see Fig. 1),

Vc (r) =
a1

r2
+ a2r

2 − V0, (1)

where V0 = 2
√
a1a2. In this model, both the ring ra-

dius and width can be selected independently. In the
previous works [15, 16], the energy spectrum and the
magnetization at zero temperature were calculated,
as well as the wave functions in a constant magnetic
field applied perpendicularly to the ring plane. Nei-
ther the SO, nor the EE interaction was taken into
consideration in those works.

Potential (1) has the following properties:
(a) there exists a minimum V (r0) = 0 at

r = r0 =
(
a1

a2

)1/4

, (2)

which determines the average ring radius;
(b) at r ≈ r0, the potential has a simple parabolic

shape V (r) ≈ 1
2mω

2
0 (r − r0)2 (Fig. 2), where the pa-

rameter ω0 =
√

8a2
m characterizes the size of the po-

tential well, and m is the effective electron mass.
Potential (1) can also be used to describe a number

of other physical systems, in particular, a 1D ring (at
r0 = const and ω0 → ∞), a 2D straight wire (at
ω0 = const and r0 →∞), a quantum dot (at a1 = 0),
an isolated antidot (at a2 = 0), and others.

2.1. One-electron Hamiltonian

Provided that a uniform magnetic field B is applied
along the QR symmetry axis (the z-axis), the one-

Fig. 2. Profile of the quantum-ring potential

electron Hamiltonian can be written down in the po-
lar coordinates {r, ϕ} [17] as follows:

H1 = − ~2

2m(E)

[
∂

r∂r
r
∂

∂r
+

1
r2

∂2

∂φ2

]
− i

2
mωc(E,B)×

× ∂

∂φ
+

1
8
m(E)ω2

c (E,B)r2 + Vc(r) + V R
so(r, φ) +

+
1
2
σzµBg(E)B. (3)

Here, the first term is responsible for the kinetic en-
ergy of the electron, the second and third terms de-
scribe the influence of a magnetic field on the electron
motion, Vc(r) is the confining potential, V R

so(r, φ) the
energy of spin-orbit interaction, and the last term de-
scribes the interaction between the electron spin and
the magnetic field. For the effective mass, we use the
expression [8, 18]

1
m(E)

=
1

m(0)
Eg (Eg+ Δ)
(3Eg+ 2Δ)

[
2

E + Eg
+

1
E + Eg+ Δ

]
,

(4)
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where E and m(E) are the electron energy and mass,
respectively, in the conduction band; m(0) is the ef-
fective electron mass near the conduction band bot-
tom; Eg the energy gap width; and Δ the spin-orbit
splitting of the valence band. In formula (3), the
quantity

ωc(E,B) =
eB

m(E)

is the electron cyclotron frequency, and σz is the
Pauli z-matrix. For the g-factor, we used the
expression [19]

g(E) = 2
[
1− m0

m(E)
Δ

3(Eg + E) + 2Δ

]
, (5)

µB = e~/2m0 is the Bohr magneton, e the electron
charge, and m0 the free electron mass.

The operator of SO interaction energy, which was
introduced by Rashba, is taken in the form [8, 20–22]

V R
so(r, φ) = σzα

dVc(r)
dr

(
kφ +

e

2~
Br
)
, (6)

where kφ = −i(1/r)∂/∂φ, and α is the parameter of
the spin-orbit interaction introduced by Rashba [8].

The stationary Schrödinger equation with Hamil-
tonian (3) has no analytical solution, so it was solved
numerically. The results of corresponding calcula-
tions and the electron wave function are presented
in work [6].

2.2. Spin density functional theory

While calculating the energies and the wave func-
tions of electrons confined in a certain region, electro-
static and electromagnetic interactions between parti-
cles have to be taken into account. The exact solution
of this problem is extremely difficult, and a number
of simplifications have to be applied. The density
functional theory forms a basis for the description of
electrons in a confining potential. This theory allows
one to give an equivalent one-particle formulation for
the complicated many-particle problem.

When calculating the electron spectra for a two-
dimensional quasiparabolic quantum ring taking the
EE and SO interactions into account simultaneously,
the corresponding Kohn–Sham equation was solved
self-consistently [9, 11],[
H1 +

e2

κ

∫
w(r′)
|r− r′|

dr′ +
δExc (w, ζ)
δwσ(r)

]
ψσn,l (r) =

= εσn,lψ
σ
n,l (r), (7)

w(r) =
∑
σ

wσ(r) =
∑
σ

∑
n,l

∣∣ψσn,l(r)∣∣2, (8)

where H1 is the electron Hamiltonian in the one-
electron approximation (Eq. (3)). The superscript σ
corresponds to the electron spin, ζ(r) is the local spin
polarization, κ the dielectric constant, and Exc the
functional of exchange-correlation energy, which was
used in the local density approximation [10]. Here-
after, the atomic units are used, the radius is reck-
oned in terms of the effective Bohr radius (κ~2/m∗e2),
and the energy is taken in effective Hartree units
(m∗e4/κ2~2).

Exc =
∫
w(r)εxc [w(r), ζ(r)]dr, (9)

ζ(r) =
w↑(r)− w↓(r)

w(r)
, (10)

where εxc [w(r), ζ(r)] is the exchange-correlation en-
ergy per one particle in a uniform spin-polarized gas,
which is considered to be a sum of the exchange and
correlation energies [10],

εxc [w(r), ζ(r)] = εx [w(r), ζ(r)] + εc [w(r), ζ(r)]. (11)

Below, while considering the electron-electron inter-
action, only the exchange energy component will
be taken into consideration. In the case of two-
dimensional electron gas, the exchange interaction
looks like

εx [w, ζ] = − 4
3rB

√
2w
π

[
(1 + ζ)3/2 + (1− ζ)3/2

]
,

(12)

where rB is the Bohr radius. Then, the ground-state
energy of a quantum ring with N electrons has the
form

Etot(N) =
∑
n,l,σ

εσn,l+
e2

2κ

∫
w(r)w(r′)
|r− r′|

drdr′−

−
∑
σ

∫
wσ(r)

δExc (w, ζ)
δwσ(r)

dr + Exc. (13)

At zero temperature, the magnetization is determined
as follows:

M = −∂Etot

∂B
. (14)
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a b c

d e
Fig. 3. Dependences of the magnetization in the InSb quantum ring filled with two to six electrons (panels a to e, respectively)
on the magnetic applied field. The ring dimensions are r0 ≈ 26 nm and Δr ≈ 18 nm. Calculations were carried out taking no
SO and EE interactions into account (curves 1 ), taking only SO interaction into account (curves 2 ), taking only EE interaction
into account (curves 3 ), and taking both SO and EE interactions into account (curves 4 ). µ∗B = e~/2m(0)

The solution of Eq. (7) was obtained in the frame-
work of the self-consistent field approach. Namely,
the energy of an electron was determined assuming
that the states of other electrons were known. Then,
the obtained solution was used to correct the states
of other electrons and the potential created by them.
While carrying out self-consistent calculations, the
Broyden algorithm [23] was used.

3. Results of Calculations

The influence of spin-orbit and electron-electron in-
teractions on the ring magnetization (ring’s magnetic
moment) at zero temperature and a small number of
electrons in the quantum ring was studied theoreti-
cally. For an InSb quantum ring, the following pa-
rameters were selected [17, 18, 24]: m(0) = 0.014m0,
Eg = 0.24 eV, Δ = 0.81 eV, and α = 5 nm2. Con-
sider quantum rings with the following widths Δr and
average radii r0:

(a) r0 ≈ 26 nm, Δr ≈ 18 nm (a1 = 31.5 eV(nm)2,
a2 = 0.094 meV/nm2;

(b) r0 ≈ 24 nm, Δr ≈ 18 nm (a1 = 67 eV(nm)2,
a2 = 0.145 meV/nm2);

(c) r0 ≈ 26 nm, Δr ≈ 16 nm (a1 = 43 eV(nm)2,
a2 = 0.094 meV/nm2).

The parameters a1 and a2 (see Eq. (1)) were so se-
lected to trace the influence of small changes in the
average radius (item b) and the width (item c) of a
QR on the magnetic properties of rings. The QR sizes
selected for calculations correspond to the typical di-
mensions of structures that are grown up experimen-
tally [25].

The calculated magnetizations of quantum rings
with two to six electrons are illustrated in Figs. 3 to 5.
For the sake of comparison, the magnetizations calcu-
lated for rings with the same number of electrons, but
taking no account of spin-orbit or electron-electron
interaction, are also depicted in the relevant figures.

First, consider the quantum ring (a) with the di-
mensions r0 ≈ 26 nm and Δr ≈ 18 nm. From
Figs. 3, a, d, and e, one can see that, in the case where
the quantum ring is filled with two, five, or six elec-
trons, the influence of the spin-orbit interaction is al-
most unnoticeable. The electron-electron interaction
gives rise to a variation in the slope of the magneti-
zation dependence on the magnetic field. If the QR
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a b
Fig. 4. Dependences of the magnetization in an InSb quantum ring filled with three electrons on the magnetic applied field.
The ring dimensions are r0 ≈ 24 nm and Δr ≈ 18 nm (panel a) and r0 ≈ 26 nm and Δr ≈ 16 nm (panel a). The curve notation
is the same as in Fig. 3

a b
Fig. 5. The same as in Fig. 4, but for quantum rings filled with four electrons

is filled with two (Fig. 3, a) and six (Fig. 3, e) elec-
trons, the quantum ring reveals diamagnetic proper-
ties. This behavior corresponds to the situation when
the external electron shells are filled.

As one can see from Fig. 3, c, if the ring is filled with
four electrons, the account of the electron-electron in-
teraction brings about the emergence of a jump in
the magnetization (curve 2 ). If the ring is filled with
four electrons, the account of the electron-electron
interaction also results in the emergence of a jump
in the magnetization, but at higher magnetic fields
(curve 3 ). With regard for both electron-electron
and spin-orbit interactions (Fig. 3, c, curve 4 ) shifts
the magnetization jump toward lower fields. At the
same time, the electron-electron interaction alone
does not induce the emergence of a magnetization
jump (Fig. 3, d, curve 3 ). The latter arises when
the spin-orbit interaction is also taken into account
(curves 2 and 4 ).

In Fig. 4, the dependences of the ring magnetiza-
tion on the magnetic field are exhibited for QR (b)
with the dimensions r0 ≈ 24 nm and Δr ≈ 18 nm

(Fig. 4, a) and QR (c) with the dimensions r0 ≈
26 nm and Δr ≈ 16 nm (Fig. 4, b), the both filled
with 3 electrons. In Fig. 4,a, the number of electrons
in the ring is the same as in Fig. 3, b, but the average
ring radius is smaller. The ring with the dependences
shown in Fig. 4, b has a smaller width in compari-
son with the ring corresponding to the dependences
in Fig. 2, b. One can see that a decrease of either
the average ring radius or the ring width results in
the enhancement of the influence of both the spin-
orbit and electron-electron interactions. The consid-
ered changes in the QR sizes shift the magnetization
jump toward higher magnetic fields (Figs. 3, b; 4, a;
and 4, b).

In Fig. 5, the dependences of the ring magnetiza-
tion on the magnetic field are exhibited for QR (b)
with the dimensions r0 ≈ 24 nm and Δr ≈ 18 nm
(Fig. 5, a) and QR (c) with the dimensions r0 ≈
≈ 26 nm and Δr ≈ 16 nm (Fig. 4, b), the both being
filled with 4 electrons. The figures also demonstrate
that there is a shift in the positions of the magne-
tization jumps. Namely, the jumps become shifted
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toward higher magnetic fields. The distance between
magnetization jumps when both the SO and EE in-
teractions are taken into account is larger than if only
the EE interaction is considered (Figs. 3, c; 5, a; and
5, b; curves 3 and 4 ).

4. Conclusions

Quantum rings with completely filled external elec-
tron shells – with two (Fig. 3, a) or six (Fig. 3, e)
electrons in the QR – behave like diamagnetics. The
account of both SO and EE interactions does not
change the magnetic properties of QRs with filled ex-
ternal shells. If the external electron shell of a QR
is not filled, there may emerge jumps in the depen-
dence of the ring magnetization on the applied mag-
netic field (Figs. 3, b, 3, c, 4, and 5). Those jumps
are the consequences of the SO and EE interactions.

The influence of the SO and EE interactions results
in the splitting of energy levels in the zero magnetic
field for the electrons in the quantum ring. The split-
ting brings about the possibility of the crossing be-
tween the energy levels if an external magnetic field is
applied. This is the factor that is responsible for the
emergence of jumps in the ring magnetization. If ei-
ther or both of QR sizes – the average radius and the
width – diminishes, the influence of the SO and EE
interactions becomes stronger. Therefore, by chang-
ing the material or the geometry of QRs, it is possible
to control their magnetic properties.
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815 (1999).
23. D. Singh, H. Krakauer, and C.S. Wang, Phys. Rev. B 34,

8391 (1986).
24. M.A. Cusack, P.R. Briddon, and M. Jaros, Phys. Rev. B

54, 2300 (1996).
25. B.C. Lee, O. Voskoboynikov, and C.P. Lee, Physica E 24,

87 (2004).
Received 05.10.12.

Translated from Ukrainian by O.I. Voitenko
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МАГНIТНI ВЛАСТИВОСТI КВАНТОВИХ
КIЛЕЦЬ ПРИ ВРАХУВАННI СПIН-ОРБIТАЛЬНОЇ
ТА ЕЛЕКТРОН-ЕЛЕКТРОННОЇ ВЗАЄМОДIЇ

Р е з ю м е

У роботi наведено теоретичний розгляд впливу спiн-
орбiтальної (СО) та електрон-електронної (ЕЕ) взаємодiй
на електронну намагнiченiсть квантових кiлець (КК). У
дослiдженнi використано теорiю функцiонала густини та
рiвняння Кона–Шема для розрахунку енергетичних рiв-
нiв електронiв у дворозмiрному квазiпараболiчному кван-
товому кiльцi, заповненому 2–6-ма електронами. Намагнi-
ченiсть електронiв у квантовому кiльцi розрахована при ну-
льовiй температурi. Рiзка змiна намагнiченостi пов’язана
з перетином енергетичних рiвнiв електронiв (цi перети-
ни є наслiдком врахування спiн-орбiтальної або електрон-
електронної взаємодiї).
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