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Second-order phase transitions in ferroics of the ferroelastic type have been studied theoreti-
cally. The temperature-induced phase transition in crystals with a wide forbidden gap caused
by the interaction between electrons and a branch of acoustic vibrations in the crystal lattice is
considered. The vertex part of this interaction with transverse lattice vibrations is calculated.
The characteristic features of the thermodynamic potential at the transition point and the tem-
perature dependence of the acoustic phonon dispersion at the transition over quasiequilibrium
states are discussed. It is shown that the stabilization of structure fluctuations by the electron
subsystem in the high-symmetry phase, and a reduction of soft mode frequencies makes those
fluctuations metastable.
K e yw o r d s: thermodynamic potential, structure transformation, electron-phonon interac-
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1. Introduction

The idea of the thermodynamic equivalence of a crys-
tal and a system of quantized fields of its elemen-
tary excitations (quasiparticles) [1] allows the meth-
ods of quantum field theory to be successfully used in
theoretical researches dealing with structural phase
transitions in crystals. According to work [2], if the
properties of elementary excitations and the interac-
tions that exist between them are determined exper-
imentally at a certain temperature, the equations of
motion of quantized fields make it possible to deter-
mine those properties at any other temperature. This
way can be used to determine the structure and the
properties of a crystal itself. The method of tem-
perature (Matsubara) Green’s functions allows one
to solve such a problem with regard for both quan-
tum and thermal fluctuations. In the framework of
this method, a modification of the crystal structure at
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structural transformations of the displacement type is
determined as coherent deviations of normal coordi-
nates for some phonon-field modes from their previ-
ous values.

A second-order phase transition (PT2) of the dis-
placement type occurs owing to coherent displace-
ments of equilibrium atomic positions in the crystal
along the normal coordinate of one of the vibration
modes in this crystal. Therefore, such a transition
may take place as a result of the interaction between
a certain branch in the spectrum of crystal vibra-
tions that corresponds to the selected mode and the
electron subsystem of the crystal. The state of the
electron subsystem also depends on the distribution
of atoms, as well as on the electron density, in a unit
cell of the crystal. It is clear that if this mode be-
longs to the branch of transverse dipole vibrations in
the crystal, the latter, after the transition, may be-
come a medium with dipole polarization. In this case,
we speak about the ferroelectric PT2. If the active
mode belongs to a branch of transverse acoustic vi-
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brations, PT2 is of the ferroelastic type. At last, if
the active mode belongs, e.g., to a branch of oscilla-
tions of atomic magnetic moments in the crystal, the
transition makes the crystal ferromagnetic or, in the
general case, multiferroic.

For the discussed structural transformations to be
stable, it is necessary that the displacements of atoms
be energetically beneficial. This can be realized only
if the electron density in a crystal unit cell undergoes
a redistribution. Below, we demonstrate that such
a redistribution takes place if the displacements of
atoms along the active normal coordinate mix the
wave functions of valence electron states with the
wave functions of electron states in the conduction
band. The electron-phonon interaction must be in-
terband at that.

We determined conditions that make PT2 of any
displacement type possible and the properties of those
transitions. In particular, we succeeded in determin-
ing the peculiarities in the temperature dependence
of the thermodynamic potential at the PT2 point [3],
the existence of which was pointed out by L.D. Lan-
dau and E.M. Lifshitz [4]. In work [3], we showed that
the peculiarity is a logarithmic divergence and, hence,
cannot be expressed in terms of power-law functions,
as it is done in the theory of critical exponents [5].

The theory of ferroelectric PT2 demonstrates an
important role of transverse polarization crystal vi-
brations. According to work [6], this theory is based
on the observed spontaneous emergence of a crystal
polarization as the temperature T decreases and on
the tending of the crystal dielectric permittivity ε to
infinity, when approaching the phase transition tem-
perature T = Tc. The Lyddane–Sachs–Teller relation
ε0/ε∞ = ω2

||/ω
2
⊥ [7] enables this structural transition

to be associated with the tending of the transverse
polarization wave frequency ω⊥ to zero (the so-called
soft mode). Two mechanisms of soft mode emer-
gence as a result of the electron–phonon interaction
are known. One of them is suitable for the description
of PT2 in crystals with a narrow energy gap, when
the driving force of the transition consists in a vari-
ation of the conduction band occupation by charge
carriers as the temperature changes [3, 4]. The other
interband mechanism [8] successfully describes PT2
in crystals with a wide energy gap, when the driving
force is no more than the mixing of electron states
in the valence and conduction bands under the influ-
ence of virtual interband electron transitions accom-

panied by the emission and the absorption of trans-
verse phonons. The important role of just transverse
vibrations of the crystal lattice in the structural PT2
is evident. It is so, because for any superposition of
transverse vibrations, the divergence of displacements
turns out equal to zero. This means that such super-
positions do not break the translational symmetry of
the crystal (if the domain effects are neglected). At
the same time, the divergence of displacements dif-
fers from zero for longitudinal vibrations. Therefore,
the latter are capable, e.g., of localizing the charge
carriers in the conduction band [9, 10], thus violating
the translational symmetry of the crystal. Below, we
consider possible structural modifications under the
influence of the interaction between the electrons and
the transverse acoustic vibrations in crystals with a
wide energy gap ΔE, which considerably (by several
orders of magnitude) exceeds the acoustic vibration
quantum energy.

2. Hamiltonian of Interband
Interaction between Charge Carriers
and Transverse Acoustic Vibrations

A similar model of interband electron–phonon inter-
action, which can generate a ferroelectric PT2, was
considered by us earlier in work [3] with the use of an
interaction operator found and tested in a number of
works carried out by a group of Leningrad scientists.
A review of those works was made in monograph [8].
The scientific literature contains numerous descrip-
tions for the operator of interaction between charge
carriers and longitudinal acoustic phonons. Unfortu-
nately, every description is accompanied by a remark
that this operator is not suitable for the consideration
of the interaction with transverse phonons. There-
fore, our first task consists in the construction of the
corresponding Hamiltonian.

Let W0(r) be the potential energy of an electron
as a function of its radius-vector r in the high-
temperature (high-symmetry) phase, when the crys-
tal atoms (ions) are located at their equilibrium posi-
tions. Then, the function W0(r) is periodic with the
crystal lattice period. Of course, the displacements
of atoms in the crystal lattice change the electron en-
ergy. We should consider those changes in the case
where the displacements correspond to a propagating
transverse acoustic wave. In the transverse wave with
wave vector q, the crystal unit cells become shifted as
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a whole (undergoing no deformation) in the direction
perpendicular to q. Such purely transverse waves,
as well as purely longitudinal ones, occur very sel-
dom in crystals. For instance, in a cubic crystal, the
purely transverse and purely longitudinal waves can
propagate only along three basic lattice axes. Nev-
ertheless, the cubic crystal is often simulated by an
isotropic medium, in which similar waves do exist for
any wave-vector direction. In this model, the defor-
mations of an internal crystal structure and a unit
cell shape, which arise at the propagation of trans-
verse acoustic waves, are neglected. We shall also
neglect those deformations. If a transverse acoustic
wave propagates along the wave vector q and two
neighbor unit cells shift at that along the plane of
their contact without deformation, the variation of
the electron energy in either of the cells will be de-
termined by the gradients of the function W0(r). In
addition, another crucial quantity is the difference be-
tween the displacement magnitudes of the centers of
the n-th and (n+ 1)-th cells.

Making no allowance for the interaction, the Hamil-
tonian for an electron in the crystal looks like

H0 = − ~2

2m
∇2
z +W0(r). (1)

Its eigenfunctions are the Bloch functions

ψkσ(r) =
1√
N

∑
n

exp(ikr)φσ(n + ρ), r = n + ρ, (2)

where σ is the index of the electron energy band, n the
crystal lattice vector, φσ(n + ρ) a periodic (with the
lattice period) wave function of the electron radius-
vector ρ in the n-th unit cell. For any n, the function
φσ has the same dependence on ρ. Every eigenfunc-
tion ψkσ(r) is related to the electron energy Eσ(k). In
the model where only two bands, the valence (σ = 1)
and conduction (σ = 2) ones, are present, and one
branch of transverse acoustic phonons are taken into
consideration, the system of noninteracting electrons
and crystal phonons is described by the following
Hamiltonian written down in the secondary quanti-
zation representation (hereafter, the system of units
with ~ = 1 and the Boltzmann constant k = 1 is
used):

H0 =
2∑

k,σ=1

Eσ(k)a+
kσakσ +

∑
q

ω(q)b+q bq. (3)

In expression (3), a+
kσ and akσ are the operators of

electron creation and annihilation, respectively, in the
state with the Bloch wave function ψkσ(r); and b+q
and bq are the creation and annihilation, respectively,
operators for the transverse acoustic phonon with the
momentum q and the energy ω(q).

Now, let us construct a Hamiltonian for the inter-
action between electrons and a branch of transverse
acoustic vibrations, the displacement vectors of which
lie in the contact plane of two adjacent cells, and the
wave vector q can be arbitrary. For every given vec-
tor q, the vector un describing the displacement of
the n-th cell center and oriented perpendicularly to
the vector q is selected from those that lie in the in-
dicated plane. The displacement magnitude can be
presented with the use of the operators b+q and bq as
follows:

un =
∑
q

√
1

2MNω0(q)
exp [i(qn)]

(
bq + b+q

)
, (4)

where N is the number of cells in the crystal, and M
the effective vibration mass. The displacement of the
adjacent cell,

un+1 =
∑
q

√
1

2MNω0(q)
exp [i(qn + qa)]

(
bq + b+q

)
(5)

differs from the previous expression by the term qa in
the exponent, where a is the crystal cell size measured
along the vector q. By the order of magnitude, the
quantity a can be regarded equal to the lattice con-
stant. The interaction Hamiltonian should include
the difference

Δu = un+1 − un ≈

≈
∑
q

√
1

2MNω0(q)
(
bq + b+q

)
exp(iqn)iqa, (6)

multiplied by the gradient function dW0(r)/dx ≡
≡ f(r) determined in the cell, where the variable x
changes along the direction of cell displacements in
the considered acoustic wave. Hence, the Hamilto-
nian of the interaction between the systems of va-
lence and conduction electrons, on the one hand,
and phonons of one branch of transverse acoustic

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 6 575



Z.P. Mastropas, E.N. Myasnikov

phonons, on the other hand, has the following form
in the secondary quantization representation:

Hi =
∫
dρf(ρ)Ψ+(ρ)Ψ(ρ)Δun, (7)

where the operators Ψ are constructed with the use
of the Bloch functions,

Ψ(ρ) =
∑
kσn

akσ exp (ikn)φσ(n + ρ),

Ψ+(ρ) =
∑

k′σ′n′

a+
kσ exp (−ik′n′)φ+

σ (n + ρ). (8)

Taking into account that∫
dρg(ρ)φ+

σ (n + ρ)φσ′(n′ + ρ) = g′σσ′δnn′ , (9)

we obtain

Hi = N−1/2
∑

kqσσ′

Fσσ′(k, q)a+
k+qσ′akσ

(
bq + b+−q

)
, (10)

where Fσσ′(k, q) = iqa
ω0(q)

√
ω0(q)
2M g′σσ′ , and the sub-

scripts σ and σ′ equal 1 and 2. For acoustic waves,
the quantity q/ω0(q) equals the reciprocal phase ve-
locity of a transverse wave, v−1, which is constant in
a wide interval of wave vectors, except for the values
q ≈ π/a. A crucial role is played by the dependence of
the quantity

√
ω0(q) on q. A similar dependence of

the vertex part F on q was also found for longitudinal
acoustic phonons [7].

To analyze the described model with the use of
quantum-mechanical Green’s functions, it is conve-
nient to regard the quantity gσσ′ = g′σσ′

iaq
ω(q)

√
1
M ,

which weakly depends on q, as an interaction con-
stant. It is also convenient to combine the multiplier√
ω(q)/2 with the operator

(
bq + b+−q

)
and deter-

mine Green’s function on the basis of the operators
γq =

√
ω(q)/2

(
bq + b+−q

)
and Hermitian conjugate

ones, γ+
q .

Hence, it turns out that, in our model, there may
exist three forms of electron-phonon interaction: the
intraband interaction with the interaction constant
g11, intraband with the constant g22, and interband
one with the constant g12 = g21 = g0. On the basis of
what was said in Introduction, one should expect that
a structural phase transition is possible in the system,
provided that the constant g12 is large enough. The
interactions associated with the constants g11 and g22

result in the scattering of charge carriers in each of
two bands by transverse acoustic phonons.

3. Equilibrium Thermodynamic
Potential in the Model of Interband
Interaction of Electrons with Transverse
Acoustic Phonons

Consider a correction to the thermodynamic potential
of the system of electrons and phonons that arises
owing to their interband interaction. The latter is
described by the operator

Hint = (4N)−1/2
∑
k,q

g0(q)
√
ω0(q)/2[a+

2 (k+q)a1(k) +

+a+
1 (k + q)a2(k)] (bq + b−q), (11)

where, analogously to Eq. (3), bq and b+q are the op-
erators of annihilation and creation, respectively, of
phonons with the momentum q and the frequency
ω0(q); g0(q) is the constant of their interband in-
teraction with electrons in the valence (subscript 1)
and conduction (subscript 2) bands; the correspond-
ing fields are described by the operators of creation,
a+
σ (k), and annihilation, aσ(k), of electrons with one-

particle energies Eσ(k) (σ = 1, 2). The expression for
the Hamiltonian H0 of the free fields of electrons and
phonons looks like formula (3).

A very convenient relation between the sought cor-
rection and the temperature Green’s functions of
phonons was given in monograph [8]. It reads

ΔΩ = T
∑
q

g0(q)∫
0

dg
g

∑
ωn

ω2
n + ω2

0(q)
ω2

0(q)
[D(q, ωn)−

−D(0)(q, ωn)], (12)

where ωn = 2πnT , and n is an integer. Green’s
function of phonons that takes the interaction into
account, D(q, ωn), is related to Green’s function of
noninteracting phonons,

D(0)(q, ωn) = ω2
0(q)

[
(iωn)2 − ω2

0(q)
]−1

,

by the Dyson equation,

D(q, ωn) = D(0)(q, ωn) +

+D(0)(q, ωn)P (q, ωn)D(q, ωn), (13)

where P (q, ωn) is the polarization operator of
phonons. Therefore, it is more convenient to present
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Eq. (12) in the form

ΔΩ = T
∑
q

g0(q)∫
0

dg
g

∑
n

ω2
0(q)P (q, ωn){(iωn)2−

−ω2
0(q) [1 + P (q, ωn)]}−1. (14)

The first, most essential terms of the second or-
der in the perturbation theory series for the polar-
ization operator of phonons P (q, ωn) with respect to
the interaction can be presented by two Feynman’s
diagrams. The latter differ from each other by the
permutation of indices 1 and 2 that enumerate the
valence and conduction bands, respectively. Accord-
ing to the correspondence rules [11], the polarization
operator that corresponds to those two diagrams in
the second order of perturbation theory, has the fol-
lowing analytical form:

P ′(q, ωn) = 2TN−1g2
∑
kωm

ψ(iωn, iωm,k,q), (15)

ψ(iωn, iωm,k,q) =

= [iωm − E2(k) (i(ωn + ωm)− E1(k + q))]−1 +

+ [iωm − E1(k) (i(ωn + ωm)− E2(k + q))]−1
, (16)

where ωm = (2m+ 1)πT , and m is an integer.
One can easily see that the sum over ωm in Eq. (15)

is a sum of residues at the poles of the auxiliary func-
tion f(ω) = −T−1 {exp(ω/T ) + 1}−1 that enters the
integrand of the integral∮
CR→∞

dωf(ω)ψ(iωn, ω,k,q) (17)

along the circle of infinite radius in the plane of the
complex variable ω. The integrand in Eq. (17) tends
to zero at ω →∞ not slower than ω−2. Therefore, in-
tegral (17) equals zero, and, hence, the indicated sum
of residues is equal to the negative sum of residues at
the poles of the function ψ(iωn, ω,k,q) in the com-
plex plane ω. Hence, the infinite sum over ωm in Eq.
(15) can be substituted by the expression

−f(E2(k)) [iωn + E2(k)− E1(k + q)]−1 +

+ f(E1(k + q)− iωn) [iωn + E2(k)− E1(k + q)]−1−

− f(E1(k)) [iωn + E1(k)− E2(k + q)]−1 +

+ f(E2(k + q)− iωn) [iωn + E1(k)− E2(k + q)]−1
.

(18)

Expressions (18) and (15) become much simpler for
a crystal with a wide energy gap:

T−1{[E1(k + q)− iωn − E2(k)]−1 +

+ [iωn + E1(k)− E2(k + q)]−1}, (19)

P ′(q, iωn) = 4g2Δ̄(q)
[
(iωn)2 − Δ̄2(q)

]−1
, (20)

where the quantity Δ̄(q) obtained by summing up the
differences E2(k)−E1(k + q) over k and dividing the
result by N can be called the average interband dis-
tance between those sublevels in two electron energy
bands, the momenta of which differ by the vector q.

Substituting Eq. (20) into Eq. (14), we obtain

ΔΩ = −T
∑
q

g(q)∫
0

dg4gω2
0(q)Δ̄(q)×

×
∑
n

{[
(iωn)2 − Δ̄2(q)

] [
(iωn)2 − ω2

0(q)
]
−

− 4g2ω2
0(q)Δ̄(q)

}−1

. (21)

The summation over n in Eq. (21) is carried out simi-
larly to that in Eq. (15) with the help of the auxiliary
function ϕ(ω) = T−1 {exp(ω/T )− 1}−1. The result
is determined by the position of poles of the function

ψ′(ω,q) =
{[
ω2 − Δ̄2(q)

][
ω2 − ω2

0(q)
]
−

−4g2ω2
0(q)Δ̄(q)

}−1

.

If the energy gap is so wide that Δ̄(q) � ω0(q), the
positions of its four poles are determined by the equal-
ities{
ω2 = ω2

1(q) ≈ Δ̄2(q) + 4g2ω2
0(q)Δ̄−1(q) ≈ Δ̄2(q),

ω2 = ω2
2(q) ≈ ω2

0(q)
[
1− 4g2/Δ̄(q)

]
,

(22)

Then, quantity (21) reads

ΔΩ = −
∑
q

g0(q)∫
0

2gdg [2n(ω2(q), T ) + 1]×
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×ω2
0(q)Δ̄−1(q)ω−1

2 (q), (23)

where

n(ω2(q), T ) = Tϕ(ω2(q)) = exp(ω2(q)/T − 1)−1.

The second equality in Eqs. (22) demonstrates that,
in the applied approximation, the square of the
phonon frequency, being renormalized by the interac-
tion, can become negative, which testifies to the insta-
bility of the high-symmetry phase at 4g2

0(q) > Δ̄(q),
i.e. if the interaction is strong enough. Since the
quantity Δ̄(q) has a magnitude of an order of 1 eV
for the considered crystals, the quantity g2

0(q) can
expectedly be equal to and even slightly exceed the
quantity Δ̄(q)/4 in rare substances and for phonon
modes in a small vicinity of a certain point in the first
Brillouin zone. It is just this case where the phase
transitions into an ordered phase under the action of
the electron-phonon interaction become probable. In
addition, it is this case where two terms in expres-
sion (22) for ω2

2(q) turn out to have approximately
the same magnitude. Therefore, it is necessary to
consider a correction of the fourth order to the po-
larization operator. According to work [4], if this
correction is made allowance for, we obtain

ω2
2(q) = ω2

0(q)
[
1− 4g2/Δ̄(q) + 48g4T/2Δ̄3(q)

]
. (24)

In this new approximation, the frequency ω2(q) van-
ishes at

T = Tc(q) =
[
4g2

0(q)− Δ̄(q)
]
Δ̄2(q)/24g4

0(q) (25)

provided that g0(q) is used instead of g, whereas it
is positive at T > Tc(q). However, frequency (24)
enters the integrand of Eq. (23). The involved integral
over g in Eq. (13) can be considerably simplified. Let
the quantity on the right-hand side of Eq. (25) be
positive only for one mode with the wave vector q0.
Consider the term in Eq. (23) that corresponds to q0.
Let Tc(q0) be substantially larger than the frequency
ω2(q0) calculated according to formula (24) with the
coupling constant g0(q0). Then, at T > Tc(q0), we
obtain

coth
ω2(q0)
T

= 2n(ω2(q0), T ) + 1 ≈ 2T/ω2(q0). (26)

In this case, the integral over g in the corresponding
term in Eq. (23) can be easily calculated. As a result,

at t ≡ T − Tc � Tc � 1
6Δ̄, we obtain

ΔΩ(q0) = −Tc
2

ln
3t
2Δ̄

. (27)

This relation resolves the problem of the thermody-
namic potential peculiarity at the point of PT2, put
forward by L.D. Landau [4]. Together with the re-
sults obtained while considering this peculiarity by
L. Onsager in the framework of the Ising model [12]
and when analyzing this peculiarity in the case of
ferroelectric transition [3], relation (27) allows us to
assert that the logarithmic peculiarity at the point Tc
in the thermodynamic potential is inherent to every
PT2. Since the logarithm in Eq. (27) is negative, the
quantity ΔΩ(q0) increases if T → Tc. This growth be-
comes interrupted owing to the vanishing of the soft-
mode frequency (24) and the appearance of coherent
displacements of ions (i.e. the quantum average dis-
placements of ions). At q0 = 0, those displacements
are uniform over the crystal volume.

If the interaction is weak, so that Δ̄ > 4g2 for all
modes, the expression for ΔΩ contains no diverging
terms, and the others can be easily evaluated suppos-
ing that

ω2
2(q) = ω2

0(q)
[
1− 4g2(q)Δ̄−1(q)

]
. (28)

However, the number of those terms in sum (13) is
tremendous even for a millimeter-sized crystal (of an
order of 1020 in the latter case). Therefore, a sin-
gle singular term of types (19) or (20) can be ob-
served against a huge number of non-singular terms
only provided that the ratio t/Δ̄ is negligibly small.
Of course, changing from the sum in Eq. (23) – which
must be a sum owing to the finiteness of motion of
considered quasiparticles – to the integral, we obtain
a non-diverging thermodynamic potential, which can
be used at temperatures that practically approach Tc
as close as possible, and, hence, the regular expan-
sions of the thermodynamic potential at those tem-
peratures in an order-parameter series according to
Landau’s theory of phase transitions of the second
kind become possible.

4. Thermodynamic Potential
of the System in the Ordered Phase

The method used above cannot be applied to the
calculation of ΔΩ at t < 0, because the coherent
displacements of equilibrium atomic positions in the
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crystal that take place at the PT2 change the crystal
symmetry, with the thermal and quantum-mechanical
fluctuations making the problem even more compli-
cated. However, we can determine the value of ther-
modynamic potential at T = 0 K (when thermal vi-
brations of atoms are absent, and the entropy of the
system equals zero) as the average value of Hamilto-
nian (3) for a crystal state with a deformed lattice.
Taking into account that the electron processes in our
system with a wide energy gap develop within a time
interval of an order of 10−15 s, and the phonon ones
run within a time interval of an order of 10−13 s,
the system state vector can be presented in the adi-
abatic approximation as a product, |U |0〉ψ ≡ |d,ψ〉.
Here, ψ is the state vector for the electron subsys-
tem (for the sake of simplicity, we neglect the spin
variable), and U =

∏
q exp(dqb+q − d∗qbq), where dq

are complex numbers, is the unitary operator of de-
formation that acts on the ground-state vector |0〉 of
the phonon field.

From the theory of quantum-coherent states of
Bose fields [13, 14], it is known that UbqU+ = b′q =
= bq + dq and b′+q = b+q + d∗q. Therefore, the av-
erage value 〈0|U |bq|U |0〉 is equal to the number dq,
because 〈0|bq|0〉 = 0. Of course, 〈0|U |b+q |U |0〉 = d∗q ,
and the average deviation of the equilibrium atomic
position along the normal coordinate of the q-th vi-
bration mode from that in the symmetric configu-
ration with the inversion center is equal to λ̄q =

=
√

1
2Mqω(q)(d∗q + dq), where Mq is the reduced

mass of the indicated vibration mode. Hence, the real
parts of dq characterize a deformation of the crystal
lattice. The transformation of the Hamiltonian H
with the use of the unitary operator U shows that
the state of any quantum-mechanical harmonic oscil-
lator can change owing to either a variation in the
number of oscillation quanta or a displacement of the
equilibrium position characterized by the parameter
dq [13, 14]. The avarage value of total Hamiltonian
(3) in the state |d,ψ〉 can be expressed in the form

H̄ =
2∑

k,σ=1

Eσ(k)〈ψ|a+
σkaσk|ψ〉+

∑
q

{
ω(q)d+

q dq

+
∑

k,σ 6=σ′

√
ω(q)
2N

g0(q)〈ψ|a+
kσak−qσ′ |ψ〉(dq + d+

−q)
}
,

(29)

because the average number of real quanta in the
state |d,ψ〉 equals zero. Since the numbers dq can
be selected infinitesimally small, the harmonic oscil-
lator energy can be changed by any small value by
shifting the equilibrium positions. The actual energy
of the system in the ground state corresponds to the
minimum value of H̄ obtained at varying the state
|d,ψ〉.

For the variation procedure to be convenient, let
us express the complex numbers dq in terms of their
absolute values |dq| and phases ϕq. Equating the
derivative of function (29) with respect to |dq| to zero,
we determine the extremum,

H̄ =
2∑

k,σ=1

Eσ(k)〈ψ|a+
σkaσk|ψ〉 −

∑
q

{ω(q)|dq|2,

|dq| = −
cosϕ(q)√
2Nω(q)

∑
k,σ 6=σ′

g0(q)〈ψ|a+
σkaσk|ψ〉,

(30)

which corresponds to a minimum if cosϕ(q) = −1.
Relations (30) clearly show that the interaction en-
ergy between electrons and a coherent deformation is
negative, being twice as large by the absolute value
in comparison with the deformation energy.

A common practice in the theory of phase transi-
tions under the influence of the electron-phonon inter-
action consists in that the simplest case is considered,
where the strong interaction includes only the inter-
action between electrons and phonons with the mo-
mentum q = 0. For this case, according to Eq. (30),

d0 = (2Nω0(0))−1/2g0

∑
k

〈ψ|a+
σk + aσk|ψ〉. (31)

The wave functions of the electron subsystem in the
case where the interband electron-phonon interaction
accompanied by the transfer of the zero momentum to
phonons takes place should be superpositions of two
Bloch wave functions from different electron bands
with the same momentum depending on the variable
superposition coefficients Cnm (m,n = 1, 2). Then,
introducing the notation Δ(k) = E2(k)− E1(k) and
taking into account that

∑2
m=1 |Cnm|2 = 1, we ob-

tain, instead of relation (30),

|dq| = 2N1/2g0(2ω(0))−1/2|C12|
√

1− |C12|2, (32)

H̄ =
∑
k

E1(k)+|C12|2N(Δ̄−2g2
0)+2Ng2

0|C12|4, (33)
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where Δ̄ = N−1
∑
k Δ(k). Varying H̄ with respect

to the parameter |C12|2, we find that the minimum of
H̄ is attained at |C12|2 = 2g2

0−Δ̄

4g2
0

and |C11|2 = 2g2
0+Δ̄

4g2
0

.
The energy minimum, i.e. the energy of the system
in the ground state E0, is equal to

E0 =
∑
k

{
E1(k)− (2g2

0 − Δ̄)2

8g2
0

}
=
∑
k

E1(k) + ΔE0

(34)

at T = 0 K, where ΔE0 is the interaction-induced
addition to the ground-state energy. According to
Eq. (32), the energy minimum is related to the value

d0 = N1/2

√
4g4

0 − Δ̄2

8ω(0)g2
0

. (35)

For the ground state of the system with energy (34)
to be realized, the condition of strong coupling,

2g2
0 > Δ̄, (36)

must be obeyed, under which the quantity |C12|2 is
positive, indeed.

If we assume, by analogy with work [8], that the
electron spin can have two possible orientations in
every state of the valence and conduction bands, con-
dition (36) should be simply substituted by the con-
dition 4g2

0 > Δ̄. In such a manner, the method of
varying the states in the electron and phonon sub-
systems used by us in the case of a strong interband
electron-phonon coupling allowed a relation between
the lattice deformation parameter (this is value (35)
of the parameter d0) at T → 0 K and the modification
of the electron distribution function in a unit cell ow-
ing to the entanglement between the electron states in
the conduction and valence bands to be established.

Moreover, the calculated ground-state energy
(Eq. (34)) shows that, due to the interaction between
a deformation and electrons, every sublevel in the
valence band drops by the value ΔE = − (2g2

0−Δ̄)2

8g2
0

.
The corresponding magnitude turns out of an order
of 10−4 eV at Tc/Δ̄ ≈ 0.01 and Tc = 400 K, being an
extreme (at T = 0 K) addition to the thermodynamic
potential of the free electron and phonon interaction
fields.

At T = 0 K, the entropy equals zero, and the ther-
modynamic potential in H̄ equals E0. Therefore, be-
yond the Ginzburg region at T < Tc, expression (35)

for the average energy can be regarded as the depen-
dence of the thermodynamic potential of the whole
system on the order parameter |C12| in the Landau
theory for PT2. This is the more so because, accord-
ing to Eq. (34), in our model of the displacement-type
phase transition, the parameter |C12|2 characterizes
the magnitude of equilibrium position displacements
along the corresponding normal coordinate. There-
fore, according to the Landau theory, the expansion
of the thermodynamic potential in our model beyond
the Ginzburg region in the interval T < Td has the
form

Ω =
∑
k

E1(k) + α(T − Tc)|C12|2 + 2Ng2
0|C12|4.

Hence, at T = 0 K, we obtain α = −N
Tc

(Δ̄− 2g2
0). In

the situation with “non-fixed” spins, this formula for
the determination of the parameter α is substituted
by the following one:

α = −N
Tc

(Δ̄− 4g2
0). (37)

Relation (37) allows one, when knowing the experi-
mentally found coefficient α of the Landau theory and
the parameter Δ̄, to determine the electron-phonon
interaction constant ḡ0 and compare it with the cor-
responding estimates.

5. Conclusion

Hence, PT2 associated with the interband electron-
phonon interaction stems from a logarithmic singular-
ity of the thermodynamic potential in a small vicin-
ity of the transition point Tc. As a result, the new
phase with nonzero displacements of the equilibrium
positions of ions turns out thermodynamically more
beneficial. It can be demonstrated [3, 8] that just
the interaction of electrons with those displacements
makes the crystal energy lower.

It is of importance that the possible lattice vibra-
tion modes compose an almost continuous spectrum
in any crystal, even in a micro-sized one. Therefore,
the assumption that the right-hand side of equality
(25) is positive only for one mode with the wave vec-
tor q0 is doubtful. If the mode spectrum is con-
tinuous, and if this condition is satisfied for a cer-
tain q = q0, it must also be satisfied for the wave
vectors q in some vicinity of q0. Let the quantity
χ(q) ≡ 4g2(q)− Δ̄(q) possess a maximum at q = q0.
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Its expansion in the variable |q− q0| in a vicinity of
the point q = q0 looks like χ(q) ≡ α − β|q − q0|2,
where α = 4g2(q0) − Δ̄(q0), and β can depend on
the direction of the vector q. If β weakly depends on
the q-direction, the density of active mode numbers
in the interval of positive χ-values tends to infinity at
χ→ α. Therefore, the frequencies of a large number
of active vibration modes vanish in a nearest vicin-
ity of Tc(q0), whereas the frequencies of other ac-
tive modes will vanish at lower temperatures, which
follows from Eq. (25). As was shown in work [8],
the frequency of every soft mode, after having passed
through the zero value at the corresponding tempera-
ture Tc, grows owing to the interaction with emerging
coherent displacements of atoms in the crystal lat-
tice in the temperature interval T < Tc. Therefore,
the temperature behavior of the frequencies of active
modes results in a change of their dispersion, when
the temperature varies in a vicinity of Tc(q0). Since
the constant of the electron coupling with transverse
acoustic phonons is maximal at q ≈ π/a, i.e. near the
first Brillouin zone boundary, the magnitude of q0 is
also of the order of π/a.

According to the theory expounded above, the vari-
ation in the dispersion of acoustic vibration frequen-
cies at the temperature change can be observed ex-
perimentally if the macrostates are quasiequilibrium
at every temperature, which is quite illusive. It is
so because the thermodynamic potential logarithmi-
cally diverges if some frequencies of active modes
become zero. At the same time, the zeroing of a
certain acoustic mode frequency means that the re-
laxation time for the displacements of equilibrium
atomic positions in the crystal lattice along the nor-
mal coordinate of this mode becomes infinite. There-
fore, the corresponding state of crystal lattice is not
quasiequilibrium. All that gives rise to a situation
where a metastable coherent displacement along the
normal coordinate of q0-mode, which emerged at
T > Tc(q0) owing to fluctuations, can survive, by
very slowly relaxing, as the temperature decreases be-
low T < Tc(q0), and can become a stable structure
(a domain). The frequency of vibrations along the in-
dicated normal coordinate in this structure does not
vanish at the temperature Tc(q0). Therefore, the ze-
roing of some mode frequencies may probably turn
out unobservable at all.

The changes in the dispersion of acoustic phonons
at the phase transition of the second kind, which was
predicted by us, can be detected experimentally using
the method of electron scattering by phonons.
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ПРО РОЛЬ ФЛУКТУАЦIЙ КОГЕРЕНТНИХ
ЗСУВIВ ПОЛОЖЕННЯ РIВНОВАГИ АТОМIВ
ПРИ ФАЗОВИХ ПЕРЕХОДАХ ДРУГОГО РОДУ

Р е з ю м е

Теоретично дослiджено фазовi переходи другого роду в
фероiках типу сегнетоеластики. Розглянуто перехiд при
зниженнi температури в кристалах з широкою забороне-
ною зоною, зумовлений взаємодiєю електронiв з однiєю гiл-
кою поперечних акустичних коливань кристалiчної ґратки.
Розраховано вершинну частину цiєї взаємодiї з поперечни-
ми коливаннями. Обговорено особливостi термодинамiчно-
го потенцiалу в точцi переходу i температурну залежнiсть
дисперсiї акустичних фононiв при переходi за квазiрiвно-
важними станами. Показано, що стабiлiзацiя електронної
пiдсистеми структурних флуктуацiй у високосиметричнiй
фазi i зменшення частот м’яких мод роблять такi флуктуа-
цiї метастабiльними.
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