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The pseudospin-electron model in the case of infinite on-site electron repulsion is investi-
gated. The electron energy spectrum is calculated within the framework of the dynamical mean
field theory (DMFT), and the alloy analogy approximation is developed. The effect of the
pseudospin-electron interaction, local asymmetry field, and tunneling-like level splitting on the
existence and the number of electron subbands is investigated. The relation of the pseudospin-
electron model to the problem of energy spectrum of boson-fermion mixtures in optical lattices
is discussed.
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1. Introduction

The pseudospin-electron model (PEM) is one of the
models, which are used in the physics of strongly cor-
related electron systems in recent years. Application
of the model to high-temperature superconductors al-
lows one, for example, to describe the thermodynam-
ics of an anharmonic oxygen ion subsystem and to
explain the occurrence of inhomogeneous states and
the bistability phenomena ([1], see also [2]). In this
model, one considers the dynamics of locally anhar-
monic structure elements (using the pseudospin vari-
ables to describe them), interaction between pseu-
dospins and electrons, and the asymmetry of local
anharmonic potential wells. The electron subsystem
is described by the Hubbard Hamiltonian.

In [3], a pseudospin-electron model of ion intercala-
tion in crystals was formulated; the pseudospin repre-
sentation is also used in the description of ionic con-
ductors [4, 5]. The thermodynamics of the model has
been investigated in the mean-field approximation; it
was shown that a new phase with 〈Sx〉 6= 0 appears
due to the ion hopping between sites. This new phase
is an analogue of the superfluid phase in the systems
of hard-core bosons or the superionic phase in ionic
(protonic) conductors.

The pseudospin-electron model in its general form
has also a direct relation to the ultra-cold boson-
fermion mixtures in optical lattices, which are the
object of an intense theoretical investigation during
last years [6–10]. In the hard-core boson limit (that
corresponds to the large on-site repulsion between
Bose atoms), when the pseudospin representation is
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used, one has to do with a pseudospin-fermion ana-
logue of PEM [11]. The transverse field exists here in
the phase with a Bose–Einstein (BE) condensate and
is proportional to the order parameter 〈Sx〉, while
the longitudinal field plays the role of a chemical po-
tential of bosons. In this case, the investigation of
the electron spectrum within PEM gives, at the same
time, an information about the fermion spectrum of
the boson-fermion system with nb ≤ 1 in the men-
tioned phase.

Investigations of the thermodynamics and the
dynamics of PEM were performed mostly within
the Hartree–Fock-type approximation (in the weak
pseudospin-electron coupling case) or the general-
ized random phase approximation (at the strong cou-
pling); the problem is reviewed and discussed in
[2]. The conditions of the appearance of modulated
phases, phase transitions between different uniform
phases, and phase separation were established.

In the DMFT approach, the Hamiltonian with
strong correlations is taken in the infinite space di-
mension (d → ∞) limit; this leads to a reformula-
tion of the problem and the transition to the solution
of the single-site problem described by an effective
Hamiltonian [12–14]. Only for simplest cases such as
mobile particles in the Falicov–Kimball model, one
can solve analytically this problem. An exact so-
lution exists also for the pseudospin-electron model
without transverse field [15]. There are also some ap-
proximate analytical approaches such as: Hubbard-I,
Hubbard-III, alloy analogy (AA), modified alloy anal-
ogy (MAA) etc., see [16, 17].

In this work, the alloy analogy approximation for
the single-site problem is used within the pseudospin-
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electron model. Our problem is solved in the limit
of infinite value of single-site electron interaction.
The previous consideration of this problem in the
Hubbard-I approximation [18] revealed a complicated
structure of the spectrum and the presence of some
number of subbands. In [19], the electron energy
spectrum of the pseudospin-electron model allowing
the interaction of near-energy subbands was consid-
ered. The effective single-site problem was solved
within the auxiliary fermion field approach with the
help of the procedure of different-time decoupling of
higher order Green’s functions [16].

Our main task is to investigate a reconstruction of
the electron energy spectrum and to describe the ef-
fect of band splitting at a change of the longitudinal
and transverse fields and the pseudospin-electron in-
teraction constant.

2. Hamiltonian of the Model and its
Transformation

The Hamiltonian of the pseudospin-electron model is

H =
∑
i

Hi +
∑

<i,j>,σ

tijc
+
iσcjσ, (1)

where Ω in the single-site part of the Hamiltonian is
the tunneling-like level splitting, g is the pseudospin-
electron interaction constant, and h is the asymmetry
of the local anharmonic potential:

Hi = −µ(ni,↑+ni,↓)+g(ni,↑+ni,↓)Szi −ΩSxi −hSzi . (2)

The second term in (1) describes the electron site-to-
site hopping (between nearest neighbours).

The term Un↑n↓ is not included, as we investi-
gate our problem in the limit of the infinite poten-
tial of single-site electron interaction U → ∞, where
all states with double cite occupation are absent.
The single-site Hamiltonian is considered as the zero-
order one with respect to the electron transfer. It
is useful to introduce the standard single-site basis
|R〉 = |ni,↑, ni,↓, Szi 〉, with six eigenvectors [18]:

|1〉 =
∣∣∣∣0, 0, 12

〉
, |3〉 =

∣∣∣∣0, 1, 12
〉
, |4〉 =

∣∣∣∣1, 0, 12
〉
,

|1̃〉 =
∣∣∣∣0, 0,−1

2

〉
, |3̃〉 =

∣∣∣∣0, 1,−1
2

〉
, |4̃〉 =

∣∣∣∣1, 0,−1
2

〉
.

(3)

Using Hubbard X-operators that act in the space
of such eigenvectors, we can write down the electron

annihilation (creation) operators and the pseudospin
operators (in the limit, when the state |2〉 = |1, 1,± 1

2 〉
is unoccupied) as follows: [18]

ci,↑ = X14
i + X1̃4̃

i ,

ci,↓ = X13
i + X1̃3̃

i (4)

Then, the single-site part of the Hamiltonian can
be expressed by means ofX-operators in the following
way:

Hi = (−µ+
g

2
− h

2
)(X33

i + X44
i )+

+(−µ− g

2
+
h

2
)(X3̃3̃

i + X4̃4̃
i ) +

h

2
(X1̃1̃

i −X11
i )+

+
Ω
2

(X11̃
i + X1̃1

i + X33̃
i + X3̃3

i + X4̃4
i + X44̃

i ). (5)

This Hamiltonian is diagonal in the case Ω = 0. But
if the tunneling splitting is non-zero, we have to use
a transformation(
R

R̃

)
=
(

cosφr sinφr
− sinφr cosφr

)(
r

r̃

)
(6)

to diagonalize it. Here,

cos(2φr) =
nrg − h√

(nrg − h)2 + Ω2
,

n1 = 0, n3 = n4 = 1. (7)

In that way, we have

H =
∑
i,r

εrX
rr
i +

∑
<i,j>,σ

tijc
+
iσcjσ,

ε1,1̃ = ±1
2

√
h2 + Ω2,

ε3,3̃ = ε4,4̃ = −µ± 1
2

√
(g − h)2 + Ω2. (8)

Here, making transformation (6), we obtain

ci,↑ = cosφ41(X14
i +X 1̃4̃

i ) + sinφ41(X14̃
i −X 1̃4

i ),

ci,↓ = cosφ31(X13
i +X 1̃3̃

i ) + sinφ31(X13̃
i −X 1̃3

i ),

cosφ41 = cos (φ4 − φ1), cosφ31 = cos (φ3 − φ1),

sinφ41 = sin (φ4 − φ1), sinφ31 = sin (φ3 − φ1). (9)

where X-operators act on the new basis.
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3. Dynamical Mean Field Theory Approach

The transition to the d = ∞ limit in the DMFT ap-
proach is accompanied by the scaling of the electron
transfer parameter:

tij →
tij√
d
. (10)

In particular, the self-energy part of electron Green’s
function becomes purely local [13, 14]:

Σij,σ(ω) = Σσδij , d =∞. (11)

The Fourier-transform Σij,σ(ω) is, hence,
momentum-independent:

Σσ(k, ω) = Σσ(ω). (12)

Electron Green’s function in the (k, ω) representation

Gσk(ω) =
∑
i−j

eik(Ri−Rj)Gij,σ(ω) (13)

can be expressed as

Gσk(ω) =
1

[Ξσ(ω)]−1 − tk
, (14)

where Ξσ(ω) is the part, which is irreducible (in the
diagrammatic representation) according to Larkin.
To calculate the Ξσ(ω) function, the effective single-
site problem is used. The transition to this problem
corresponds to the replacement

e−βH → e−βHeff = e−βH0 T exp
{
−

β∫
0

dτ×

×
β∫

0

dτ
′∑
σ

Jσ(τ − τ
′
)a+
σ (τ)aσ(τ

′
)
}
≡ e−βH0 σ̃(β),

(15)
where

H0 = Hi, (16)

and Jσ(τ−τ
′
) is an effective time-dependent field (co-

herent potential) that is determined self-consistently
from the condition that the same self-energy part
Ξσ(ω) determines the lattice function Gσk(ω), as well
as the Green’s function G(a)

σ (ω) of the effective single-
site problem:

G(a)
σ (ω) =

1
[Ξσ(ω)]−1 − Jσ(ω)

. (17)

In this case, we have

G(a)
σ = Gii,σ(ω) =

1
N

∑
k

Gσk(ω). (18)

The system of simultaneous equations (14), (17), and
(18) becomes closed, when it is supplemented with
the functional dependence

G(a)
σ (ω) = f([Jσ(ω)]), (19)

which is obtained as a result of solving the effec-
tive single-site problem with the statistical operator
exp(−βHeff).

4. Reformulation of Wick’s Theorem
for the Single-Site Problem

To find out relation (19), let us calculate electron
Green’s function using an expansion in powers of the
coherent potential Jσ(ω). In the zero approximation:

−〈TXqp(τ)Xpq(τ ′)〉0 = −gqp0 (τ − τ ′)〈Xqq +Xpp〉0.
(20)

In the frequency representation: gqp0 (ωn) = −(iωn−
−λpq)−1, λpq = εp − εq.

Using Wick’s theorem for the Hubbard operators
[20], we can see that

X41(τ ′)X
�

14(τ) = −g14
0 (τ − τ ′)(X11 +X44)τ ′

X 4̃1̃(τ ′)X
�

14(τ) = 0

X 4̃1(τ ′)X
�

14(τ) = −g14
0 (τ − τ ′)X 4̃4(τ ′)

X41̃(τ ′)X
�

14(τ) = −g14
0 (τ − τ ′)X11̃(τ ′)

As a result of such a procedure, the Bose-type X-
operators appear.

The alloy analogy approximation (see [16, 17])
means the neglect of all non-diagonal Hubbard op-
erators in Wick’s pairings. Such an approximation
leads to the next result:

c+↑ (τ ′)X
�

14(τ) = −g14
0 (τ − τ ′)(X11 +X44)τ ′ cosφ41,

c+↓ (τ ′)X
�

14(τ) = 0,

c+↑ (τ ′)X
�

1̃4̃(τ) = −g1̃4̃
0 (τ − τ ′)(X 1̃1̃ +X 4̃4̃)τ ′ cosφ41,
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c+↓ (τ ′)X
�

1̃4̃(τ) = 0,

c+↑ (τ ′)X
�

1̃4(τ) = g1̃4
0 (τ − τ ′)(X 1̃1̃ +X44)τ ′ sinφ41,

c+↓ (τ ′)X
�

1̃4(τ) = 0,

c+↑ (τ ′)X
�

14̃(τ) = −g14̃
0 (τ − τ ′)(X11 +X 4̃4̃)τ ′ sinφ41,

c+↓ (τ ′)X
�

14̃(τ) = 0. (21)

Using (9), we have

c+↑ (τ ′)c
�

↑(τ) = −g14
0 (τ − τ ′)(X11 +X44)τ ′ cos2 φ41−

−g1̃4̃
0 (τ − τ ′)(X 1̃1̃ +X 4̃4̃)τ ′ cos2 φ41−

−g1̃4
0 (τ − τ ′)(X 1̃1̃ +X44)τ ′ sin2 φ41−

−g14̃
0 (τ − τ ′)(X11 +X 4̃4̃)τ ′ sin2 φ41. (22)

This result shows us that, in the case of the alloy
analogy approximation the pairing of Fermi-operators
decomposes into the sum of terms that are the pro-
jections on single-site states (because of the action of
Xrr operators). This is the main difference from the
case of ideal fermions, where we have Green’s func-
tions as a result of the pairing.

Now, we can rewrite

c+↑ (τ ′)c
�

↑(τ) =

−[g14
0 (τ−τ ′) cos2 φ41+g14̃

0 (τ−τ ′) sinφ41]X11(τ ′)−

−[g1̃4̃
0 (τ−τ ′) cos2 φ41+g1̃4

0 (τ−τ ′)(sinφ41]X 1̃1̃(τ ′)−

−[g14
0 (τ−τ ′) cos2 φ41+g1̃4

0 (τ−τ ′) sinφ41]X44(τ ′)−

−[g1̃4̃
0 (τ−τ ′) cos2 φ41+g14̃4

0 (τ−τ ′) sinφ41]X 4̃4̃(τ ′) ≡

−g(1)
0↑ X

11(τ ′)− g(1̃)
0↑ X

1̃1̃(τ ′)− g(4)
0↑ X

44(τ ′)−

−g(4̃)
0↑ X

4̃4̃(τ ′) = −
∑
r

g
(r)
0↑ X

rr(τ ′). (23)

5. Single-Site Green’s Function

In general, electron Green’s function of the effective
one-site problem reads

Υσ(τ − τ ′) = −〈Tcσ(τ)c
+
σ (τ ′)e−βHeff 〉
〈e−βHeff 〉

=

= −〈Tcσ(τ)c
+
σ (τ ′)σ̃(β)〉0
〈σ̃(β)〉0

. (24)

The numerator and denominator in this expression
will be calculated separately using an expansion in
terms of the coherent potential Jσ(τ−τ ′). As the first
step, we illustrate the second order in this expansion
with four operators of creation and annihilation of
electrons:

〈Tc↑(τ)c+↑ (τ ′)c+↑ (τ1)c↑(τ2)〉0 =

= 〈Tc+↑ (τ)c
�

↑(τ)c+↑ (τ1)c
�

↑(τ2)〉0+

+〈Tc+↑ (τ1)c
�

↑(τ)c+↑ (τ ′)c
�

↑(τ2)〉0 =

= −
∑
r

g
(r)
0↑ (τ − τ ′)g(r)

0↑ (τ2 − τ1)〈Xrr〉0+

+
∑
r

g
(r)
0↑ (τ − τ1)g(r)

0↑ (τ2 − τ ′)〈Xrr〉0 (25)

and

〈Tc↑(τ)c+↑ (τ ′)c+↓ (τ1)c↓(τ2)〉0 =

= −〈Tc+↑ (τ ′)c
�

↑(τ)c+↓ (τ1)c
�

↓(τ2)〉0 =

= −
∑
r

g
(r)
0↑ (τ − τ ′)g(r)

0↓ (τ2 − τ1)〈Xrr〉0. (26)

Here, the pairing of Fermi-operators is performed ac-
cording to (25). The diagonal X-operators, which
appear during this procedure, we multiply, by using
the rule XrrXpp = Xrrδrp. As a result, only the
averages 〈Xrr〉0 are present.

We can also consider the third order in our expan-
sion with six operators of creation and annihilation
of electrons:

〈Tc↑(τ)c+↑ (τ ′)c+↑ (τ1)c↑(τ2)c+↑ (τ3)c↑(τ4)〉0 =

= −〈Tc+↑ (τ ′)c
�

↑(τ)c+↑ (τ1)c↑(τ2)c+↑ (τ3)c↑(τ4)〉0+

+〈Tc+↑ (τ ′)c+↑ (τ1)c
�

↑(τ)c↑(τ2)c+↑ (τ3)c↑(τ4)〉0+

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 1 71



I.V. Stasyuk, V.O. Krasnov

+〈Tc+↑ (τ ′)c+↑ (τ1)c↑(τ2)〉0c+↑ (τ3)c
�

↑(τ)c↑(τ4)〉0 =

= −〈Tc+↑ (τ ′)c
�

↑(τ)c+↑ (τ1)c
�

↑(τ2)c+↑ (τ3)c
�

↑(τ4)〉0+

+〈Tc+↑ (τ ′)c
�

↑(τ)c+↑ (τ1)c
�

↑(τ4)c+↑ (τ3)c
�

↑(τ2)〉0+

c↑(τ2)c+↑ (τ1)c
�

↑(τ)c+↑ (τ3)c
�

↑(τ4)〉0−

−〈Tc+↑ (τ ′)c
�

↑(τ4)c+↑ (τ1)c
�

↑(τ)c+↑ (τ3)c
�

↑(τ2)〉0+

+〈Tc+↑ (τ ′)c
�

↑(τ4)c+↑ (τ1)c
�

↑(τ2)c+↑ (τ3)c
�

↑(τ)〉0−

−〈Tc+↑ (τ ′)c
�

↑(τ2)c+↑ (τ3)c
�

↑(τ)c+↑ (τ1)c
�

↑(τ4)〉0. (27)

Finally,

〈Tc↑(τ)c+↑ (τ ′)c+↑ (τ1)c↑(τ2)c+↑ (τ3)c↑(τ4)〉0 =

=
∑
r

g
(r)
0↑ (τ − τ ′)g(r)

0↑ (τ2 − τ1)g(r)
0↑ (τ4 − τ3)〈Xrr〉0−

−
∑
r

g
(r)
0↑ (τ − τ ′)g(r)

0↑ (τ4 − τ1)g(r)
0↑ (τ2 − τ3)〈Xrr〉0−

−
∑
r

g
(r)
0↑ (τ2 − τ ′)g(r)

0↑ (τ − τ1)g(r)
0↑ (τ4 − τ3)〈Xrr〉0+

+
∑
r

g
(r)
0↑ (τ4 − τ ′)g(r)

0↑ (τ − τ1)g(r)
0↑ (τ2 − τ3)〈Xrr〉0−

−
∑
r

g
(r)
0↑ (τ4 − τ ′)g(r)

0↑ (τ2 − τ1)g(r)
0↑ (τ − τ3)〈Xrr〉0+

+
∑
r

g
(r)
0↑ (τ2−τ ′)g(r)

0↑ (τ−τ3)g(r)
0↑ (τ4−τ1)〈Xrr〉0. (28)

The similar procedure is also actual in the case of
higher order terms. Using the diagrammatic series,
we can separate the connected and disconnected “vac-
uum” (without external vertices) parts of diagrams.
The former form a geometric progression in the fre-
quency representation. The latter look like closed
rings of different lengths (created by unperturbed
Green’s function and coherent potential lines) and
give exponential contributions in subspaces |r〉 after
the summation of infinite series.

So, the numerator in Green’s function
〈Tc↑(τ)c+↑ (τ ′)〉num reads

〈Tc↑(τ)c+↑ (τ ′)〉num =

=
∑
r

[
g
(r)
0↑ (ωn)− g(r)

0↑ (ωn)J↑(ωn)g
(r)
0↑ (ωn)+

+g(r)
0↑ (ωn)J↑(ωn)g

(r)
0↑ (ωn)J↑(ωn)g

(r)
0↑ (ωn)−

− . . .
]
〈Xrr〉0eQr =

∑
r

g
(r)
0↑ (ωn)

1 + g
(r)
0↑ (ωn)J↑(ωn)

〈Xrr〉0eQr .

(29)

Here, Qr in the analytical form is

Qr =
∑
ωn

∑
σ

g
(r)
0σ (ωn)Jσ(ωn)−

−1
2

[∑
ωn

∑
σ

g
(r)
0σ (ωn)Jσ(ωn)

]2
+

+
1
3

[∑
ωn

∑
σ

g
(r)
0σ (ωn)Jσ(ωn)

]3
− · · · =

=
∑
ωn

∑
σ

ln(1 + g
(r)
0σ (ωn)Jσ(ωn)). (30)

In particular,

Q1,1̃ =
∑
ωn

ln(1 + g
(1,1̃)
0↑ (ωn)J↑(ωn))+

+
∑
ωn

ln(1 + g
(1,1̃)
0↓ (ωn)J↓(ωn)),

Q3,3̃ =
∑
ωn

ln(1 + g
(3,3̃)
0↓ (ωn)J↓(ωn)),

Q4,4̃ =
∑
ωn

ln(1 + g
(4,4̃)
0↑ (ωn)J↑(ωn)). (31)

The next step is to calculate the denominator

〈σ̃(β)〉0 = 1−
β∫

0

dτ1

β∫
0

dτ2
∑
σ

Jσ(τ1 − τ2)×

×〈Tc+σ (τ1)cσ(τ2)〉0 +
1
2!

β∫
0

dτ1 . . .

β∫
0

dτ4×

×
∑
σ

∑
σ′

Jσ(τ1 − τ2)Jσ′(τ3 − τ4)×

×〈Tc+σ (τ1)cσ(τ2)c+σ′(τ3)cσ′(τ4)〉0 − . . . (32)

In the diagrammatic representation, this series is ex-
pressed through the set of “vacuum” diagrams. The
final result could be expressed in terms of contribu-
tions Qr of the above-mentioned ring diagrams.
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Fig. 1. Dependence of electron band boundaries on the asym-
metry of the local anharmonic potential h (g = 0.5, Ω = 0.1,
T = 0.02, µ = 0, W = 0.5). Hereinafter, dashed lines repre-
sent the energies of the transitions between single-site electron
levelspq = λpq = εp − εq without hopping

In such a case, we have

〈σ(β)〉0 = 1 +
∑
r

[
Qr +

1
2!
Q2
r +

1
3!
Q3
r+

+ . . .
]
〈Xrr〉0 =

∑
r

eQr 〈Xrr〉0. (33)

Finally, our analytical result is

〈Tc+σ cσ〉 =

∑
r

g
(r)
0σ (ωn)

1+g
(r)
0σ (ωn)Jσ(ωn)

〈Xrr〉0eQr∑
p
eQp〈Xpp〉0

, (34)

where σ =↑ or ↓.

6. Electron Energy Spectrum

Now, we have the closed system of equations to cal-
culate Green’s function G(a)

↑ (ω) and the coherent po-
tential J↑(ω):

Gσk(ω) =
1

[Ξσ(ω)]−1 − tk
,

G(a)
σ (ω) =

1
[Ξσ(ω)]−1 − Jσ(ω)

=
1
N

∑
k

Gσk(ω),

G(a)
σ (ω) =

∑
r

g
(r)
0σ (ωn)

1+g
(r)
0σ (ωn)Jσ(ωn)

〈Xrr〉0eQr∑
p
eQp〈Xpp〉0

,

Qr =
∑
ωn

∑
σ

ln(1 + g
(r)
0σ (ωn)Jσ(ωn)). (35)

Fig. 2. Dependence of electron band boundaries on the asym-
metry of the local anharmonic potential h (g = 0.5, Ω = 0.3,
T = 0.02, µ = 0, W = 0.5)

Fig. 3. Dependence of electron band boundaries on the asym-
metry of the local anharmonic potential h (g = 1.0, Ω = 0.1,
T = 0.02, µ = 0, W = 0.5)

Here, to calculate 〈Xrr〉0, we use the iterative pro-
cess: the next 〈Xrr〉0 value depends on the previous
〈Xrr〉′0 one as

〈Xrr〉0 =
〈Xrr〉′0eQr∑

p=1,1̃,4,4̃

〈Xpp〉0eQp
.

The initial averages are taken from the Boltzmann
distribution 〈Xrr〉0 = e−βεr∑

p
e−βεp

.

To sum over k, we use the semielliptic density of
states ρ0(t) = 2

πW 2

√
W 2 − t2. In this case, Jσ(ω) =

W 2

4 G
(a)
σ (ω) [12], and our final equation for the coher-
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Fig. 4. Dependence of electron band boundaries on the asym-
metry of the local anharmonic potential h (g = 1.0, Ω = 0.3,
T = 0.02, µ = 0, W = 0.5)

Fig. 5. Dependence of electron band boundaries on the
pseudospin-electron interaction constant g (h = 0.1, Ω = 0.1,
T = 0.02, µ = 0, W = 0.5)

ent potential Jσ(ω) is as follows:

Jσ(ωn) =
W 2

4

∑
r

g
(r)
0σ (ωn)

1+g
(r)
0σ (ωn)Jσ(ωn)

〈Xrr〉0eQr∑
p
eQp〈Xpp〉0

. (36)

In a usual way, we perform the analytical continu-
ation on the real axis (iωn → ω − iδ), and only the
solutions with =Jσ(ω) > 0 must be considered.

Electron band boundaries are determined from the
condition =Jσ(ω) → 0. Their dependences on the
asymmetry of the local anharmonic potential are
shown in Figs. 1–4.

One can see the effect of the tunneling-like level
splitting Ω on the width of existing bands (we can

Fig. 6. Dependence of electron band boundaries on the
pseudospin-electron interaction constant g (h = 1.0, Ω = 0.3,
T = 0.02, µ = 0, W = 0.5)

Fig. 7. Dependence of electron band boundaries on the
tunneling-like level splitting Ω (g = 1.0, h = 0.1, T = 0.02,
µ = 0, W = 0.5)

compare the plots with constant g = 0.5 and to see
that the increase of Ω from 0.1 to 0.3 leads to a not-
icable broadening of bands).

One can see also how the pseudospin-electron in-
teraction g leads to the appearance of two additional
bands, when h ≈ g

2 , and one band otherwise (this
can be seen with comparing the plots with different
g, but with the same Ω). The dependences of elec-
tron band boundaries on the pseudospin-electron in-
teraction constant g are shown in Figs. 5–6. One can
see that there exists some critical g ≈ W, at which
the additional gap appears in the spectrum. This
result is similar to the Mott transition type recon-
struction obtained in [15] for the pseudospin-electron
model without tunneling-like level splitting.
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Fig. 8. Electron density of states at different values of the pseudospin-electron interaction constant g (T = 0.02, µ = 0, W = 0.5)

Similarly to the dependence of the local anhar-
monic potential on the asymmetry, we can see also
how an increase of Ω leads to the band width growth.
At g ≈ 2h, the additional bands appear in the
spectrum.

The dependences of electron band boundaries on
the tunneling-like level splitting Ω are shown in Fig. 7.
Here, one can see the presence of two critical val-
ues Ω ≈ 0.3 (band splitting) and Ω ≈ 0.6 (band
emerging).

The densities of states ρσ(ω) = 1
π ImG

(a)
σ ω − i0+)

for different values of the pseudospin-electron inter-
action constant g are shown in Fig. 8. Initially, we
observe the splitting of one band at g ≈ W . After-
wards at g ≈ 2h, two central bands emerge, and the
further increase of g gives four bands in the electron
spectrum.

7. Conclusions

1) The electron energy spectrum of the pseudospin-
electron model is considered. For this purpose, the
dynamical mean field method is applied. The effective
single-site problem is solved within an original ap-

proach based on the use of a generalization of Wick’s
theorem. The alloy analogy approximation is used.
2) Electron transitions with a possibility of the si-
multaneous flip-over of the pseudospin (or at its un-
changed orientation) manifest themselves in a com-
plication of the electron spectrum which consists in
the appearance of additional subbands. The effects
of bond splitting and creation of new gaps take place,
depending on the longitudinal field h, interaction con-
stant g, and transverse field Ω values (Figs. 1–7).
3) The rearrangement of the spectrum, similarly to
the Mott transition, occurs not only due to the on-site
peudospin-electron interaction, but also under influ-
ence of the transverse field that intertangles the states
with different pseudospin orientations.
4) The obtained results show that, in the real sys-
tem, which exhibits the local anharmonicity of lattice
vibrations, the metal-insulator transition due to the
short-ranged electron correlation is influenced by the
anharmonic subsystem. Changing the parameters of
local anharmonicity (e.g., the potential well shape),
one can affect the conditions of the appearance of a
a gap.
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5) The obtained results (Fig. 7) point out, in par-
ticular, that the additional gaps can appear in the
fermion band spectrum at the increase of Ω. We have
considered the case where, at Ω = 0, the spectrum is
already split. The problem in such a limit is reduced
to the Falikov–Kimball model with a Mott gap at the
chosen values of model parameters. In the case where
PEM is applied to the boson-fermion mixtures on a
lattice, the increase of the Ω parameter corresponds
to the deepening into the phase with BE-condensate
(Ω ∼

∑
tbij〈Sxj 〉). Additional gaps could appear at

certain critical values of the order parameter 〈Sx〉.
This problem (which now attracts an attention [21])
requires, however, a more detailed investigation. In
the present study, based on the standard version of
PEM, the boson transfer is taken into account in the
mean field approximation. At the same time, the con-
tributions of the collective pseudospin dynamics to
the fermion spectrum can be essential.
6) It should be mentioned that we use an ap-
proach based on the formalism of X-operators.
Such a scheme gives a possibility to consider, in a
unified way, the creation of composite excitations
(fermion+boson; fermion+boson hole) and their con-
tributions to the total spectral density.
7) The more complete analysis of a reconstruction of
the energy spectrum will be a subject of our subse-
quent consideration. It is referred, in particular, to
the region of half-filling (µ ∼ 0, h ∼ g

2 ), where the
instability with respect to the appearance of a mod-
ulated (CDW-like) phase takes place in PEM at low
enough temperatures. In such a case, the additional
complication of the spectrum will arise as a result.
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ЕНЕРГЕТИЧНИЙ СПЕКТР
ПСЕВДОСПIН-ЕЛЕКТРОННОЇ МОДЕЛI
В МЕТОДI ДИНАМIЧНОГО СЕРЕДНЬОГО ПОЛЯ

Р е з ю м е

Дослiджено псевдоспiн-електронну модель у випадку не-
скiнченної взаємодiї вiдштовхування електронiв на ву-
злi. Електронний енергетичний спектр моделi розрахова-
но в рамках методу динамiчного середнього поля (ДСП)
та наближення сплаву. Дослiджено вплив псевдоспiн-
електронної взаємодiї, локального поля асиметрiї та ту-
нельного розщеплення рiвнiв на iснування та кiлькiсть
електронних пiдзон. Обговорено можливiсть застосування
псевдоспiн-електронної моделi до розрахунку енергетично-
го спектра бозон-фермiонних сумiшей в оптичних ґратках.
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