ОПТИКА, ЛАЗЕРИ, КВАНТОВА ЕЛЕКТРОНІКА

В.М. КАДАН,¹ І.З. ІНДУТНИЙ,² В.А. ДАНЬКО,² П.Є. ШЕПЕЛЯВИЙ,² І.М. ДМИТРУК,³ П.І. КОРЕНЮК,¹ І.В. БЛОНСЬКИЙ¹

¹Інститут фізики НАН України

(46, Просп. науки, Kuïв 03650; e-mail: blon@iop.kiev.ua)

²Інститут фізики напівпровідників НАН України ім. В.Є. Лашкарьова (41, Просп. науки, Київ 03680)

³Київський національний університет ім. Тараса Шевченка (2, Просп. академіка Глушкова, Київ 03022)

ВПЛИВ ПАСТКОВИХ СТАНІВ НА КІНЕТИКУ ЛЮМІНЕСЦЕНЦІЇ ТА НАВЕДЕНОГО ПОГЛИНАННЯ СВІТЛА НАНОЧАСТИНКАМИ Si В SiO₂ МАТРИЦІ ПРИ ЗБУДЖЕННІ ФЕМТОСЕКУНДНИМИ ЛАЗЕРНИМИ ІМПУЛЬСАМИ

УДК 535.37

Розглянуто нелінійності люкс-інтенсивностної характеристики власної смуги випромінювання наночастинок Si, інкорпорованих в SiO₂ матрицю, і залежність часових параметрів наведеного поглинання від густини енергії збуджуючого фемтосекундного імпульсу, які зумовлені дією пасткових станів.

Ключові слова: пасткові стани, наведене поглинання, люкс-інтенсивностна характеристика, густина енергії, ефект втоми випромінювання, ПЗЗ-камера, Оже-процес, збудження-зондування, білий суперконтинуум, телеграфоподібний сигнал

1. Вступ

Розвинутість поверхні напівпровідникових наночастинок знаходить своє відображення у вигляді яскравих аномалій у кінетиці фотолюмінесценції (ФЛ), для пояснення яких було запропоновано низку моделей. До найбільш відомих із них можна віднести: "ефект втоми випромінювання", який полягає в часовій деградації ефективності випромінювання з виходом на стан насичення (див., наприклад, [1-3]); формування фотолюмінесцентного випромінювання у вигляді телеграфоподібного сигналу (див. [4, 5]); реалізація в фотозбуджених наночастинках ефекту "зарядового поршню", рушійною силою якого є електронний оже-процес, який сприяє активаційному захопленню фотозбуджених носіїв пастковими центрами оточуючих діелектричних оболонок (SiO_x) (див., наприклад, [1,]6]), і ряд інших. Але всі ці ефекти, які продовжують активно вивчатись в різних наноструктурованих напівпровідникових матеріалах і у наш час, є важливими для формування довгочасової компоненти (мілі-мікросекунди) кінетики загасання ФЛ.

У даній роботі розглянуто нову особливість в кінетиці фотозбуджених носіїв заряду в нано-Si, які вже відповідають пікосекундному часовому інтервалу і знаходять прояви в надлінійному зростанні інтенсивності випромінювання основної смуги люмінесценції нанокристалів Si, інкорпорованих в SiO₂ матрицю (нано-Si/SiO₂), в тій області інтенсивностей збудження, для яких, зазвичай, мають місце ефекти насичення інтенсивності випромінювання. Аналізу природи цієї аномалії в кінетиці люмінесценції, а також наведеного під дією потужних фемтосекундних лазерних імпульсів поглинання світла і присвячена дана робота.

2. Виготовлення зразків нано- Si/SiO_2

Зразки у вигляді тонких плівок SiO_x отримували термічним випаровуванням у вакуумі (при залишковому тиску $2 \cdot 10^{-3}$ Па) моноокису кремнію чи-

ISSN 2071-0194. Укр. фіз. журн. 2013. Т. 58, № 1

[©] В.М. КАДАН, І.З. ІНДУТНИЙ, В.А. ДАНЬКО,

П.Є. ШЕПЕЛЯВИЙ, І.М. ДМИТРУК, П.І. КОРЕНЮК, І.В. БЛОНСЬКИЙ, 2013

п.і. коренюк, і.в. блонський, 2013

стотою 99,9% виробництва фірми Cerac Inc. за технологією, яка описана в роботі [8]. У ролі підкладок використовувались поліровані сапфірові пластини, відстань від яких до випаровувача становила 25 см. Швидкість осадження дорівнювала 1,6 нм/с. Товщина плівок контролювалася in situ методом кварцового осцилятора, а після осадження вимірювалася мікроінтерферометром МІІ-4. Для досліджених плівок вона становила 450 нм. Після осадження отримані плівки відпалювали в атмосфері аргону при температурі 1100 °С протягом 15 хвилин. У процесі ізотермічного відпалу вказаних зразків відбувається формування наночастинок кремнію в оксидній матриці. При цьому процес розділення фаз у плівці SiO_x при високій температурі схематично можна описати реакцією:

$$y \operatorname{SiO}_x \to x \operatorname{SiO}_y + (y - x) \operatorname{Si},$$

де y > x. Температура відпалу визначає структуру включень та стехіометрію оксидної матриці після відпалу. Відпал у межах від 500 до 800 °С приводить до коагуляції атомів Si у аморфні кластери. При температурах відпалу вищих за 900 °C аморфні кремнієві включення кристалізуються, створюючи нанокристали Si, електронна структура яких є модифікованою завдяки квантовому обмеженню [7]. Структура отриманих композитних шарів та їх світловипромінювальні властивості досліджувались співавторами даної роботи за допомогою оптичної, інфрачервоної та раманівської спектроскопії, ТЕМ-мікроскопії, вимірювання спектрів фотолюмінесценції та інших методик [8–11]. Зокрема, було встановлено, що зразки, отримані при вказаних вище умовах, містять нанокристали кремнію середнього розміру ~4 нм, з концентрацією $5.5 \cdot 10^{18}$ см⁻³. При температурі відпалу в 1100 °C відбувається практично повний розклад SiO_x і склад оксидної матриці отриманого зразка близький до SiO₂ ($y \approx 2$).

Відомі і інші методи отримання ансамблів нано-Si, зокрема шляхом імплантації іонів Si в SiO₂ матрицю з подальшим ізотермічним відпалом зразків [12], та з використанням так званих "мокрих" (золь-гель) технологій. Перевагами технології, яка використовувалася нами, є її простота, відтворюваність результатів, широкі можливості варіативності технологічного режиму.

3. Експеримент

Нестаціонарні оптичні явища в нано- Si/SiO_2 досліджували з використанням створеної нами методи-

ISSN 2071-0194. Укр. фіз. журн. 2013. Т. 58, № 1

ки "збудження-зондування". У цій методиці лазерні імпульси на довжині хвилі 800 нм тривалістю ~150 фс з частотою повторення 1 кГц розділяють на дві компоненти різної інтенсивності. Одна із них, подвоєна по частоті в нелінійному кристалі LBO, використовується для збудження зразка нормально до його поверхні (довжина хвилі збудження 400 нм, тривалість імпульсу ~200 фс, діаметр плями збудження 0,35 мм, енергія імпульсу до 70 мкДж, середня густина енергії збудження для одного імпульсу – до 20 мДж/см²). При густині енергії більшій за 25 мДж/см² відбувається руйнування зразка. Друга компонента після затримки на визначений проміжок часу в фемтопікосекундному інтервалі, фокусується на обертовому сапфіровому диску, в якому відбувається генерація "білого суперконтинууму" з тривалістю імпульсів близькою до 180 фс. Імпульси "білого суперконтинууму" під малим кутом до збуджуючого променя фокусуються всередину збудженої ділянки зразка в геометрії "на пропускання" і використовуються для "зчитування" наведених змін поглинання. Часова залежність наведеного поглинання (НП) досліджуваних зразків відслідковується шляхом зміни часового інтервалу між збуджуючим і зондуючим імпульсами. Спектр зондуючого випромінювання, яке пройшло через збуджений зразок, реєструється за допомогою спектрографа Acton SP500і з ПЗЗ-камерою. Загальна часова роздільна здатність методики є близькою до 400 фс. Більш детально використана методика досліджень описана в огляді [13].

Збудження $\Phi \Pi$ для вимірювань інтегрованої по часу люкс-інтенсивностної характеристики нано-Si/SiO₂ не відрізняється від описаного вище. Спектри $\Phi \Pi$ реєструвалися під кутом 45° за допомогою спектрографа Acton SP500i.

4. Експериментальні результати та їх обговорення

Звернемось до результатів вимірювань люксінтенсивностної характеристики, тобто залежності загальної інтенсивності ФЛ (площі *S* під спектральною кривою) від густини енергії імпульсу збудження *J*. На вставці до рис. 1 показані спектри ФЛ, нормовані по однаковій амплітуді для двох J = 4,3 мДж/см² і J = 11,5 мДж/см² (без корекції на криву спектральної чутливості приладу). Можна бачити, що форма спектра ФЛ мало змінюється при зміні *J*. На основній частині

Рис. 1. Нормовані спектри ФЛ нано-Si/SiO₂ при густині енергії збуджуючого імпульсу $J = 4,3 \text{ мДж/см}^2$ і 11,5 мДж/см² (див. вставку) і люкс-інтенсивностна характеристика S(J). Зміна нахилу залежності S(J) спостерігається при $J = 6 \text{ мДж/см}^2$

рисунка світлими кружечками наведено результати вимірів люкс-інтенсивностної характеристики S(J). Залежність S(J) має дві лінійні ділянки з різним нахилом. Для J > 6 мДж/см² нахил збільшується приблизно в 2 рази, вказуючи на відповідне збільшення квантового виходу люмінесценції. Таке його зростання не може бути пояснене ефектами стимулювання ФЛ випромінювання. Дійсно, стимулювання вторинного випромінювання як для однорідно, так і для неоднорідно розширених смуг завжди супроводжується зміною форми контуру ФЛ внаслідок вибіркового підсилення частини спектра. У той самий час, як можна бачити зі вставки до рис. 1, при збільшенні густини енергії вище порогової виникають лише незначні зміни загальної форми спектра. Така поведінка люкс-інтенсивностної характеристики є неочікуваною, оскільки під час збудження наноструктурованого кремнію наносекундними лазерними імпульсами, зазвичай, спостерігається протилежна поведінка S(J), яку пов'язують з підвищенням ролі безвипромінювальної оже-рекомбінації при збільшенні концентрації носіїв (див., наприклад, [6, 14, 15]). На нашу думку, нелінійне зростання S(J)можна пояснити впливом пасткових станів, завжди присутніх у наноструктурах з розвиненою поверхнею. Особливість фемтосекундного збудження полягає у тому, що за час, значно коротший за час життя заряду, кількість генерованих носіїв може навіть перевищити кількість наявних пасткових станів. Тоді, якщо припустити, що при J < 6 мДж/см² кількість утворених вільних носіїв все ще недостатня для заповнення всіх пасткових станів, то, захоплюючи носії, вони зменшують інтенсивність ФЛ. Повне насичення пасткових станів при J > 6 мДж/см² приводить до збільшення часу життя вільних носіїв, які формують ФЛ або шляхом випромінювальної електронно-діркової рекомбінації, або переходячи у випромінювальні стани іншої природи, і, відповідно, до зростання інтенсивності ФЛ.

Крім того, отримані результати дають можливість оцінити верхню межу для кількості пасткових станів, які припадають на одну наночастинку з середнім розміром 4 нм. Оцінки, основані на виміряному коефіцієнті поглинання на довжині хвилі 400 н
м $\alpha=2,7$ мкм $^{-1},$ показують, що лазерний імпульс з
 J=6мДж/см 2 без урахування відбивання наночастинками та інших можливих втрат створює в наночастинці в середньому 60 носіїв. Ця цифра і визначає верхню межу для кількості пасткових станів на одну наночастинку. Підкреслимо, що реальна кількість пасткових станів може бути значно меншою. Наприклад, кожному носієві, захопленому через оже-рекомбінацію, відповідає рекомбінація е-h пари, тобто, якщо вказаний механізм є домінуючим, то наведену оцінку слід зменшити в 3 рази.

Для перевірки висновку про насичення пасткових станів було проведено експеримент з часороздільних досліджень НП в зразку нано-Si/SiO₂ під дією фс лазерних імпульсів на довжині хвилі 400 нм. Слідом за авторами [12, 16] ми вважаємо, що НП виникає внаслідок поглинання зондуючого випромінювання вільними носіями, генерованими фемтосекундним імпульсом. З двох можливих механізмів НП – поглинання вільними носіями за механізмом Друде, перетин якого квадратично зростає при збільшенні довжини хвилі, і вторинного збудження нерівноважних носіїв у вище розташовані стани, в досліджуваному випадку реалізується другий механізм. Цей висновок випливає з проведених нами вимірів НП на різних довжинах хвиль зондуючого світла 680-690 нм і 610-620 нм при однаковій густині енергії імпульсу збудження $J = 10 \text{ мДж/см}^2$. Спостережена при цьому незмінність сигналу НП при зміні довжини хвилі зондуючого світла вказує на те, що НП формується не за механізмом Друде, а, скоріше за все, внаслідок вторинного збудження нерівноважних носіїв у вище розташовані стани. Саме таким механізмом пояснювалося НП в наноструктурованому кремнії в [12, 16].

ISSN 2071-0194. Укр. фіз. журн. 2013. Т. 58, № 1

Звернемось в зв'язку з цим до результатів експерименту, наведених на рис. 2. Величина НП визначається із отриманого із результатів вимірювань відношення інтенсивностей зондуючого випромінювання, яке пройшло через не збуджений (I_0) і через збуджений (I_p) зразок. На основному рисунку зображені залежності I_0/I_p від часу затримки au зондуючого імпульсу відносно імпульсу збудження при різних густинах енергії Ј збуджуючого імпульсу. Експериментальні результати I_0/I_p зображені світлими квадратами для $J = 6.3 \text{ мДж/см}^2$, чорними квадратами для $J = 11.1 \text{ мДж/см}^2$, і світлими кружечками – для $J = 19.1 \text{ мДж/см}^2$. У всіх випадках I_0/I_p дорівнює одиниці, якщо зондуючий імпульс випереджає імпульс накачки (від'ємні значення τ). Момент збудження характеризується різким зростанням НП, причому тривалість фронту наростання визначається роздільною здатністю установки (~0,4 пс). Після досягнення максимуму ($\tau = 0$) зростання змінюється спаданням, спочатку різким, а потім більш повільним. Експериментальні дані I_0/I_p (au) для au > 0 апроксимовані функцією $y_0 + A_1 \exp(-\tau/t_1) + A_2 \exp(-\tau/t_2)$, яка описує двохекспонентне спадання. Найкраще узгодження досягнуте при таких значеннях сталих часу t_1 і t_2 : для J = 6,3 мДж/см 2 $t_1 =$ $= 0.4 \pm 0.4$ пс, $t_2 = 2.1 \pm 0.7$ пс; для J == 11,1 мДж/см² $t_1 = 0,64 \pm 0,1$ пс, $t_2 = 3,5 \pm 0,7$ пс; для J = 19,1 мДж/см² $t_1 = 0,47 \pm 0,07$ пс, $t_2 =$ $= 5.7 \pm 0.4$ пс.

На вставці зображено залежність амплітуди НП при $\tau = 0$ пс (показано стрілкою на основному рисунку) від J та її лінійну апроксимацію.

Близькість сталої часу t_1 , яка характеризує початкове спадання НП, до часової роздільної здатності установки, а також лінійна залежність амплітуди НП від *J* вказують на те, що початковий пік при $\tau = 0$ є наслідком процесу двофотонного поглинання за участю одного фотона збуджуючого (400 нм, 3,1 еВ) і одного фотона зондуючого випромінювання (< 690 нм, > 1,8 еВ), оскільки сумарна енергія цих двох фотонів 4,9 еВ значно перевищує ширину прямої забороненої зони для кремнію навіть з урахуванням квантоворозмірного ефекту.

Численні експериментальні і теоретичні роботи вказують на велику швидкість (сотні фемтосекунд) термалізації утворених спочатку "гарячих" носіїв на дно зони провідності в нанокристалічних напівпровідниках різного складу (див., наприклад, [17–19]). З цієї причини далі вважаємо, що поча-

ISSN 2071-0194. Укр. фіз. журн. 2013. Т. 58, № 1

Рис. 2. Залежності I_0/I_p від τ при густинах енергії збуджуючого імпульсу $J = 6, 3; 11, 1 i 19, 1 \text{ мДж/см}^2$. На вставці показано залежність I_0/I_p від J при $\tau = 0$ пс. Довжини хвиль зондуючого світла 680–690 нм

ткова термалізація вже відбувається за час, співмірний з часовою роздільною здатністю експериментальної установки, а наші подальші виміри стосуються динаміки термалізованих носіїв.

Після швидкої (сотні фемтосекунд) термалізації утворених спочатку "гарячих" носіїв [17–19] подальше спадання НП характеризується часовими сталими $t_2 \sim 2-6$ пс, які зростають при збільшенні J. За величиною ці сталі узгоджуються з часами релаксації, отриманими в роботі [16]. Відомо, що важливим механізмом зменшення концентрації носіїв n_{e-h} і часу їх життя при високих рівнях збудження в наноструктурах і тонких шарах напівпровідників є поверхнева оже-рекомбінація (див. [14]). Проте з вимірів НП випливає, що час життя вільних носіїв t₂, навпаки, збільшується при збільшенні їх концентрації. Така поведінка t_2 , на наш погляд, підтверджує попередні висновки про вплив ефекту насичення пасткових станів на динаміку фотозбуджених носіїв. При відносно низькому рівні збудження пасткові центри ефективно захоплюють вільні носії, зменшуючи їх кількість протягом пікосекунд. Якщо кількість носіїв, утворених інтенсивним фемтосекундним імпульсом збудження, перевищує кількість пасток, то відбувається їх насичення, що приводить до зростання t_2 . Тим не менше, наведені міркування зовсім не заперечують участь оже-процесів у заповненні пасткових станів. Конкретний механізм такого заповнення може бути різним – як термоактивовані переходи в низькоенергетичні рівні, так і оже-рекомбінація, в результаті якої заповнюються рівні високої енергії. Важливо лише те, що обидва

Рис. 3. Довгочасова динаміка НП. Густина енергії імпульсу збудження $J = 19,1 \text{ мДж/см}^2$. Двохекспонентна апроксимація зменшення НП характеризується двома часовими сталими: 6,5 і 79 пс

канали зменшення n_{e-h} зникають після заповнення всіх вільних пасткових станів.

Таким чином, на збільшення часу життя вільних носіїв в нано-Si/SiO₂ при збільшенні інтенсивності збудження вказують як люкс-інтенсивносні характеристики (рис. 1), так і виміри НП (рис. 2). Питання ж конкретного механізму випромінювання (прямої рекомбінації або через поверхневі випромінювальні стани) залишається відкритим. Можна, проте, зробити висновок, що швидке початкове захоплення носіїв відбувається на безвипромінювальні стани, оскільки воно зменшує квантовий вихід люмінесценції при малих рівнях збудження. Перетин захоплення носіїв безвипромінювальними пастковими станами, які приводять до зменшення квантового виходу люмінесценції, є набагато більшим, ніж станами, які формують ФЛ. Це і приводить до швидкого (декілька пс) початкового зменшення НП, аж поки пастки не будуть заповнені. Після цього, як показують більш довгочасові виміри (рис. 3), НП зменшується з часовими сталими порядку 100 пс. Саме ця часова стала може характеризувати перехід носіїв на випромінювальні стани.

5. Висновки

Показано, що швидкі (< 10 пс) процеси захоплення фотозбуджених носіїв пастковими станами визначають як час їх життя в пікосекундному часовому діапазоні, так і квантовий вихід люмінесценції нано-Si/SiO₂. При збільшенні кількості носіїв, генерованих одним фемтосекундним лазерним імпульсом, відбувається повне насичення пасткових станів. Це приводить до значного збільшення як часу життя носіїв (~80 пс), так і квантового виходу люмінесценції.

Робота виконана за часткової підтримки Державного фонду фундаментальних досліджень України (проект Ф40.2/067), Російсько-Української Програми розвитку співробітництва в сфері нанотехнологій у 2012–2013 р. (проект М312), Українського науково-технологічного центру (проект 5721).

- И.В. Блонский, М.С. Бродин, А.Ю. Вахнин, А.Я. Жугаевич, В.Н. Кадан, А.К. Кадашук, Ю.Г. Пикус, Микросистемная техника 26, 224 (2003).
- D. Kovalev, E. Gross, J. Diener, V. Timoshenko, and M. Fujii, Phys. Status Solidi C 2, 3188 (2005).
- И.В. Блонский, М.С. Бродин, А.Ю. Вахнин, А.Я. Жугаевич, В.Н. Кадан, А.К. Кадащук, ФНТ 28, 978 (2002).
- Al.L. Efros and M. Rozen, Phys. Rev. Lett. 78, 1110 (1997).
- 5. I.S. Osad'ko, Chem. Phys. **316**, 99 (2005).
- I.V. Blonsky, V.M. Kadan, A.K. Kadashchuk, A.Yu. Vakhnin, and A.Ya. Zhugayevych, Int. J. Nanotechnol. 3, 65 (2006).
- B. Hinds, F. Wang, D. Wolfe, C. Hinkle, and G. Lucovsky, J. Vac. Sci. Technol. B 16, 2171 (1998).
- В.Я. Братусь, В.А. Юхимчук, Л.И. Бережинский, М.Я. Валах, И.П. Ворона, И.З. Индутный, Т.Т. Петренко, П.Е. Шепелявый, И.Б. Янчук, ФТП 35, 854 (2001).
- A. Szekeres, T. Nikolova, A. Paneva, A. Czirakic, Gy.J. Kovacs, I. Lisovskyy, D. Mazunov, I. Indutnyy, and P. Shepeliavyi, Mater. Sci. Eng. B **124-125**, 504 (2005).
- В.А. Данько, И.З. Индутный, В.С. Лысенко, И.Ю. Майданчук, В.И. Минько, А.Н. Назаров, А.С. Ткаченко, П.Е. Шепелявый, ФТП **39**, 1239 (2005).
- И.З. Индутный, И.Ю. Майданчук, В.И. Минько, П.Е. Шепелявый, В.А. Данько, ФТП **41**, 1265 (2007).
- V.I. Klimov, Ch.J. Schwarz, D.W. McBranch, and C.W. White, Appl. Phys. Lett. **73**, 2603 (1998).
- І.В. Блонський, І.М. Дмитрук, М.Г. Зубрілін, В.М. Кадан, П.І. Коренюк, І.А. Павлов, В.О. Сальников, Наносистеми, наноматеріали, нанотехнології 6, 45 (2008).
- В.А. Зуев, В.Г. Литовченко, Г.А. Сукач, ФТП 9, 1641 (1975).
- I. Mihalcescu, J.C. Vial, A. Bsiesy, F. Muller, R. Romestain, E. Martin, C. Delerue, M. Lannoo, and G. Allan, Phys. Rev. B 51, 17605 (1995).

ISSN 2071-0194. Укр. фіз. журн. 2013. Т. 58, № 1

 $\mathbf{24}$

- A. Othonos, E. Lioudakis, and A.G. Nassiopoulou, Nanoscale Res. Lett. 3, 315 (2008).
- 17. J.Z. Zhang, J. Phys. Chem B 104, 7239 (2000).
- А.Л. Строюк, А.И. Крюков, С.Я. Кучмий, В.Д. Походенко, Теоретическая и экспериментальная химия, 41, 67 (2005).
- S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1996).

Одержано 11.05.12

- В.Н. Кадан, И.З. Индутный, В.А. Данько,
- П.Е. Шепелявый, И.Н. Дмитрук, П.И. Коренюк,

И.В. Блонский

ВЛИЯНИЕ ЛОВУШЕЧНЫХ СОСТОЯНИЙ НА КИНЕТИКУ ЛЮМИНЕСЦЕНЦИИ И НАВЕДЕННОГО ПОГЛОЩЕНИЯ СВЕТА НАНОЧАСТИЦАМИ Si В SiO₂ МАТРИЦЕ ПРИ ВОЗБУЖДЕНИИ ФЕМТОСЕКУНДНЫМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ

Резюме

Рассмотрены нелинейности люкс-интенсивностной характеристики собственной полосы излучения наночастиц Si, инкорпорированных в SiO₂ матрицу, и зависимости временных параметров наведенного поглощения от плотности энергии возбуждающего фемтосекундного импульса, обусловленных действием ловушечных состояний.

V.M. Kadan, I.Z. Indutnyi, V.A. Dan'ko, P.E. Shepelyavyi, I.M. Dmitruk, P.I. Korenyuk, I.V. Blonsky

INFLUENCE OF TRAP STATES ON THE KINETICS OF LUMINESCENCE AND INDUCED LIGHT ABSORPTION BY SI NANOPARTICLES IN A SiO₂ MATRIX AT THEIR EXCITATION WITH FEMTOSECOND LASER PULSES

Summary

We report on the results of our researches dealing with nonlinearities caused by trap states in the lux-intensity characteristics of the intrinsic emission band of Si nanoparticles embedded into a SiO₂ matrix and the dependence of the temporal characteristics of induced absorption on the pump femtosecond pulse fluence.