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NONLINEAR COSMOLOGY OF GLOBULAR
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The formation of systems of globular star clusters around galaxies has been studied in the
framework of a nonlinear-nonstationary model of collapsing galaxies. Instabilities of the model
with respect to four perturbation modes are analyzed, with the mode order determining the
average number of clusters in the system. Critical diagrams for the dependence of the initial
value of the virial ratio on the rotation degree of collapsing model are plotted. The instability
growth rates are calculated, and the obtained instability parameters are compared.
K e yw o r d s: systems of globular star clusters. gravitational instabilities, pulsation model of
self-gravitating system, cosmology of globular clusters.

1. Introduction

Globular star clusters (GSCs) are rather complicated
star systems that are observed around galaxies of the
Hubble type. They differ from other star clusters by
a significantly larger number of stars, a symmetric
shape that is close to the spherical one, and a high
concentration of physically coupled stars. A system of
globular star clusters (SGSC) is defined as a galaxy
subsystem. Sometimes, in the case of spiral galax-
ies, these systems may probably consist of physically
weakly coupled GSCs.

According to the data of modern observations, al-
most all types of galaxies in the Hubble tuning fork
contain SGSCs, with the number of star clusters un-
doubtedly depending on the galaxy type. From this
point of view, SGSCs in other galaxies were studied
more actively than such a system in our Galaxy. In
particular, the advent of CCD cameras stimulated a
drastic growth of attention to SGSCs (see, e.g., works
[1–7] and the references therein). The work by Harris
et al. [3], which was devoted to a careful data col-
lection, should be distinguished separately. In work
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[5], we analyzed the observation data and proposed
a classification for the SGSCs, and in work [6] we re-
ported results obtained while studying the SGSCs of
spiral and dwarf galaxies.

The analysis of observation data for SGSCs gives
us ground to understand not only specific statistical
properties of GSCs, but also the physics of galaxy
evolution and its stages. In this case, the chemical
composition and the dynamic characteristics of the
SGSCs were found to play a significant role at early
stages of galaxy formation. Furthermore, the results
obtained from the analysis of the SGSC observations
can be used, in particular, to verify hypotheses con-
cerning the origin of the SGSC parent galaxies.

Issues associated with the SGSC origin are directly
connected with the cosmological problem of galaxy
formation. There are two relevant scenarios: a cas-
cade fragmentation [8] and a hierarchical clustering
[9]. According to the former [8], galaxies are formed
first at the early stage of Universe’s evolution. Then,
owing to their instability, those protosuperclusters
are fragmented stage-by-stage down to protogalax-
ies. Only afterward, the SGSCs emerge. The theory
of hierarchical clustering [9] asserts that it is GSC pro-
toclouds that arise first in the Universe. Then those
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protoclouds gradually unite into protogalaxies, pro-
togalaxies into galaxy clusters, and the latter into su-
perclusters. Therefore, it is evident that the results
of researches concerning the SGSCs are required, in
particular, when comparing the scenarios of galaxy
formation and evolution.

2. Current State-of-the-Art
of the Theory of the SGSC Origin

Till now, the origin of not only SGSCs but even
GSCs themselves has not been studied at length. The
problems of GSC and SGSC formation have been re-
searched in a strongly disjointed and, most often,
speculative manner. Here, the number of questions
strongly exceeds the number of available answers. For
instance, it is unclear whether a GSC contains stars of
the same generation, or it consists of stars existing at
different evolution stages and with a large difference
between their ages. Why do almost all GSCs have an
approximately spherical shape? How is this fact asso-
ciated with the efficiency of the star formation? And
so forth. That is why there are a few different view-
points in the literature concerning the formation of
GSCs and their systems.

For example, a theory of GSC formation as a re-
sult of the protogalaxy collapse is discussed in work
[1]. Three models of this process are distinguished.
According to the first model, GSCs are formed much
earlier than the galaxy itself. In the second model,
the GSCs and the galaxy are formed almost simulta-
neously. Finally, GSCs can be formed well after the
formation of their parent galaxies. A possibility of
the cluster destruction as a result of, e.g., the dy-
namic friction, internal relaxation, tidal interaction,
and star formation was also considered.

In work [10], it was supposed that some GSCs
can be formed in the course of the galaxy interac-
tion or merging, and the existence of young GSCs
in the Magellanic Clouds, as well as anomalously
rich SGSCs around some galaxies and especially at
the centers of galaxy clusters, was explained. The au-
thors of work [11] proposed a theory to describe the
formation of globular clusters and their systems in
the course of a protogalaxy collapse. In this case, the
thermal instability favors the development of a two-
phase structure in the gas, if the cooling and free-
fall times are comparable. In accordance with the sce-
nario considered in work [11], the hot gas component

with a temperature close to the virial one compresses
the cold component into discrete clouds with temper-
atures of about 104 K and average densities in an
interval of 1÷10 M⊙/pc3.

The authors of work [12] analyzed the multimodal
distributions of the GSC metallicity in massive huge
galaxies and studied the origin of various GSC sub-
populations. They found that if the metal-rich and
metal-poor subsystems are distinguished, the aver-
age metallicity for metal-rich GSCs in galaxies with
the bimodal distribution of the GSC metallicity cor-
relates well with the parent galaxy luminosity. On the
other hand, no correlation is observed for the metal-
poor GSCs. This fact testifies that metal-rich clusters
are rather closely connected with the galaxy. Howe-
ver, the ratio between the metal-rich and metal-poor
clusters correlates with the specific frequency param-
eter. Galaxies with a high specific frequency of GSCs
contain a larger number of metal-poor clusters. The
authors of work [12] assert that the model describ-
ing the merging of two galaxies cannot explain the
origin of GSCs in huge galaxies. They assume that
GSCs are formed during two different phases of the
star formation from a gas with different metallici-
ties, which results in a bimodal distribution. Metal-
poor GSCs are formed during the early stage of the
protogalactic cloud collapse, and metal-rich ones are
formed later from the enriched gas and approximately
simultaneously with the galaxy. Metal-rich GSCs in
elliptic galaxies are considered to be similar to metal-
poor ones in the halo of spiral galaxies. At the same
time, GSCs, if any, in the “disks” of spiral galaxies
are formed much later.

In work [13], the final stages of a collapse were stud-
ied, and the results obtained were compared with the
results of the 𝑁 -body problem. A possibility of the
SGSC formation, when two galaxies merge, was dis-
cussed in a number of works [10, 12, 14–17]. Unfortu-
nately, the cited authors did not consider real obser-
vation data.

The analysis of the works cited above brings us
to the conclusion that, nowadays, there is no consis-
tent theory describing the formation of GSCs. There
is no comprehensive theory of the SGSC origin, where
the development of exact non-stationary models has
a large importance. The matter is that, irrespec-
tive of the type of the scenario describing the ori-
gin of galaxies – whether this is the cascade frag-
mentation or the hierarchical clustering, – it is clear
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that protoclouds of globular star clusters are cre-
ated owing to the gravitational instability of radial
orbits against the background of either a collapsing
protogalaxy or an expanding spherical cosmological
model. The processes of gravitational instability run
against the background of the early, nonlinear non-
stationary stage of the dynamic evolution of gravi-
tating systems. In works [6, 18], we illustrated some
results obtained at studying the gravitational insta-
bility within the pulsation model. For this purpose,
we used, for the first time, the analogy between a
gravitating system and a gas model with an adiabatic
index of 5/3. Really, many authors (see, e.g., work
[19] and the references therein) used an analogy with
the model of a gas with the indicated adiabatic index
to analyze the evolution of star systems. Therefore,
the inverse approach should also make sense. Namely,
we may try to apply the theoretical results obtained
for a collisionless spherical system to a spherical gas
system [6, 18].

3. Nonlinear Nonstationary
Parent Model and Master Equations

In order to construct a nonlinear nonstationary
model, an equilibrium configuration that is stable
in the linear approximation is required as a basis.
A method to construct nonlinear pulsation mod-
els for nonstationary collisionless self-gravitating sys-
tems, in which the method of Lagrange coordinates is
used, was proposed in works [20–22]. The essence of
this method was described in monograph [22] in de-
tail. The stationary spherical equilibrium model de-
veloped by Camm [23] was generalized in work [24]
to the case of nonlinear pulsations. In work [25], the
rotating nonstationary phase model was given:

Ψ(𝑟, 𝑣𝑟, 𝑣⊥, 𝑡, 𝜆) =
𝜌(𝑡)Π2

𝜋2

𝜒(𝑓)√
𝑓

×
× [1 + Ω𝑟𝑣⊥ sin 𝜃 sin 𝜂], (1)

where

𝑓 =

(︂
1− 𝑟2

Π2

)︂(︂
1

Π2
− 𝑣2⊥

)︂
−

−
(︂
𝑣𝑟 +

𝜆𝑟 sin𝜓√
1− 𝜆2Π2

)︂2
, (2)

𝜒(𝑓) is the the Heaviside function, the system radius
changes according to the law 𝑅 = Π(𝑡)𝑅0, where the
function
Π(𝜓) = (1 + 𝜆 cos𝜓)/(1− 𝜆2)

has a sense of the sphere stretching coefficient, 𝜓 =
= 𝑒

∫︀ 𝑡
0
Π−1 𝑑𝑡 is an auxiliary variable instead of the

time 𝑡, 𝜆 = 1 −
(︁
2𝑇
|𝑈 |

)︁
0

is the pulsation amplitude

(0 ≤ 𝜆 ≤ 1),
(︁
2𝑇
|𝑈 |

)︁
0

is the virial ratio at the time mo-
ment 𝑡 = 0, Ω the parameter of solid-state rotation
of a pulsating sphere (0 ≤ Ω ≤ 1), 𝑣𝑎 = −𝜆𝑟 sin𝜓/
/(𝑒Π2), and 𝑣𝑏 = 𝑟/Π2 (see the other notations in
works [22, 25]).

To study instabilities of the nonstationary model
(1), we impose a small and, in the general case, asym-
metric perturbation 𝛿Φ on it. By linearizing the equa-
tion of motion

r̈ = − r

Π3
+ grad(𝛿Φ), (3)

we obtain an equation for small asymmetric vibra-
tions of a separate particle,

(1 + 𝜆 cos𝜓)
𝑑2𝛿r

𝑑𝜓2
+ 𝜆 sin𝜓

𝑑𝛿r

𝑑𝜓
+ 𝛿r =

=
1

(1− 𝜆2)
3 (1 + 𝜆 cos𝜓)

𝜕(𝛿Φ)

𝜕r
. (4)

Now, in order to calculate of the density perturba-
tion, we shift the centroid by (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) and aver-
age Eq. (4) over the velocity space. The solution of
Eq. (4) can be written in the following form, by using
an analog of Green’s function 𝑆(𝜓,𝜓1):

𝛿r =
1

(1− 𝜆2)3

𝜓∫︁
−∞

(1 + 𝜆 cos𝜓1)
3 ×

× 𝑆(𝜓,𝜓1)

[︃
𝜕(𝛿Φ)

𝜕r

]︃
𝑑𝜓1. (5)

The potential perturbation is taken in the form

𝛿Φ = 𝐴(𝜓)𝑟𝑁 exp(𝑖𝑚𝜑)𝑃𝑚𝑁 (cos 𝜃), (6)

where 𝐴(𝜓) is the sought function, 𝑁 the principal
perturbation index, 𝑚 the azimuthal wave number,
and 𝑃𝑚𝑁 (𝑥) the associated Legendre polynomial. By
substituting Eq. (6) into Eq. (5) and comparing the
calculated expression for the perturbation density
with the theoretical one [26], we find the follow-
ing nonstationary analog of the dispersion equation
(NADE):

1

6
𝐴(𝜓)Π3 =

1

𝑁(𝑁 + 1)
𝑆1𝑁 +

𝑖𝑚Ω(𝑁 − 2)!

(𝑁 + 2)!
𝑆2𝑁 , (7)
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Fig. 1. Critical dependences of the initial virial ratio on the rotation parameter for 𝑁 = 11 and 𝑚 = 3 (𝑎), 𝑁 = 12

and 𝑚 = 4 (𝑏), 𝑁 = 14 and 𝑚 = 4 (𝑐), and 𝑁 = 16 and 𝑚 = 6 (𝑑)

where

𝑆1𝑁 =

𝜓∫︁
−∞

𝑊−1𝐸
𝑑𝑃𝑁 (cosh)

𝑑 cosh
𝑑𝜓1,

𝑆2𝑁 =

𝜓∫︁
−∞

𝑊−1𝐸 sinh
𝑑2𝑃𝑁 (cosh)

𝑑(cosh)
2 𝑑𝜓1.

Here,

cosℎ =
𝑐(𝜆+ cos𝜓1) + 𝑒2𝑠 sin𝜓1

(1 + 𝜆 cos𝜓)(1 + 𝜆 cos𝜓1)
,

𝐸 =
1

𝑒6
(1 + 𝜆 cos𝜓1)

3
𝑆(𝜓,𝜓1) 𝐴 (𝜓1),

𝑊 =
1 + 𝜆 cos𝜓1

1 + 𝜆 cos𝜓
, 𝑐 = 𝜆+ cos𝜓, 𝑠 = sin𝜓.

(see the other notations in works [20–22, 25]).

4. Analysis of Small-Scale Instabilities

We consider a model, in which the formation of an
SGSC at the early stage of the protogalaxy collapse
is associated with a gravitational instability of the
nonlinear nonstationary model with respect to high-
order vibrational modes. The latter correspond to
rather small-scale perturbations of the density in the
collapsing galaxy. The mode order determines the av-
erage number of GSCs in the system. According to
the SGSC classification [5], a system is called poor,
if the number of GSCs in it falls within the inter-
val from 10 to 100, and moderate, if from 100 to
1000. Here, we will consider four modes of vibrations:
(𝑁 = 11,𝑚 = 3), (𝑁 = 12,𝑚 = 4), (𝑁 = 14,𝑚 = 4),
and (𝑁 = 16,𝑚 = 6). The first two correspond to
poor systems, and the last two to moderate ones. For
the indicated modes of vibrations, an instability un-
der certain initial conditions can result in the for-
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Fig. 2. Dependences of instability growth rates on the parameters (2𝑇/ |𝑈 |)0 and Ω for 𝑁 = 11 and 𝑚 = 3 (𝑎),
𝑁 = 12 and 𝑚 = 4 (𝑏), 𝑁 = 14 and 𝑚 = 4 (𝑐), and 𝑁 = 16 and 𝑚 = 6 (𝑑). The corresponding values of the
rotation parameter are indicated

mation of a system from clusters. The number of the
latter will correspond to the case of poor or moderate
SGSCs.

Note that the calculations of high-order modes
give rise to cumbersome systems of integral or dif-
ferential equations. For example, in the simple case
(𝑁 = 11,𝑚 = 3), we obtain a system of differential
equations of the 44-th order:

(1 + 𝜆 cos𝜓)
𝑑2𝛾𝜏
𝑑𝜓2

+ 𝜆 sin 𝜓
𝑑 𝛾𝜏
𝑑𝜓

+ 𝛾𝜏 =

= (1 + 𝜆 cos 𝜓)
3
(𝜆+ cos 𝜓)

𝑁−𝜏
sin𝜏−1𝜓 𝐴 (𝜓), (8)

where
𝐴(𝜓) =

1

(1 + 𝜆 cos𝜓)
20𝐾

3
11 (𝛾𝜏 ) , 𝜏 = 1, 11,

𝛾𝜏 =

𝜓∫︁
−∞

(1 + 𝜆 cos𝜓1)
3𝑆(𝜓,𝜓1)𝑎(𝜓1)×

× (𝜆+ cos𝜓1)
𝑁−𝜏

sin𝜏−1 𝜓1 𝑑𝜓1. (9)

The expression for the function 𝐾3
11 is given in the

Appendix.
In order to solve the NADE in the form of Eqs. (8)

and (9), we have to change from the integral form to
the differential one. By analogy with Eqs. (4) and
(5), we use Eq. (9) to find a system of differential
equations of the 44-th order,

(1 + 𝜆 cos𝜓)
𝑑2𝛾𝜏
𝑑𝜓2

+ 𝜆 sin 𝜓
𝑑 𝛾𝜏
𝑑𝜓

+ 𝛾𝜏 =

= (1 + 𝜆 cos 𝜓)
3
(𝜆+ cos 𝜓)

𝑁−𝜏
sin𝜏−1𝜓𝐴 (𝜓).
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Hence, we obtained a system of differential equa-
tions of the 44-th order in the case (𝑁 = 11, 𝑚 =
= 3). The NADEs for other – (12,4), (14,4), and
(16,6) – modes of vibrations are even more cumber-
some and, therefore, are not presented here. In the
mentioned cases, the corresponding systems have 80,
120, and 180 clusters, respectively. The correspond-
ing vibrational modes are described by the systems
of differential equations of the 48-th, 56-th, and 64-
th orders, respectively.

5. Results and Their Discussion

The instabilities of four indicated vibrational modes
were studied numerically by solving the correspond-
ing NADE separately for each mode. Every time, the
instability regions in the diagram “initial virial ratio
versus rotation parameter of the model” had to be
determined for the specific perturbation mode, by us-
ing the method of periodic solution stability [27]. We
also found the corresponding dependences of the in-
stability growth rate on the virial ratio value at the
beginning of the collapse.

In Fig. 1, the critical dependences of the initial
virial ratio on the rotation parameter are shown. One
can see that, as the mode order grows, the critical
value of the initial virial parameter decreases, so that
the instability region slowly becomes narrower. In
general, the instability rate depends very weakly on
the rotation degree of a collapsing protogalaxy.

Figure 2 illustrates the behavior of instability
growth rates and its dependence on the virial ratio
and the rotation parameter. In each case, the val-
ues of instability growth rates increase with the rota-
tion parameter. The calculations show that the cor-
responding instability region begins at small values
of the virial parameter, e.g., (2𝑇/ |𝑈 |)0 = 0.024 for
the mode (14,4) and (2𝑇/ |𝑈 |)0 = 0.018 for the mode
(16,6). The both indicated values of the virial ratio
correspond to the rotation absence, and the rotation
switching-on results in the destabilization.

We also compared the instability growth rates of
four vibrational modes at fixed rotation parameter
values. It should be noted that, among the exam-
ined vibrational modes, mode (12,4) remained to be
a leader at every rotation parameter value. With the
increase of the vibrational mode order, the instability
growth rates gradually diminish.

Note that the analogy between a gas medium with
an adiabatic index of 5/3 and a star system, which

was used in this work for real objects, gives approxi-
mate estimates for the physical state at the collapse
beginning and the instability. For example, from the
condition found for the virial ratio in the case of
mode (14,4), we determined the critical temperature
for a protogalaxy, which turned out to be equal to
5.2 × 104 K. Our calculations show that the forma-
tion of the SGSC occurs due to the instability of ra-
dial motions in the protogalaxy.

The work was carried out in the framework of
the grant OT-F2-13 of the Science and Technology
Agency of the Republic of Uzbekistan.

APPENDIX
𝐾3

11 (𝛾𝜏 ) =

(︂
3𝑐10 +

945

128
𝑐2𝑒8𝑠8 −

63

512
𝑒10𝑠10 −

−
1575

32
𝑐4𝑒6𝑠6 −

135

4
𝑐8𝑒2𝑠2 +

315

4
𝑐6𝑒4𝑠4

)︂
𝛾1 +

+

(︂
4095

256
𝑒10𝑠9𝑐−

4095

16
𝑒8𝑠7𝑐3 +

195

2
𝑐9𝑒2𝑠 +

+
12285

16
𝑐5𝑒6𝑠5 − 585𝑐7𝑒4𝑠3

)︂
𝛾2 +

+

(︂
82215

32
𝑐4𝑒8𝑠6 −

135

4
𝑐10𝑒2 −

114345

32
𝑐6𝑒6𝑠4 −

−
214515

512
𝑒10𝑠8𝑐2 +

945

128
𝑒12𝑠10 +

2295

2
𝑐8𝑒4𝑠2

)︂
𝛾3 +

+

(︂
48555

8
𝑐7𝑒6𝑠3 +

241605

64
𝑐3𝑒10𝑠7 − 585𝑐9𝑒4𝑠 −

−
4095

16
𝑐𝑒12𝑠9 −

159705

16
𝑒8𝑠5𝑐5

)︂
𝛾4 +

+

(︂
−
114345

32
𝑒6𝑠2𝑐8 +

1020915

64
𝑒8𝑐6𝑠4 +

+
82215

32
𝑒12𝑐2𝑠8 +

315

4
𝑒4𝑐10 −

−
1575

32
𝑒14𝑠10 −

3569895

256
𝑒10𝑐4𝑠6

)︂
𝛾5 +

+

(︂
12285

16
𝑒6𝑠𝑐9 +

2803437

128
𝑒10𝑐5𝑠5 −

159705

16
𝑒8𝑐7𝑠3 +

+
12285

16
𝑒14𝑠9𝑐−

159705

16
𝑒12𝑠7𝑐3

)︂
𝛾6 +

+

(︂
1020915

64
𝑒12𝑐4𝑠6 −

114345

32
𝑒14𝑠8𝑐2 −

−
1575

32
𝑒6𝑐10 −

3569895

256
𝑒10𝑐6𝑠4 +

+
82215

32
𝑒8𝑠4𝑐6 +

82215

32
𝑒8𝑐8𝑠2

)︂
𝛾7 +

+

(︂
−585𝑒16𝑐𝑠9 −

159705

16
𝑒12𝑐5𝑠5 +

48555

8
𝑒14𝑐3𝑠7 −

−
4095

16
𝑒8𝑠𝑐9 +

241605

64
𝑒10𝑐7𝑠3

)︂
𝛾8 +

1062 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 12



Nonlinear Cosmology of Globular Cluster Systems around Galaxies

+

(︂
2295

2
𝑒16𝑐2𝑠8 +

945

128
𝑒8𝑐10 −

−
135

4
𝑒18𝑠10 −

114345

32
𝑒14𝑠6𝑐4 −

−
214515

512
𝑒10𝑐8𝑠2 +

82215

32
𝑒12𝑐6𝑠4

)︂
𝛾9 +

+

(︂
4095

256
𝑒10𝑐9𝑠−

4095

16
𝑒12𝑠3𝑐7 +

195

2
𝑒18𝑠9𝑐 −

− 585𝑒16𝑠7𝑐3 +
12285

16
𝑒14𝑐5𝑠5

)︂
𝛾10 +

+

(︂
3𝑒20𝑠10 +

945

128
𝑒12𝑐8𝑠2 −

135

4
𝑒18𝑐2𝑠8 −

−
1575

32
𝑒14𝑐6𝑠4 +

315

4
𝑒16𝑠6𝑐4 −

63

512
𝑒10𝑐10

)︂
𝛾11 +

+ 𝑖𝑚Ω

{︂(︂
−
189

32
𝑠5𝑒5𝑐5 +

9

2
𝑠3𝑐7𝑒3 −

−
63

512
𝑠9𝑐𝑒9 +

63

32
𝑠7𝑐3𝑒7 −

3

4
𝑒𝑠𝑐9

)︂
𝛾1 +

+

(︂
3591

512
𝑐2𝑒9𝑠8 −

63

512
𝑠10𝑒11 +

1953

32
𝑐6𝑒5𝑠4 −

−
693

16
𝑐4𝑒7𝑠6 +

3

4
𝑐10𝑒−

81

4
𝑐8𝑒3𝑠2

)︂
𝛾2 +

+

(︂
−
13419

128
𝑐3𝑒9𝑠7 +

567

2
𝑐5𝑒7𝑠5 −

2889

16
𝑐7𝑒5𝑠3 +

+
81

4
𝑐9𝑒3𝑠+

3591

512
𝑐𝑒11𝑠9

)︂
𝛾3 +

+

(︂
63

32
𝑠10𝑒13 +

75159

128
𝑐4𝑒9𝑠6 −

13419

128
𝑐2𝑒11𝑠8 −

−
9

2
𝑐10𝑒3 −

22743

32
𝑐6𝑒7𝑠4 +

2889

16
𝑐8𝑒5𝑠2

)︂
𝛾4 +

+

(︂
75159

128
𝑐3𝑒11𝑠7 −

353241

256
𝑐5𝑒9𝑠5 +

+
22743

32
𝑐7𝑒7𝑠3 −

693

16
𝑐𝑒13𝑠9 −

1953

32
𝑐9𝑒5𝑠

)︂
𝛾5 +

+

(︂
567

2
𝑐2𝑒13𝑠8 +

353241

256
𝑐6𝑒9𝑠4 −

353241

256
𝑐4𝑒11𝑠6 +

+
189

32
𝑐10𝑒5 −

567

2
𝑐8𝑒7𝑠2 −

189

32
𝑒15𝑠10

)︂
𝛾6 +

+

(︂
353241

256
𝑐5𝑒11𝑠5 +

693

16
𝑐9𝑒7𝑠−

75159

128
𝑐7𝑒9𝑠3 −

−
22743

32
𝑐3𝑒13𝑠7 +

1953

32
𝑐𝑒15𝑠9

)︂
𝛾7 +

+

(︂
9

2
𝑒17𝑠10 +

22743

32
𝑐4𝑒13𝑠6 −

75159

128
𝑐6𝑒11𝑠4 −

−
63

32
𝑐10𝑒7 +

13419

128
𝑐8𝑒9𝑠2 −

2889

16
𝑐2𝑒15𝑠8

)︂
𝛾8 +

+

(︂
−
567

2
𝑐5𝑒13𝑠5 +

2889

16
𝑐3𝑒15𝑠7 −

3591

512
𝑐9𝑒9𝑠 −

−
81

4
𝑐𝑒17𝑠9 +

13419

128
𝑐7𝑒11𝑠3

)︂
𝛾9 +

+

(︂
−
1953

32
𝑐4𝑒15𝑠6 +

693

16
𝑐6𝑒13𝑠4 −

3

4
𝑒19𝑠10 +

+
63

512
𝑐10𝑒9 −

3591

512
𝑐8𝑒11𝑠2 +

81

4
𝑐2𝑒17𝑠8

)︂
𝛾10 +

+

(︂
63

512
𝑐9𝑒11𝑠+

189

32
𝑐5𝑒15𝑠5 −

9

2
𝑐3𝑒17𝑠7 −

−
63

32
𝑐7𝑒13𝑠3 +

3

4
𝑐𝑒19𝑠9

)︂
𝛾11

}︂
.
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I.У.Таджiбаєв, С.Н.Нурiтдiнов, А.А.Мумiнов

НЕЛIНIЙНА КОСМОЛОГIЯ СИСТЕМИ
КУЛЬОВИХ СКУПЧЕНЬ НАВКОЛО ГАЛАКТИК

Р е з ю м е

Вивчено питання походження систем кульових скупчень зi-
рок навколо галактик на тлi нелiнiйно нестацiонарної моде-
лi колапсуючих галактик. Дослiджено нестiйкостi даної не-
лiнiйної моделi щодо чотирьох дрiбномасштабних мод збу-
рень. При цьому ступiнь моди визначає в середньому кiль-
кiсть скупчень в системi. Побудовано критичнi дiаграми
залежностi початкового значення вiриалiв вiдношення вiд
ступеня обертання колапсуючої моделi. Обчисленi значен-
ня iнкрементiв вiдповiдних видiв нестiйкостей. Виконано
порiвняння результатiв розрахунку характеристик нестiй-
костей розглянутих мод коливань.
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