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The expressions for the shear, ηS (ω), and volume, ηV (ω), viscosity coefficients in multiatomic
liquids have been obtained by solving the kinetic equations for one- and two-particle distribution
functions, and their dependences on the thermodynamic state parameters have been analyzed.
Numerical calculations of ηS (ω) and ηV (ω) are carried out for liquid N2, O2, CO, CO2, and
CH4 in wide temperature, T , and density, ρ, intervals, at a fixed frequency ω, and for specific
choices of the intermolecular interaction potential and the radial distribution function. The
validity of the law of corresponding states for viscous properties of multiatomic liquids with
respect to the reduced ρ∗ and T ∗ values is tested. The results of theoretical calculations of
the isofrequency viscosity coefficients for the examined liquids are found to be in satisfactory
agreement with available experimental data.
K e yw o r d s: frequency dispersion, translational and structural relaxation, shear and vol-
ume viscosity coefficients, interaction potential, radial distribution function, liquid friction
coefficient.

1. Introduction

Researches of the nonequilibrium properties of liq-
uids and the restoration of an equilibrium structure in
them are closely related to the study of the nature of
internal relaxation processes and transfer phenomena.
The latter are accompanied by dissipation phenom-
ena, which are described with the use of the dynamic
transport coefficients and the corresponding elastic
moduli. Among the dynamic parameters of liquids,
the dynamic shear, ηS (ω), and volume, ηV (ω), vis-
cosity coefficient—as well as the dynamic moduli of
shear, µ (ω), and volume, K (ω), elasticity associated
with the momentum flux transfer–are of special im-
portance. The coefficient of shear viscosity was the
best studied experimentally in wide density, ρ, pres-
sure, P , temperature, T , and frequency, ω, intervals
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(see the detailed reviews [1–3]). However, it is impos-
sible to determine the coefficient of volume viscosity
and the dynamic moduli of shear and volume elas-
ticity using direct experimental measurements. They
can be found indirectly, by measuring other coeffi-
cients or physical parameters [4–7].

In work [7], the sound absorption coefficient was
measured with a high accuracy for liquid Ar, Kr, and
Xe in a vicinity of the corresponding ternary points.
The results obtained do not correspond to the lit-
erature data for the volume viscosity ηV of simple
liquids. The value of ηV does not vanish near the
solidification point, and the ratio ηV /ηS gives under-
estimated values of about 0.3–0.5. This result differs
from the theoretical value ηV /ηS ≈ 1.2 obtained in
the framework of the Enskog theory. However, it is
in satisfactory agreement with the results calculated
by applying the molecular dynamics method in the
framework of the hard-sphere model.
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It is known that, when considering the properties
of a viscous compressible liquid, the account for both
the shear and volume viscosity processes, which gov-
ern the energy losses under uniform compression and
dilatation, is a compulsory rule. In work [8], a short
review of the influence of the macroscopic dynamic
shear viscosity ηS on a cylinder or a sphere rotating
in a viscous liquid was given, and the formulas of the
elementary theory of viscosity were also quoted. The
concept of molecular viscosity was introduced. It was
shown that, in the framework of a certain scenario,
the coefficient of dynamic molecular shear viscosity
and its temperature dependence can be obtained from
the spectra of the scattering of depolarized light by
molecules and from the dispersion law of electromag-
netic waves in liquids consisting of molecules with a
constant dipole moment. It was also emphasized that,
for many organic liquids that absorb sound in the ul-
trasonic range, the coefficient ηV plays a more cricial
role than ηS does.

In work [9], a review of physical methods ap-
plied to the measurement of viscosity coefficients
in the most widespread class of anisotropic liquids,
nematic liquid crystals, was made. The hydrody-
namic Leslie–Ericksen–Parodi theory was expounded
in brief, which demonstrates the availability of five
independent viscosity coefficients. Anisotropic liq-
uids have a feature in comparison with isotropic ones;
this is the coefficient of rotational viscosity, which
corresponds to the energy dissipation at liquid crys-
tal reorientations. Estimations of the accuracy and
the complexity of various measurement techniques
were made.

The dispersion of the dynamic transport coeffi-
cients and the corresponding elastic moduli in simple
liquids were numerically calculated in a wide interval
of variation of thermodynamic state parameters and
frequencies in works [10–12], using the molecular dy-
namics method. The frequency dispersion interval of
those coefficients is wide. Probably, this fact stems
from the low-frequency asymptotics of viscosity co-
efficients, ∼ω1/2, which are the Fourier transform of
the autocorrelation functions at large times, which
are proportional to t−3/2.

Viscoelastic properties of classical liquids were
studied in plenty of papers both on the basis of a phe-
nomenological theory and the methods of statistical
physics. The detailed reviews of those properties were
made in works [1–3, 13, 14]. The method of kinetic

theory [15, 15, 17, 18] was used to study the dynamic
viscoelastic properties of simple one-atomic classical
liquids–Ar, Kr, and Xe–and their dependences on the
thermodynamic state parameters in a wide range of
frequencies.

A lot of works were devoted to the experimental
research of viscous properties of multiatomic liquids
with quasi-spherical molecules. According to works
[21–26], this class of liquids includes H2, N2, O2, NO,
NO2, CO, CO2, CH4, CF4, and others. Their vis-
coelastic properties were experimentally studied in
wide intervals of variations of the density and the tem-
perature. As was shown in work [24], the difference
between the coefficients of volume and shear viscosity,
as well as the distinction between the characteristic
relaxation times of corresponding deformation types,
can be explained using the same reasons as those for
one-atomic liquids. It was also noticed that the vibra-
tional relaxation does not affect experimental results,
and the rotational degrees of freedom accelerate, to
some extent, the momentum relaxation.

Liquids with molecules consisting of two or more
atoms are known to possess, along with the trans-
lational degrees of freedom, the internal ones (rota-
tional and vibrational). While studying the trans-
fer phenomena in and the elastic properties of such
liquids, it is necessary to consider the contributions
made by rotational and vibrational relaxation pro-
cesses. For this purpose, the initial kinetic equa-
tions describing the evolution of one-, f1(x1, t), and
two-particle, f2(x1,x2, t), distribution functions must
make allowance not only for the momentum, p,
and spatial-coordinate, q, dependences, but also
for the polar angles and the corresponding mo-
menta, which is a complicated mathematical prob-
lem. Therefore, when analyzing the viscoelastic prop-
erties of liquids consisting of multiatomic molecules,
we will confine the consideration to non-polar non-
associating liquids composed of particles with the
spherical, or close to it, symmetry, i.e. quasi-spherical
molecules.

This work aimed at studying the dependences of
shear, ηS(ω), and volume, ηV (ω), viscosity coeffi-
cients in multiatomic liquids on the thermodynamic
state parameters, as well as carrying out the corre-
sponding numerical calculations for liquid N2, O2,
CO, CO2, and CH4 in a wide interval of variations
of the density, ρ, and the temperature, T , at a fixed
frequency ω.
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2. Derivation of Analytical
Expressions for the Viscosity Coefficients
and the Choice of a Model

Let us use the microscopic definition of the stress ten-
sor in classical liquids [17, 19] as a start point:

σαβ(q1, t) =
∫
p̃α1 p̃

β
1

m
f1(x1, t)dp1+

+
σ3

2

∫
∂Φ(|r|)
∂r

rαrβ

r
n2(q1, r, t)dr, (1)

Here, r = (q2−q1)/σ is the reduced relative distance;
σ is the diameter of a molecule, p̃α1 = pα1 −mϑα(q1, t)
is the relative momentum; m, ϑα(q1, t) , and pα1 are
the mass and the components of the particle average
velocity and momentum, respectively; x = {q,p}; q
are the coordinates and p the momenta of the parti-
cles, Φ(|r|) is the potential of intermolecular interac-
tion, and

n2 (q1,q2, t) =
∫
f2 (x1,x2, t) dp1dp2 (2)

is the nonequilibrium binary particle density in the
configuration space; in essence, it is the momentum
moment of the two-particle distribution function. In
order to determine σαβ(q1, t), let us use the follow-
ing kinetic equations for the one-, f1(x1, t), and two-
particle, f2(x1, x2, t), distribution functions obtained
in work [19]:

L̂1f1(x1, t)−
∫
θ̂12f2(x1,x2, t)dx2 =

= β1
∂

∂pα1

[
p̃α1
m
f1(x1, t) + kT (q1, t)

∂f1(x1, t)
∂pα1

]
, (3)

(L̂12 − θ̂12)f2(x1,x2, t)−

−
∫

(θ̂13 + θ̂23)f3(x1,x2,x3, t)dx3 =

=
2∑
i=1

βi
∂

∂pαi

[
p̃αi
m
f2(x1,x2, t) +

+ kT (qi, t)
∂f2(x1,x2, t)

∂pαi

]
, (4)

where

L̂1 =
∂

∂t
+
pα1
m

∂

∂qα1
; L̂12 =

∂

∂t
+

2∑
i=1

pαi
m

∂

∂qαi
;

θ̂ij =
∂Φ(|qi − qj |)

∂qαi

∂

∂pαi
+
∂Φ(|qi − qj |)

∂qαj

∂

∂pαj

is the Chow–Uhlenbeck operator of interaction; β the
coefficient of liquid friction; k the Boltzmann con-
stant, and T (q, t) the nonequilibrium temperature.

The system of equations (3) and (4) is not closed,
but it is natural, because a complete isolation of a
group of considered particles is impossible in a system
with a great number of interacting particles. To close
the system of those equations, we adopt the Kirkwood
superposition approximation for f3(x1,x2,x3, t):

f3(x1,x2,x3, t)=
f2(x1,x2, t)f2(x1,x3, t)f2(x2,x3, t)

f1(x1, t)f1(x2, t)f1(x3, t)
.

(5)

Then, Eqs. (3)–(5) compose a closed system and allow
the transfer phenomena and the elastic and acoustic
properties of classical liquids to be studied.

Multiplying Eq. (3) by p̃α1 p̃
β
1/m and integrating

the product over the momenta dp1, we obtain a
differential equation consisting of a sum of two
terms, the kinetic part of the nonequilibrium pres-
sure pk (q1, t) δαβ and the kinetic part of the viscous
stress tensor kαβ (q1, t). The equation for kαβ (q1, t)
looks like

∂kαβ(q1, t)
∂t

+ 2n0kT0

{
∂ϑα (q1, t)

∂qβ1

}
= −1

τ
kαβ(q1, t),

(6)

where τ = m/2β, m is the particle mass, β is the
liquid friction coefficient, and{
∂ϑα

∂qβ

}
=

1
2

(
∂ϑα

∂qβ
+
∂ϑβ

∂qα
− 2

3
δαβdivϑ

)
.

On the other hand, the equation for the binary den-
sity in the configuration space, n2 (q1,q2, t), can be
obtained as follows. When integrating Eq. (4) over
the momenta dp1 and dp2, and making allowance for
expressions (2) and (5), we apply the method of mo-
mentum moment calculation for the two-particle dis-
tribution function f2 (x1, x2, t). As a result, we ob-
tain an equation for the binary density n2 (q1,q2, t),
which contains the divergences of higher moments.
We take into account that the higher moments of
the function f2 (x1, x2, t) vary slowly in space and
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time. Then, changing from the coordinates q1 and
q2 to the average, q = (q1 + q2) /2, and relative,
r12 = q2−q1, ones, expanding n2 (q1,q2, t) and other
functions entering those equations in Taylor series in
a vicinity of the point q1, and assuming a weak spa-
tial inhomogeneity of the liquid, we obtain, in a first
approximation with respect to the parameter m/β,
a heterogeneous equation of the parabolic type for
the binary particle density in the configuration space,
n2 (q1,q2, t), i.e. the Smoluchowski equation, which
looks like [17, 19]

∂n2(q1, r, t)
∂t

+ ω0L̂n2 (q1, r,t) = F (q1, r, t), (7)

where

F (q1, r1, t) = −2n0
2(|r|)

{[
1 +

1
6
∂ ln g0(r)
∂ ln r

−

−1
2

[
n0

(
∂ ln g(r)
∂n0

)
T

+ γT0

(
∂ ln g(r)
∂T0

)
n

]]
×

×div ϑ +
(
rαrβ − (1/3)r2δαβ

r2

)
∂ ln g(r)
∂ ln r

{
∂ϑα

∂qβ1

}}
,

(8)

L̂ = − ∂
∂rα

[
∂
∂rα −

∂
∂rα ln g0 (|r|)

]
is the Smoluchowski

operator in the configuration space; ω0 = τ−1
0 =

= 2kT/βσ2 is a phenomenological parameter, an ana-
log of the diffusing molecule time; n0

2
(|r|) = n2

0g (r);
γ = (ncv)

−1 (∂p/∂T )n; n0 and T0 are the equilibrium
density and temperature, respectively; and g (r) is the
equilibrium radial distribution function.

Equation (7) for n2 (q1, r, t) is a Cauchy problem
(t > 0,−∞ ≤ r ≤ ∞) with the initial condition

n2(q1, r, t) =

t∫
0

dt1

∞∫
−∞

G(r, r1, t− t1)F (q1, r1, t)dr1,

(9)
where

G(r, r1, t− t1) =
2(r r1)−1

(2π)3

[
π

ω0(t− t1)

]1/2
×

×
{
exp

[
− (r − r1)2

4ω0(t− t1)

]
− exp

[
− (r + r1)2

4ω0(t− t1)

]}
. (10)

Expression (10) is a fundamental solution (Green’s
function) of Eq. ((7) for n2 (q1, r, t) and describes
the temporal behavior of the binary density in the
configuration space.

Making a Fourier transformation with respect to
the time in Eqs. (1) and (6)–(9), we obtain the follow-
ing expressions for the dynamic coefficients of shear
and volume viscosity [16, 17]:

ηS (ω) =
nkTτ

1 + (ωτ)2
+

2πn2σ3

15
×

×
∞∫
0

dr r3
∂Φ(|r|)
∂r

∞∫
−∞

G1(r, r1, ω)
∂g(|r1|)
∂r1

r1dr1, (11)

ηV (ω) =
2πn2σ3

3
×

×
∞∫
0

dr r3
∂Φ(|r|)
∂r

∞∫
−∞

G1(r, r1, ω)ϕ0(|r|1)dr, (12)

where

G1(r, r1, ω) =
τ0(2ωτ0)−1/2

4πrr1
×

×
[
e−ϕ1(sinϕ1 − cosϕ1)− e−ϕ2(sinϕ2 − cosϕ2)

]
;
(13)

ϕ0(|r1|)=
r1
3
∂g(r1)
∂r1

−
[
n

(
∂g(r1)
∂n

)
T

+γT
(
∂g(r1)
∂T

)
n

]
;

ϕ1,2 = ϕ1,2(r, r1, ω) =
(ατ0

2

)−1/2

(r ∓ r1),

ϕ1,2 = ϕ1,2(r, r1, ω) =
(ατ0

2

)−1/2

(r ∓ r1),

α = (2ωτ1)1/2, andω = 2πν is the cyclic frequency
of the process. Formulas (11)–(13) describe the dy-
namic behavior of the viscosity coefficients ηS (ω) and
ηV (ω) of the liquid in a wide range of the frequency.
The first term in Eq. (11) makes allowance for the
contribution of the stress tensor relaxation in the mo-
mentum space, i.e. the translational relaxation, the
characteristic time of which equals τ = m/2β. How-
ever, the frequency dependences of ηS (ω) and ηV (ω)
are mainly described by the Fourier transform of the
spatial and temporal behaviors of the fundamental so-
lution (Green’s function) of the Smoluchowski equa-
tion for the binary density n2 (q1, r, t) in the con-
figuration space. This solution, G1 (r, r1, ω), has a
low-frequency asymptotics coinciding with the results
obtained in the framework of the molecular dynamics
method [10–12].
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In order to determine the coefficients ηS (ω) and
ηV (ω), and to carry out numerical calculations ac-
cording to expressions (11)–(13), we also need such
molecular parameters of the liquid as the mass m and
the diameter d of a particle, the potential well depth
ε, the relaxation times τ and τ0, and the liquid fric-
tion coefficient β. They were determined and studied
in works [16, 17]. In particular,

β2 = (4π/3)ρ σ

∞∫
0

∇2 Φ(|r|) g(|r|)r2 dr, (14)

where ρ is the liquid density, ∇2 = 1
r2

∂
∂r

(
r2 ∂
∂r

)
is

the radial part of the Laplace operator, Φ(|r|) the
Lennard-Jones potential, and r the dimensionless rel-
ative distance.

Hence, while studying the nature of the coeffi-
cients β, ηS (ω), and ηV (ω) and determining their
dependences on the state parameters, one must se-
lect the potential Φ (|r|) and the radial distribution
function g (|r|). In our research dealing with the vis-
cous properties of liquids consisting of multiatomic
molecules, we confine the consideration to non-polar
non-associating liquids composed of particles with
the spherical symmetry or the symmetry close to it,
i.e. we assume the molecules to be quasi-spherical.
For the latter, the most optimum initial model is
a model with the modified Lennard-Jones potential
Φ (|r|) considered in works [16, 17],

Φ (|r|) =
{
∞, for r < 1,
4ε
(
r−12 − 0, 5r−6

)
, for r ≥ 1. (15)

Following work [20], the radial distribution function
is written down as follows:

g0(r, ρ, T ) = y(r, ρ∗) e−
Φ(|r|)
kT , (16)

where y(r, ρ∗) is the binary distribution function for
two cavities.

It should be noted that, for the function y(r, ρ∗),
there exists an analytical solution of the Percus–
Yevick equation for hard spheres at a distance 1 <
r < 5 [20, 21]. However, since the analytical expres-
sions for β, ηS(ω), and ηV (ω) are involved, we confine
the analysis, in the first approximation, to the contact
value y(r, ρ∗) = y(ρ∗) at the distance r = 1 (r = d)
obtained by N.F. Carnahan and K.E. Starling in the
form

y(ρ∗) = (2− ρ∗)/2(1− ρ∗)3, (17)

where ρ∗ = π
6nd3 = π

6 ρ
d3N0

M is the reduced density,
ρ the solution density, N the Avogadro number, and
M the molar mass.

Hence, the obtained analytical expressions (11)–
(17) allow us to carry out numerical calculations
for the isofrequency coefficients of shear and volume
viscosity in multiatomic liquids with quasi-spherical
molecules, as well as for their dependences on the
thermodynamic state parameters.

3. Results of Numerical Calculations

On the basis of formulas (11) and (12) with regard
for expressions (13)–(17), we numerically calculated
the coefficients of shear, ηS , and volume, ηV , vis-
cosity and their ratio ηS/ηV for liquid N2, O2, CO,
CO2, and CH4 at the fixed frequency ν∗ = 10−6

(ν = 107 Hz) and compared them with experimen-
tal data [22, 23, 25, 27]. The calculations were carried
out for the following temperature intervals and the
corresponding densities of liquids: 80 K ≤ T ≤ 120 K
for N2, 80 K ≤ T ≤ 146 K for O2, 71.48 K ≤ T ≤
≤ 76.34 K for CO, 224.3 K ≤ T ≤ 303.2 K for CO2,
and 91.01 K ≤ T ≤ 114.13 K for CH4. In Tables 1 and
2 and in Figs. 1 and 2, the obtained results for the
coefficients ηS and ηV in those liquids are compared
with experimental data. It should be noted that, in
the tables, we show the available experimental results
for ηS and ηV . In the case where the experimental
data for ηV were absent, we give the relevant values
calculated by us theoretically.

The theoretical and experimental data in Ta-
bles 1 and 2 for the temperature and density depen-
dences of ηS are in satisfactory quantitative agree-
ment. For ηV , the experimental and theoretical val-
ues are also in quantitative agreement; however,
the temperature dependences are different. Namely,
as the temperature increases, the experimental val-
ues of ηV grow, whereas the theoretically calcu-
lated ones, as well as other transfer coefficients,
monotonously fall down. The origin of this discrep-
ancy may probably consist in the following. It is
known that the coefficient of volume viscosity ηV
for liquids cannot be determined using direct ex-
perimental measurements. It can be found by ana-
lyzing the excess absorption of sound waves in liq-
uids. According to work [6], the determination ac-
curacy of ηV in liquids, owing to the measure-
ment errors for the Stokes sound absorption coef-
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Fig. 1. Dependences of the coefficients ηS and ηV on the temperature at ν∗ ∼ 10−6 (ν ∼ 107 Hz) for (a) methane and (b) carbon
dioxide

Fig. 2. Dependences of the coefficients ηS and ηV on the density at ν∗ ∼ 10−6 (ν ∼ 107 Hz) for (a) methane and (b) carbon
dioxide

Fig. 3. Dependences of the reduced shear viscosity on the reduced density: (a) experimental and (b) theoretical results
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Table 1. Viscosity coefficients ηS and ηV for liquid nitrogen and oxygen at ν∗ ∼ 10−6

T , K
[25]

ρ, kg/m3

[25]

ηS , mPa·s ηV , mPa·s ηV /ηS

[25] formula (11) [25] formula (12) [25] formula (12)/(11)

Nitrogen

80 774 0.140 0.124 0.097 0.112 0.693 0.903
90 744 0.101 0.087 0.086 0.077 0.851 0.885

100 688 0.075 0.062 0.090 0.052 1.200 0.839
110 623 0.056 0.045 0.099 0.034 1.768 0.756
115 581 0.045 0.037 0.140 0.025 3.111 0.676
120 527 0.037 0.029 0.203 0.017 5.486 0.586

Oxygen

80 1190 0.256 0.261 0.110 0.238 0.430 0.912
90 1142 0.197 0.185 0.103 0.167 0.523 0.903

100 1090 0.154 0.138 0.111 0.124 0.721 0.899
110 1035 0.123 0.107 0.116 0.094 0.943 0.879
120 974 0.101 0.084 0.121 0.071 1.198 0.845
130 903 0.079 0.065 0.130 0.051 1.646 0.785
140 813 0.062 0.048 0.167 0.032 2.694 0.667
146 741 0.050 0.039 0.267 0.022 5.340 0.564

Table 2. Viscosity coefficients ηS and ηV for liquid methane at ν∗ ∼ 10−6

Methane

T , K
[23]

ρ, kg/m3

[23]

ηS , mPa·s T , K
[27]

ρ, kg/m3

[27]

ηS , mPa·s ηV , mPa·s ηV /ηs

[23] formula (11) [27] formula (11) formula (12) formula (11)/(12)

91,01 453 0.199 0.195 100 440 0.159 0.146 0.129 0.888
93.77 450 0.182 0.179 120 413 0.098 0.091 0.081 0.885
97.34 446 0.162 0.162 140 380 0.066 0.061 0.053 0.862

100.88 441 0.146 0.147 150 361 0.052 0.05 0.042 0.83
103.84 437 0.138 0.135 160 339 0.037 0.041 0.032 0.775
107.05 433 0.127 0.124 170 312 0.032 0.032 0.022 0.685
109.76 429 0.12 0.116 180 277 0.025 0.025 0.014 0.546
114.13 422 0.112 0.104

ficient α and the errors in the data on thermo-
dynamic and transport properties of liquids (the
density ρ; the sound velocity c; the isobaric, CP ,
and isochoric, CV , heat capacities; the shear vis-
cosity ηS , and the thermal conductivity λ), is
insufficient for obtaining the accurate experimen-
tal dependences and making their comparison with
the theory.

For the most illustrative representation of the re-
sults obtained in theoretical calculations and their
comparison with experimental data, the temperature
dependences of ηS , ηV , and their ratio ηV /ηS are de-
picted for liquid CH4 and CO2 in Fig. 1 (panels a
and b, respectively); the corresponding density de-
pendences are depicted in Fig. 2. One can see that
all calculated dependences for the liquids concerned
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Table 3. Viscosity coefficients ηS and ηV for liquid carbon oxide
and carbon dioxide at ν∗ ∼ 10−6

Carbon oxide Carbon dioxide

T , K
[23]

ρ, kg/m3

[23]

ηS , mPa·s ηV , mPa·s ηV /ηS
T , K
[22]

ρ, kg/m3

[22]

ηS , mPa·s ηV , mPa·s ηV /ηS

[23] formula (11) formula (12) formula [22] formula (11) formula (12) formula
(12)/(11) (12)/(11)

71.48 836 0.239 0.23 0.239 1.042 224.3 1151.5 0.222 0.269 0.315 1.172
71.78 835 0.235 0.227 0.237 1.042 233.4 1115.1 0.203 0.230 0.264 1.148
72.30 833 0.228 0.223 0.232 1.041 243.1 1075.4 0.171 0.194 0.217 1.117
73.45 829 0.217 0.214 0.222 1.041 253.2 1031.6 0.147 0.162 0.175 1.077
74.60 825 0.207 0.205 0.213 1.040 262.4 982.2 0.127 0.134 0.136 1.022
75.34 822 0.200 0.200 0.207 1.040 273.9 926.4 0.106 0.108 0.103 0.949
76.34 818 0.193 0.192 0.200 1.039 278.4 897.8 0.096 0.098 0.089 0.907

283.5 865.6 0.088 0.087 0.075 0.856
288.5 824.4 0.08 0.076 0.060 0.786
293.6 773.5 0.073 0.065 0.045 0.695
298.8 706.7 0.064 0.054 0.031 0.571
303.2 608.6 0.055 0.043 0.017 0.396

Table 4. Experimental and theoretical values of η∗
S in liquids

for various reduced ρ∗ and T ∗

Methane Carbon oxide Carbon dioxid

T ∗ ρ∗
η∗s

T ∗ ρ∗
η∗s

T ∗ ρ∗
η∗s

[27] formula (18) [23] formula (18) [22] formula (18)

0.673 0.420 2.864 2.624 0.726 0.458 4.010 3.855 1.187 0.442 2.284 2.769
0.808 0.394 1.765 1.640 0.729 0.458 3.943 3.813 1.235 0.428 2.088 2.365
0.942 0.363 1.189 1.098 0.735 0.457 3.826 3.736 1.286 0.413 1.759 2.000
1.010 0.345 0.937 0.904 0.746 0.454 3.641 3.584 1.340 0.396 1.512 1.671
1.077 0.324 0.667 0.736 0.758 0.452 3.473 3.443 1.388 0.377 1.306 1.373
1.144 0.298 0.576 0.585 0.766 0.451 3.356 3.348 1.449 0.355 1.090 1.114
1.212 0.264 0.450 0.450 0.776 0.448 3.238 3.227 1.473 0.344 0.988 1.005

1.500 0.332 0.905 0.899
1.526 0.316 0.823 0.785
1.553 0.297 0.751 0.671
1.581 0.271 0.658 0.558
1.604 0.233 0.566 0.442

are in satisfactory quantitative agreement with ex-
perimental data. This fact may result from a correct
account of the dependences of the friction coefficient
β and the relaxation times τ and τ0 on the ther-
modynamic state parameters for those multiatomic
liquids.

On the basis of the analytical expressions obtained
for ηS and ηV , let us examine the validity of the law
of corresponding states for the viscoelastic properties
of multiatomic liquids with quasi-spherical molecules
in relation with the thermodynamic state parameters
ρ and T . The reduced coefficients of shear, η∗S , and
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volume, η∗V , viscosity look like

η∗S =
σ2

√
mε

ηS(ω); η∗V =
σ2

√
mε

ηV (ω). (18)

The results of corresponding numerical calculations
are quoted in Table 4 and shown in Fig. 3. One can
see that, for the viscous properties of multiatomic liq-
uids with quasi-spherical molecules, the validity of the
law of corresponding state depends on the thermody-
namic state parameters ρ and T .
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С. Одiнаєв, А. Абдурасулов

ДОСЛIДЖЕННЯ КОЕФIЦIЄНТIВ ЗСУВНОЇ
I ОБ’ЄМНОЇ В’ЯЗКОСТI БАГАТОАТОМНИХ
РIДИН ЗАЛЕЖНО ВIД ПАРАМЕТРIВ СТАНУ

Р е з ю м е

Дослiджено залежнiсть коефiцiєнтiв зсувної ηS (Ω) i
об’ємної ηV (ω) в’язкостi багатоатомних рiдин, отриманих
на основi кiнетичних рiвнянь для одночасткової f1(x1, t) i
двочастинкової f2(x1,x2, t) функцiй розподiлу, вiд термо-
динамiчних параметрiв стану. Проведено чисельнi розра-
хунки коефiцiєнтiв ηS(ω) i ηV (ω) для рiдких N2, O2, CO,
CO2, CH4 при певному виборi потенцiалу мiжмолекулярної
взаємодiї Φ(|r|) i радiальної функцiї розподiлу g (|r|) у ши-
рокому iнтервалi змiни температури T i щiльностi ρ при фi-
ксованiй частотi ω. Дослiджено виконання закону вiдповiд-
них станiв для в’язких властивостей багатоатомних рiдин в
залежностi вiд наведених ρ∗ i T ∗. Отриманi результати те-
оретичних розрахункiв iзочастотних коефiцiєнтiв в’язкостi
цих рiдин знаходяться в задовiльнiй згодi з наявними в лi-
тературi експериментальними даними.
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