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A theory of the nuclear excitation by an electron transition (NEET) induced by x-rays is
developed on the basis of the strict collision theory. All stages of the process are considered,
including the formation of a hole in an inner electronic shell, its decay leading to the excitation
of the nucleus, as well as the subsequent filling of the upper level vacancy and the deexcitation of
the nucleus. The cross sections are calculated for NEET and the photoabsorption of x-rays near
the absorption edge. The results agree with the data of Kishimoto et al. for NEET on 197Au.
In addition, we discuss the NEET mechanism of triggering of the 31-year isomer 178Hf m2 via
an intermediate level induced by x-rays. We have shown that the 2% decay acceleration of this
isomer declared by Collins et al. is realistic if the nucleus attributes a triaxial shape in the
intermediate state, and there exists an additional rotational band with the 13− level.
K e yw o r d s: nuclear isomers, Hf, NEET, induced nuclear decay, x-rays.

1. Introduction

When the x-ray photon ionizes one of the inner atomic
levels, the appearing vacancy mainly decays, by ei-
ther emitting another x-ray photon or Auger electron.
But there is one more, although weak, decay channel,
which is called NEET [1]. In this case, an electron
from the upper level, when filling the vacancy, emits
the virtual photon, which is then absorbed by the
nucleus. Such a resonant process becomes possible
if the nuclear and atomic transitions have the same
multipolarity and closely lying energies. It has been
successfully observed for nuclei 197Au [2], 189Os [3–6],
and 237Np [7].

The best resonant conditions are provided in 197Au.
Here, the electron, passing from the level M1 (3s1/2,
3.425 keV) to the vacant K-level (1s1/2, 80.725 keV),
gives rise to the transition of nucleus 197Au from the
ground state 3/2+ to the first excited state 1/2+. In
both cases, the transitions are of the M1 multipolar-
ity. As to the energy of the nuclear 1/2+ level, it is
77.351 keV according to [8] and 77.339 ± 0.003 keV
according to the last precision measurements [9].
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The corresponding mismatch of the nuclear (E(n)
0 )

and atomic (E(a)
0 ) transition energies, defined as

δ = E
(n)
0 − E(a)

0 , (1)

will be δ = 51 eV if we accept the value of nuclear
energy E

(n)
0 = 77.351 keV, whereas δ = 39 eV if

E
(n)
0 = 77.339 keV. Kishimoto et al. [2], irradiating

a golden foil by synchrotron radiation with the nar-
row bandwidth Γs = 3.5 eV, found that the NEET
edge, as a function of the incident x-ray photon en-
ergy E, was shifted higher than the K-absorption edge
by ΔE = 40±2 eV and was much steeper. The NEET
probability amounted to PNEET = 4.5× 10−8.

The early theories of NEET [10–13] have consid-
ered only an intermediate stage of the NEET process.
Namely, they believed that, in the initial state of the
system (atomic electrons + nucleus), there are a va-
cancy on the lower atomic level and the unexcited nu-
cleus; while, in the final state, there are a vacancy on
the upper level and the resonantly excited nucleus.
The ionization of the atom, the forthcoming relax-
ation of the electronic subsystem, and the decay of
the excited nucleus were not taken into consideration.
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Nevertheless, such an approximation appears to be
sufficient for the correct derivation of the NEET prob-
ability far from the NEET edge [10, 12]:

PNEET =
(
1 +

Γf
Γi

)
E2

int

δ2 + (Γi + Γf )2/4
, (2)

where Γi and Γf are the widths of the initial and final
atomic hole states, and E2

int stands for the coupling
strength of atomic electrons and the nucleus. But it
failed to describe the effect near the NEET edge.

The initial stage of the NEET process, i.e., the
K-hole formation caused by an incident x-ray pho-
ton, was considered by Tkalya [13] in the framework
of quantum electrodynamics. For the description of
resonances, the real energies in electron propagators
were replaced by their complex values, which corre-
sponds to the infinite values of wave functions at the
initial moment t→ −∞ of the collision of an incident
x-ray photon with the atom. Moreover, the δ func-
tion corresponding to the energy conservation law has
been replaced ad hoc by a Lorentzian in order to take
an attenuation of the atomic and nuclear excited lev-
els into account.

A more strict approach has been proposed in our
previous work [14] based on the collision theory.
There, we considered all stages of the photo-induced
NEET, including the formation of a vacancy in an in-
ner atomic shell, followed by the energy transfer to a
nucleus, then the filling of a new highly lying vacancy
and, at last, the decay of the nucleus. Both processes
NEET and x-ray absorption were studied on the same
basis. Unfortunately, we dealt only with the electric
multipole transitions.

In this paper we, give a more general description
of NEET, including both the electric and magnetic
multipole transitions involved in NEET. In addition,
we consider NEET on isomer 178Hfm2. The main
attention is paid to the shape of the NEET cross sec-
tion σNEET (E), as well as to a possible decay path
of the intermediate nuclear level bypassing the initial
isomeric state.

2. Transition Matrix

The unperturbed Hamiltonian of the system (nu-
cleus + atomic electrons + quantized electromagnetic
field) is

Ĥ0 = Ĥn + Ĥa + Ĥrad, (3)

where Ĥn, Ĥa, and Ĥrad define, respectively, the
Hamiltonians of the nucleus, atomic electrons, and
the quantized electromagnetic field. In particular,

Ĥrad =
∑
k

∑
λ

â+
kλâkλ, (4)

where â+
kλ and âkλ are the creation and annihilation

operators of a photon with the wave vector k and the
polarization λ.

The total Hamiltonian will be Ĥ = Ĥ0 + V̂ with
the perturbation

V̂ = V̂ (n)
r + V̂ (a)

r , (5)

where V̂ (n)
r and V̂ (a)

r are the interaction operators of
the nucleus and atomic electrons with the electromag-
netic field:

V̂ (n)
r =

1
c

∫
dR(Ĵ(R)Â(R)),

V̂ (a)
r =

1
c

∫
dr(ĵ(r)Â(r)),

(6)

Ĵ(R) and ĵ(r) are the 4-dimensional current density
operators of the nucleus and atomic electrons, respec-
tively, and Â(r) is the 4-vector field potential.

The eigenfunctions and the eigenvalues of the un-
perturbed Hamiltonian Ĥ0 obey the equation

Ĥ0χb = Ebχb. (7)

Let, at the initial moment t→ −∞, the system be
described by the wave function

χa = |IiMi〉Φ0|1ke〉, (8)

where the wave function |IiMi〉 describes the initial
state of the nucleus with spin Ii and its projection
Mi on the quantization axis, Φ0 is the initial state of
the atom, and |1ke〉 is the quantized field containing
one x-ray photon with the wave vector k and the po-
larization e. The corresponding initial energy of the
system

Ea = W
(n)
i + E, (9)

whereW (n)
i is the initial energy of the nucleus (for the

atom, it is chosen to be zero), and E is the incident
photon energy.

At first, the electron absorbs an x-ray photon and
flies away with the wave vector κ and the kinetic en-
ergy ε, by leaving the hole in the i-th atomic level.
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Such first intermediate state of the system is de-
scribed by the wave function

|c1〉 = |IiMi〉Φi|κ〉|0〉, (10)

where |0〉 stands for the wave function of the vacuum
of the electromagnetic field, Φi and |κ〉 are the func-
tions of the atom with the i-th hole and the ejected
electron, respectively. The corresponding eigenvalue
of the unperturbed Hamiltonian Ĥ0 is as follows:

E1 = W
(n)
i +Bi + ε. (11)

Hereafter, Bi and Bf are the binding energies of the
electron in the orbits labeled by i and f .

After that, the electron, by passing down from the
f -th orbit into the i-th one, transfers its energy to
the nucleus (NEET). The whole system undergoes
the transition into the second intermediate state

|c2〉 = |IeMe〉Φf |κ〉|0〉 (12)

with the energy

E2 = W (n)
e +Bf + ε, (13)

where |IeMe〉 and W
(n)
e are the wave function and

the energy of the excited nucleus. The nuclear and
atomic transition energies are E(n)

0 = W
(n)
e −W (n)

i

and E(a)
0 = Bi −Bf , respectively.

In principle, two decay branches of the state |c2〉
are possible: deexcitation of the nucleus and decay of
the fth hole. But the decay rate of the atomic holes
is by many orders larger than that of the nucleus.
In particular, the width of the first excited level for
197Au Γn = 2.38 × 10−7 eV, while the K-hole width
ΓK = 52 eV and the M1-hole width ΓM1 = 14.3 eV [2].
Thus, at first, there are the electron transitions that
lead to the filling of the f -th hole. For brevity, we talk
about a single electron transition from an upper level
with the binding energy B′, followed by the emission
of a photon with the energy ~ω′.

After the relaxation of the atomic electrons, the
whole system occurs in another intermediate state
|c3〉 with the energy

E3 = W (n)
e +B′ + ε+ ~ω′. (14)

At the last stage, the nucleus decays into a final
state |IfMf 〉, by emitting a γ quantum with the en-
ergy ~ωγ or a conversion electron. The energy of the

whole system in the final state |b〉 then becomes

Eb = W
(n)
f +B′ + ε+ ~ω′ + ~ωγ . (15)

Such multistep scattering process is determined by
the resonant part of the transition operator

T̂ = V̂ (n)
r Ĝ+(Ea)V̂ (a)

r (16)

with Green’s operator

Ĝ+(Ea) = (Ea + iη − Ĥ)−1, η → +0. (17)

Here, the first factor on the right-hand side of Eq. (16)
describes the photoeffect induced by x-rays, and the
last factor describes the emission of γ quanta by the
excited nucleus.

Now, we want to present Green’s operator in the
form, which explicitly describes the above-discussed
sequence of events (NEET followed by atomic relax-
ation). For this aim, we introduce the operators

Â = Ea + iη − Ĥ, B̂ = Ea + iη − Ĥ0 − V̂3, (18)

where V̂3 = V̂ P̂3 and P̂3 are the projection operators
on the vectors |3〉 ≡ |c3〉,

P̂3|b〉 = δ3,b|b〉. (19)

We use the operator identity (see also [15])

Â−1 − B̂−1 = B̂−1(B̂ − Â)Â−1. (20)

Here, the difference of B̂ and Â, denoted by V̂ ′, is

V̂ ′ = V̂ (1− P̂3). (21)

As a result, the transition operator (16) becomes

T̂ = V̂ (n)
r

1
Ea + iη − Ĥ0 − V̂3

T̂ ′, (22)

where the reduced transition operator

T̂ ′ = V̂ ′ + V̂ ′Ĝ+(Ea)V̂ ′. (23)

The corresponding transition matrix takes the form

Tba =
∑

c3,c2,c1

〈b|V̂ (n)
r |c3〉

1

Ea − E3 + iΓ(n)
e /2

×

×〈c3|V̂ (a)
r |c2〉G+

21(Ea)〈c1|V̂ (a)
r |a〉, (24)
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where Γ(n)
e is the total width of the excited nuclear

level, the summation is carried over magnetic quan-
tum numbers and polarizations of photons.

For two overlapping resonant levels c1 and c2,
Green’s matrix G+

c′c(Ea) is determined by a system
of algebraic equations [16]

(Ea − Ec′)G+
c′c(Ea) =

= δc′c +
∑
c′′

R+
c′c′′(Ea)G+

c′′c(Ea), (25)

where the R matrix is represented by the expansion

R+
cc′(Ea) = Vc,c′ +

∑
b6=c,c′

VcbVbc′

Ea + iη − Eb
+ ... . (26)

The diagonal elements of this R matrix are R11 =
= −iΓi/2 and R22 = Γf + Γ(n)

e by R22 = −i(Γf +
+Γ(n)

e )/2.
The solution of Eqs. (25) is given by

G+
11(Ea) ≈

1
ΔE − ε+ iΓi/2

, (27)

G+
21(Ea) ≈

R21

(ΔE − ε+ iΓi/2) (ΔE − δ − ε+ iΓf/2)
.

(28)

Green’s function G+
21(Ea) can be represented as a sum

of two resonant terms with the poles at the points
ΔE = ε− iΓi/2 and ΔE = δ + ε− iΓf/2.

3. NEET Cross Section

Starting from (24), we find the cross-section of the
photoinduced reaction through the NEET channel:

σ
(f)
ind = RfσNEET(E), (29)

where the branching ratio

Rf =
∑
f 6=i

Γ(n)
ef /Γ

(n)
e , (30)

and Γ(n)
ef is the partial width for the nuclear transition

e→ f .
As to the NEET cross-section, it is given by the

integral over the energy ε = ~2κ2/2m of the ejected
photoelectron [13, 14]:

σNEET(E) = E2
int

(
Γf
2π

)
×

×
∞∫
0

σion(ε)dε
[(ε−ΔE)2+(Γi/2)2][(ε−ΔE + δ)2+(Γf/2)2]

.

(31)

The cross-section σion(ε) is a slowly varying func-
tion of ε. Ignoring such a dependence and replacing
σion(ε) by σion = σion(0), one gets

σNEET(E) = PNEETFNEET(E)σion. (32)

Here, the edge factor FNEET(E) describes the en-
ergy dependence of the NEET cross-section at the
NEET edge [14]:

FNEET(E)=
1

(1+Γf/Γi)[δ2+(Γi−Γf )2/4]

3∑
i=1

fi(E)

(33)
with

f1(E) =
Γf
Γi

[
δ2 −

(
Γi
2

)2
+
(

Γf
2

)2]
×

×
[
1
2

+
1
π

arctan
(

2ΔE
Γi

)]
, (34)

f2(E) =
δΓf
2π

ln
[

(ΔE)2 + (Γi/2)2

(ΔE − δ)2 + (Γf/2)2

]
,

f3(E) =

[
δ2 +

(
Γi
2

)2
−
(

Γf
2

)2]
×

×
[
1
2

+
1
π

arctan
(

2(ΔE − δ)
Γf

)]
.

The function FNEET(E) → 0 at ΔE → −∞ and
FNEET(E) → 1 at ΔE → +∞. The terms f1 and f3
correspond to two resonant terms of G+

21(Ea), while
f2 corresponds to their interference.

4. NEET Strength

The NEET strength E2
int equals |R21|2 averaged over

the initial states and summed over the final states.
This matrix element is determined by the second-
order term of expansion (26), which describes the
emission of a virtual photon by the electron and
its absorption by the nucleus. If ka � 1, where
a = a0/Z, a0 is the Bohr radius, and k ≈ Ea0/~c
is the wave vector of virtual photons, one can neglect
the retardation corrections to PNEET, which are of the
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order of 10% [11]. In such long-wave approximation,
we get

E2
int =

4π
(2L+ 1)2

(
jiL

1
2
0|jf

1
2

)2
e2R2

fi×

×B(λL; Ii → Ie), (35)

where ji and jf are the initial and final total angular
momenta of the atomic shells containing the holes,
which take part in NEET, and (j1j2m1m2|jm) is the
Clebsch–Gordan coefficient. The reduced probability
of the λL transition from the initial nuclear state to
the excited one is given by (see, e.g., [17])

B(λL; Ii → Ie) =

=
1

2Ii + 1

∑
µMiMe

|〈IeMe|Mµ(λL)|IiMi〉|2, (36)

where Mµ(λL) denotes the electric (λ = E) or mag-
netic (λ = M) multipole operator of the nucleus, the
atomic radial matrix element

Rfi =
1

aL+1

∞∫
0

dρρ−L+1gf (ρ)gi(ρ) (37)

is expressed in terms of the radial wave functions of
the electron gi(f)(ρ) filling the i(f) holes, which de-
pend on the dimensionless radius ρ = r/a and are
normalized as
∞∫
0

g2(ρ)ρ2dρ = 1. (38)

The nuclear electric multipole operatorMµ(EL) is
determined by the sum over all protons with spherical
coordinates ri, θi, ϕi:

Mµ(EL) = e

Z∑
i=1

rLi YLµ(θiϕi). (39)

Note that, in the long-wave approximation, our re-
sult (35) coincides with Harston’s formula [12].

5. Absorption of X-Rays

According to the optical theorem (see, e.g., [15]), the
absorption cross-section of x-rays by electrons is de-
termined by the imaginary part of the transition ma-
trix element Taa, which is associated with the elastic
scattering amplitude of x-ray photons to zero angle:

σa(E) =
2
~c

ImTaa. (40)

Since the NEET matrix element |R21| � Γf , the ab-
sorption of x-rays by electrons proceeds mainly with-
out energy transfer to the nucleus. In other words,
|G+

21(Ea)| � |G+
11(Ea)|, so that, with good accuracy,

Taa=
∑
mi

∫
dκ

(2π)3
〈a|V̂ (a)

r |c1〉G+
11(Ea)〈c1|V̂ (a)

r |a〉, (41)

where the explicit form of G+
11 is presented in (27).

For the absorption cross-section of x-ray photons, we
have then the following expression:

σa(E) =
Γi
2π

∞∫
0

σion(ε)dε
(ε−ΔE)2 + (Γi/2)2

. (42)

Replacing again σion(ε) by the constant σion, we
obtain

σa(E) = Fabs(E)σion, (43)

where the absorption edge factor is

Fabs(E) =
1
2

+
1
π

arctan
[
2ΔE
Γi

]
. (44)

6. Averaging

The cross-sections σa(E) and σNEET(E) should be
also averaged over the energy distribution of incident
photons. We approximate it by the Lorentz function:

ws(E) =
Γs/2π

(E − Ē)2 + (Γs/2)2
. (45)

Averaging Fabs(E) with weight (45), we find the de-
pendence of the averaged cross-section σ̄a(Ē) on the
mean energy of photons Ē:

Fabs(Ē) =
1
2

+
1
π

arctan
[
2(ΔĒ)
Γabs

]
, (46)

where ΔĒ = Ē −Bi, and the width Γabs = Γs + Γi.
By analogy, retaining only the leading term f3(E)

in (33), we see that the averaged NEET cross-section
σ̄NEET(Ē) is proportional to the factor

FNEET(Ē) =
1
2

+
1
π

arctan
[
2(ΔĒ − δ)

ΓNEET

]
, (47)

where the width ΓNEET = Γs + ΓM .
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It is useful to describe the K-absorption and NEET
near their edges by derivatives of (46) and (47) with
respect to Ē:

F ′abs(Ē) =
(Γabs/2)2

(ΔĒ)2 + (Γabs/2)2
,

F ′NEET(Ē) =
(ΓNEET/2)2

(ΔĒ − δ)2 + (ΓNEET/2)2
.

(48)

From here, we see that Γabs and ΓNEET can be inter-
preted as the edge widths (see also [2]).

7. NEET in Isomer 178Hfm2

The hafnium 16+ isomeric level 178Hfm2 has the en-
ergy Wi = 2446.09 keV and the half-life T1/2 = 31 yr.
In this state, the spin projection on the symmetry
axis Ki = 16 much exceeds Kf of lower-lying levels.
Therefore, the deexcitation transitions are strongly
forbidden. This m2 isomer decays by E3 transition
into the 13− level with the energy 2433.334 keV and
K = 8, which belongs to the rotational band with the
band-head 8− (m1 isomer), located at 1147.41 keV
and having the half-life T1/2 = 4 s.

Collins et al. [18–24] tried to trigger the 16+ iso-
mer, by irradiating a target with 178Hfm2 by x-rays.
They observed an increase of intensities for some γ-
lines, as well as the appearance of new lines in the
deexcitation spectrum of 178Hfm2, that allowed them
to announce about 2% acceleration of the isomer de-
cay. Collins et al. suggested that x-ray photons in-
duced transitions into an upper-lying intermediate
K-mixing level of hafnium, that cascaded up to the
ground state. However, as was shown in [25–28], their
results contradict the existing nuclear models. There-
fore, they [19] assumed that NEET is responsible for
the induced decay of the isomer. It was noted that the
decay acceleration takes place at the L3 absorption
threshold [18], and the NEET probability, associated
with the excitation to an intermediate nuclear state,
was estimated as PNEET = 1.6 × 10−3. Such large
value might be provided by E1 transitions, which are
usually more intense than M1 transitions.

In the nonrelativistic approximation, we have the
NEET strength at the electronic transition M5 → L3:

E2
int =

8π
9

(0.4)10
( e
a2

)2

×

×
(Z ′i/Z)5(Z ′f/Z)7

[0.6(Z ′i/Z) + 0.4(Z ′f/Z)]8
B(E1; Ii → Ie), (49)

where Z ′ are effective charges due to the electronic
screening of the nuclear Coulomb field. For estima-
tions, we put B(E1) = Bsp(E1), where the single-
particle (Weisskopf) unit for the EL transition is [28]

Bsp(EL) =
e2

4π

(
3

3 + L

)2
R2L

0 , (50)

and the nuclear radius R0 = 1.2A1/3 fm.
Estimations for the hole transition L3 → M5 and

the exact resonance (δ = 0) show that the NEET
probability PNEET = 2.2×10−4, which coincides with
the result of [29]. Other types of E1 transitions ap-
pear to be much less intensive. So, for the L3 → M4

transition, we find PNEET = 3.8× 10−5 compared to
4.4 × 10−5 of [29] and 2.8 × 10−5 of [30]. For the
L3 → M1 transition, PNEET = 2.1 × 10−6, whereas
PNEET = 3.8× 10−6 in [29] and 8.0× 10−6 in [30].

Since the experimental shift of the NEET peak
ΔE = 6 eV [18], we ought to put δ = 3.5 eV. Then the
corrected NEET probability for the M5 → L3 elec-
tron transition becomes PNEET = 0.9 × 10−4. The
edge factor FNEET(E) = 1 at all energies of x-ray
photons ΔE � δ + Γf . This means that the acceler-
ated decay of the hafnium isomer had to be observed
at all energies above the NEET threshold. Therefore,
it is strange that the decay acceleration have been
detected [18] only in a narrow interval of the order of
1 eV above the L3 edge.

8. Intermediate Triaxial Shape

The probability PNEET of the photoinduced NEET
for isomer 178Hfm2 has been calculated with the use of
quantum electrodynamics in [29, 30]. It was believed
that 178Hf in the hypothetical intermediate state 15−

conserves the prolate axial shape. In this case, its spin
projection on the symmetry axis has the definite value
Ke = 15. As a result, the transitions 15− → 13− with
the alteration of K by ΔK = 7 should be strongly
forbidden as compared with the backward transition
15− → 16+ with ΔK = 1. The corresponding ex-
tremely small branching ratio R ∼ 10−14 [29, 30] ab-
solutely annihilates the results of Collins et al. But
one cannot exclude the situation where the nucleus
in an intermediate state attributes a triaxial shape.
Then the wave function |IeMe〉 will be spread over
the states with different Ke [17]:

|IeMe〉 =
∑
Ke

∑
Ωe

AIeτ
Ke,Ωe

(γ)|IeMeKeΩe〉. (51)
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Here, the basis components |IeMeKeΩe〉 are given by

|IeMeKeΩe〉 =

√
2Ie + 1
16π2

×

×
[
DIe

MeKe
(ϑ)χΩe

(r′) + (−1)IeDIe

Me,−Ke
(ϑ)χ−Ωe

(r′)
]
,

(52)

where DIe

MeKe
(ϑ) is the rotation matrix depending on

the Eulerian angles ϑ = {ϑ1, ϑ2, ϑ3}, which deter-
mine the orientation of the coordinate frame ξ, η, ζ
bound to the principal axes of the inertia ellipsoid
of the nucleus, Ke and Ωe are the projections of the
total (I) and intrinsic (j) angular momenta on the
axis ζ, and the function χΩe

(r′) describes the intrin-
sic motion of nucleons with coordinates r′ relative
to the axes ξ, η, ζ. The projections take the values
Ke = 1, 3, . . . , 15 and Ωe = 1, 3, ... .

The expansion coefficients AIeτ
Ke,Ωe

(γ), depending
on the triaxiality parameter γ, satisfy the following
orthogonality relations:∑
KeΩe

AIeτ
Ke,Ωe

(γ)AIeτ
′

Ke,Ωe
(γ) = δττ ′ ,

∑
τ

AIeτ
Ke,Ωe

(γ)AIeτ
K′

e,Ω
′
e
(γ) = δKeK′

e
δΩeΩ′

e
.

(53)

The equations to determine the coefficients AIeτ
Ke,Ωe

(γ)
in odd triaxial nuclei can be found in [17].

A similar K-mixing arises if the nucleus in the 15−

state is γ-soft. Then it can be treated as a rigid triax-
ial rotator with the effective triaxiality parameter γeff

[17]. We recall that the maximum mixing of compo-
nents with different Ke is achieved when γeff = π/6.
The initial isomeric state 16+ with the prolate axially
symmetric shape (γ = 0) is described by the single
component |16,Mi, 16, 16〉.

When we pass to the axes ξ, η, ζ, the electric mul-
tipole operator (37) transforms as

Mµ(EL) =
∑
ν

DL
µν(ϑ)M′ν(EL), (54)

where M′ν(EL) depends on the intrinsic coordinates
r′i. By using also the integral∫
D
If

MfKf
(ϑ)∗DL

µν(ϑ)DIe

MeKe
(ϑ)dΩ =

=
8π2

2If + 1
(IeLMeµ|IfMf )(IeLKeν|IfKf ), (55)

we find the reduced probability for the EL transition
per unit time from the excited state Ie = 15− to
any final axially symmetric state |IfMfKf ,Ωf 〉 with
Ωf = Kf :

B(EL; Ie → If ) =
∣∣∣∣∑
ν

∑
Ke,Ωe

AIe

Ke,Ωe
(γ)×

× (IeLKeν|IfKf )〈χ′Kf
|M′ν(EL)|χΩe

〉
∣∣∣∣2. (56)

Every intrinsic wave function χΩ(r′) can be ex-
panded in the functions |jΩ〉 characterized by a defi-
nite angular momenta j:

χΩ(r′) =
∑
j

aj |jΩ〉. (57)

Then

〈χ′Ωf
|M′ν(EL)|χΩe〉 =

=
∑
jf je

a∗jf aje(jeLΩeν|jfΩf )〈jf ||M′(EL)||je〉|2, (58)

where Ωf = Kf , and 〈jf ||M′(EL)||je〉 denotes the
reduced matrix element. From Eqs. (56) and (58), it
follows that Kf = Ke + ν and Kf = Ωe + ν. In other
words, only the components with Ke = Ωe of the
15− wave function are involved in the electromagnetic
transition.

To estimate B(EL), we demand that, for every
transition,

|〈χ′Ωf
|M′ν(EL)|χΩe

〉|2 = Bsp(EL). (59)

Then, in correspondence with (56) for the E1 transi-
tion from 15− to 16+, we have

B(E1; 15− → 16+) =
(
A15

15,15(γ)
)2
Bsp(E1), (60)

while, for the E2 transition from Ie = 15− to
If = 13− with the energy 2433.334 keV and the spin
projection Kf = 8,

B(E2; 15− → 13−) ∼

∼
∣∣∣∣ ∑
Ke,ν

A15
Ke,Ke

(γ)(15, 2,Keν|13, 8)
∣∣∣∣2Bsp(E2), (61)

where Ke = 6, 8, 10.
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The unit-time probability for the EL transition is
related to the reduced probability by [17]

P (EL; i→ f) =
8π(L+ 1)

~L[(2L+ 1)!!]2
k2L+1×

×B(EL; i→ f), (62)

where k is the wave vector of emitted γ-quanta.
Substituting (60) and (61) in (62) and adopting

that all the expansion coefficients A15
Ke,Ke

(γ) are ap-
proximately equal, we arrive at the branching ratio

R =
P (E2; 15− → 13−)
P (E1; 15− → 16+)

∼ 10−7, (63)

but not at R ∼ 10−14, as predicted in [29, 30].

9. Discussion

The behavior of the NEET and K-absorption cross-
sections for 197Au in a vicinity of the K-absorption
threshold is shown in the figure. We found that
the NEET edge defined by F (E∗) = 0.5 is located
at δ = 40 eV if the energy shift ΔE∗ = 45 eV.
This value lies between two experimental values, dis-
cussed in Introduction. The exact equality of δ and
ΔE∗ is achieved only when we take the leading term
f3(E) of the edge factor F (E) into account. Per-
haps, the analysis of slight oscillations of the NEET
curve observed by Kishimoto et al. [2] might lead
to a better agreement with one of the experimental
data. Our approach allows one to understand why
the NEET events for 197Au appear in a vicinity of
the K-absorption threshold ΔE = 0 and rapidly grow
at another resonant point ΔE ≈ δ. For this aim, we
rewrite the energy conservation law Eb = Ea as

ε = ΔE − δ − ~(ω′ − ω′0). (64)

Here, we took into account that the energy of a γ-
quantum emitted by the nucleus practically coincides
with the transition energy. The photoemission of K-
electrons appears even at ΔE ≈ 0 owing to the large
width ΓM1 of the M1-hole. In other words, the NEET
channel becomes open (ε > 0) when x-ray photons,
emitted during the filling of the M1-hole, have the
energy ~ω′ ∼ ~ω′0 − δ that corresponds to the emis-
sion line wing. Therefore, the NEET process, being
weak at ΔE ≈ 0, sharply grows only at ΔE ≈ δ in
correspondence with [2].

NEET edge function FNEET(E) (solid) and K-absorption fac-
tor Fabs(E) (dashed), calculated for nucleus 197Au, versus the
energy E of x-ray photons, where ΔE = E − BK, and BK

denotes the binding energy of the K-electron

The width of the NEET edge ΓNEET is much less
than that of the K-absorption edge Γabs, because
ΓK � ΓM . For 197Au by means of Eqs.(48), we found
ΓNEET = 17.8 eV and Γabs = 55.5 eV, which well cor-
relates with the experimental data ΓNEET = 14±9 eV,
Γabs = 58± 3 eV [2].

We also analyzed the NEET mechanism as a pos-
sible explanation of the intriguing experiments of
Collins et al. The hafnium atomic binding ener-
gies are B(L3) = 9560.7 ± 0.4 eV and B(M5) =
= 2600.9± 0.4 eV [33], so that the electron transition
energy Ea0 = 6.9598 keV. The energy of the nuclear
transition, involved in NEET, differs from Ea0 only by
a few eV [18]. Therefore, the intermediate level 15−

should have the energy We = 2453.05 keV.
Note that our nonrelativistic calculations of the

probability PNEET for the excitation of the intermedi-
ate 15− level via atomic electrons correlate with more
exact relativistic Hartree–Fock calculations [29, 30].
Therefore, analyzing NEET in other nuclei, one can
apply analogous simple estimations. Above the L3

absorption edge, we found PNEET = 0.6 × 10−4, be-
ing less than the experimental value PNEET × R =
= 1.6× 10−3 [18].

Up to now, the main theoretical argument against
the validity of the experimental results [18] was a very
low branching ratio R for the deexcitation transition
of the 15− level into the 13− level against the transi-
tion, which returns the nucleus back in the 16+ iso-
meric state [29, 30].
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The assumption of the triaxiality of the nuclear
shape in the 15− state allows us to increase the pre-
vious estimations of R by 7 orders. However, our
estimation (63) again shows that the deexcitation
path 15− → 13− is too weak to be possible. The
main reason is that the 13− level is separated only
by 19.72 keV from the 15− level. The situation is im-
proved if there is one more 13−1 level, which is situated
much lower. Let the energy of transition 15− → 13−1
be 400 keV. Then we already get R ∼ 1. Note, how-
ever, that the expansion amplitude A15

15,15 is greater
than all other amplitudes A15

Ke,Ωe
with Ke,Ωe < 15,

and, hence, the above value of R can be overesti-
mated. Of course, our estimations are very rough,
and a more fundamental theory of electromagnetic
transitions in triaxial nuclei similar to that given in
[17] for odd nuclei, which were treated as an even-
even core + one nucleon, is needed.

Since the m2 isomer spontaneously decays to the
13− level, but not in any hypothetical f = 13−1 level,
we ought to assume also that the corresponding spin
projection Kf < 8, where K = 8 characterizes the
13− state. This is possible if the 13−1 level belongs to
any yet unknown rotational band with Kf < 8. Then
the decay will occur around the rotational band built
on the m1 isomer. Such our conclusion correlates, in
principle, with the statement of [18]. In this exper-
iment, an induced prompt decay of the isomer has
been detected around the 13− level. On the contrary,
the decay to the 13− level (member of the rotational
band of the m1 isomer) would lead to a 4-s delay of
the emission of γ quanta.

Thus, if nucleus 178Hf has a triaxial shape in the in-
termediate state 15−, it can successfully decay to the
13−1 level of a still unknown rotational band. How-
ever, even in such favorite case, our upper estimation
of the effect remains less than the experimental data
by one order. The possible collectivity of the 15−

level would increase the NEET probability.
At the same time, the decay should be observed at

all energies E of x-ray photons above the L3 absorp-
tion threshold (see the figure), whereas, in the ex-
periment [18], the decay enhancement vs E has been
described by a very sharp peak. Perhaps, such a peak
appeared since experimentalists concentrated only on
the narrow range of x-ray energies above the L3 ab-
sorption edge.

Although the alternative experiments with syn-
chrotron radiation [31, 32] did not confirm the results

of Collins’s team [1–6], we see no basic objections
against their findings, and the question about the in-
duced depletion of 178Hfm2 remains challenging.

I am grateful to Professor G.F. Filippov for the
helpful discussion.

1. M. Morita, Progr. Theor. Phys. 49, 1574 (1973).
2. S. Kishimoto, Y. Yoda, Y. Kobayashi et al., Phys. Rev. C

74, 031301(R) (2006).
3. K. Otozai, R. Arakawa, and T. Saito, Nucl. Phys. A 297,

97 (1978).
4. A. Shinohara, T. Saito, M. Shoi et al., Nucl. Phys. A 472,

151 (1987).
5. L. Lakosi, N.C. Tam, and I. Pavliczek, Phys. Rev. C 52,

1510 (1995).
6. I. Ahmad, R.W. Dunford, H. Esbensen et al., Phys. Rev.

C 61, 051304 (2000).
7. T. Saito, A. Shiohara, and K. Otozai, Phys. Lett. B 92,

293 (1980).
8. Z. Chummei, Nucl. Data Sheets 62, 433 (1991).
9. V. Kirischuk, A. Savrasov, N. Strilchuk, and V. Zhelto-

nozhsky, EPL 97, 32001 (2012).
10. E.V. Tkalya, Nucl. Phys. A 539, 209 (1992).
11. Y. Ho et al., Phys. Rev. C 48, 2277 (1993).
12. M.R. Harston, Nucl. Phys. A 690, 447 (2001).
13. E.V. Tkalya, Phys. Rev. A 75, 022509 (2007).
14. A.Ya. Dzyublik, JETP Lett. 93, 489 (2011).
15. M.L. Goldberger and K.M. Watson, Collision Theory (Wi-

ley, New York, 1964).
16. A.Ya. Dzyublik, Sov. J. Theor. Math. Phys. 87, 393 (1991).
17. A.S. Davydov, Excited States of Atomic Nuclei (Atomiz-

dat, Moscow, 1967) (in Russian).
18. C.B. Collins, N.C. Zoita, F. Davanloo et al., Radiat. Phys.

Chem. 71, 619 (2004).
19. C.B. Collins, F. Davanloo, M.C. Iosif et al., Phys. Rev.

Lett. 82, 695 (1999.
20. C.B. Collins, F. Davanloo, M.C. Iosif et al., Laser Phys. 9,

1 (1999).
21. C.B. Collins, F. Davanloo, A.C. Rusu et al., Phys. Rev. C

61, 054305 (2000).
22. C.B. Collins, F. Davanloo, N.C. Zoita et al., Hyperf. Inter-

act. 135, 51 (2001).
23. C.B. Collins, N.C. Zoita, A.C. Rusu et al., Europhys. Lett.

57, 677 (2002).
24. S. Olariu and A. Olariu, Phys. Rev. Lett. 84, 2541 (2000).
25. D.P. McNabb et al., Phys. Rev. Lett. 84, 2542 (2000).
26. P. Neumann-Cosel and A. Richter, Phys. Rev. Lett. 84,

2543 (2000).
27. E.V. Tkalya, Phys. Usp. 45, 525 (2005).
28. A. Bohr and B.R. Mottelson, Nuclear Structure, v. 1 (Ben-

jamin, New York, 1969).
29. E.V. Tkalya, Phys. Rev. C 68, 064611 (2003).
30. M.R. Harston and J.J. Carroll, Laser Phys. 15, 487 (2005).

626 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7



Nuclear Excitation by Electron Transition

31. I. Ahmad et al., Phys. Rev. C 71, 024311 (2005).
32. J.J. Carroll, S.A. Karamian, R. Propri et al., Phys. Lett.

B 679, 203 (2009).
33. J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125

(1967).
Received 18.04.13

О.Я. Дзюблик

ЗБУДЖЕННЯ ЯДЕР
ЕЛЕКТРОННИМ ПЕРЕХОДОМ

Р е з ю м е

На основi строгої теорiї зiткнень розвинуто теорiю збу-
дження ядер електронним переходом (NEET), iндукованим

рентгенiвськими променями. Розглянуто всi стадiї процесу,
включаючи утворення вакансiї у внутрiшнiй електроннiй
оболонцi, її розпад, що приводить до збудження ядра, та
подальше заповнення вакансiї на вищому рiвнi разом iз ра-
зрядкою ядра. Розраховано перерiзи для NEET та фотопо-
глинання рентгенiвських променiв поблизу краю поглинан-
ня. Результати узгоджуються з даними Кiшiмото та iнших
для NEET на 197Au. Крiм того, ми обговорюємо NEET, як
механiзм тригерування 31-рiчного iзомеру 178Hf m2 через
промiжний рiвень. Показано, що 2% прискорення розпаду
цього iзомеру, яке спостерiгалося Коллiнсом та iн., реально,
якщо ядро набуває в промiжному станi неаксiальної форми
та iснує ще додаткова обертальна смуга з рiвнем 13−.
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