
PLASMAS AND GASES

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 12 1017

doi: 10.15407/ujpe62.12.1017

E. HEIDARI
Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
(Shahid Motahary Str., Islamic Azad Univ., Bushehr, Iran; e-mail: ehphysics75@iaubushehr.ac.ir)

RELATIVISTIC LASER-PLASMA INTERACTIONS.
MOVING SOLITARY WAVES IN PLASMA CHANNELS
AND THE KINETIC DISPERSION RELATION
OF CHERENKOV RADIATIONPACS 52.38.-r, 52.38.Hb

The propagation of an intense laser beam in a preformed plasma channel is stud-
ied. Considering a propagating Gaussian laser pulse in a relativistic plasma channel which has
a parabolic density profile, the evolution equation of the laser spot size is derived analytically
and solved numerically. The governing equation includes the effects of relativistic corrections
to the ponderomotive self-channeling, preformed channel focusing, and self-focusing. In order
to investigate the conditions for the existence of electromagnetic solitary waves, the solutions
of the evolution equation for the laser spot size are discussed in terms of a relativistic effective
potential. Some solitary wave solutions are illustrated numerically. The relativistic corrections
to the dispersion relation of Cherenkov emission in dusty plasma is presented briefly. In the
low-velocity limit, all the expressions in the present study are reduced to their associated coun-
terparts in the nonrelativistic regime, as should be.
K e yw o r d s: plasma channels, solitons, relativistic plasma, Cherenkov radiation.

1. Introduction

The nonlinear interaction of plasmas with high inten-
sity lasers is of great current interest [1–7]. The possi-
bility of reaching the extreme power levels with such
setups is one of the promising aspects of laser-plasma
systems [8] and holds the potential of overcoming
the laser intensity limit ℎ ≈ 1025 W/cm

2 [9]. As the
field strength approaches the critical Schwinger value
𝐸crit ≈ 1016 V/cm [10], there is a possibility of the
photon-photon scattering, even within a plasma [11],
since the ponderomotive force due to the intense laser
pulse gives rise to plasma channels [12–14].

The main nonlinear effects in the propagation of in-
tense electromagnetic pulses through a plasma arise
from the relativistic variation of the electron mass
(relativistic nonlinearity) and from a perturbation in
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the electron density, which takes place because of
the ponderomotive forces due to the radiation fields
(strict nonlinearity). Both these effects change the
effective dielectric constant of the plasma medium
for the propagation of electromagnetic waves and
lead to a coupling between the transverse electromag-
netic wave and the longitudinal waves in the plasma
medium [15].

The study of the formation and propagation of rel-
ativistic electromagnetic solitary waves and their ef-
fects on a plasma due to the highly nonlinear pro-
cesses of strong electromagnetic wave coupling with
the plasma wave is important to understand many
aspects of the laser-plasma interaction such as the
fast ignition scheme, laser wake field acceleration, and
laser overdense penetration [16–22].

It is well known that the characteristic distance
for the propagation of a directed radiation beam
in vacuum is the Rayleigh range, 𝑍𝑝. On the other
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hand, although a laser pulse in a uniform plasma
can guide itself by the effect of relativistic self-fo-
cusing and ponderomotive self-channeling, the diff-
raction would dominate over these effects, when
the laser power is smaller than the critical power
𝑃𝑐 = 17(𝜔0/𝜔𝑝)

2(GW), where 𝜔𝑝 is the plasma fre-
quency, and 𝜔0 is the laser frequency. It has been
shown that a preformed plasma channel can prevent
the diffraction and allow the propagation of an intense
laser pulse through many Rayleigh lengths without
disruption.

In Ref. [16], Zhang et al. studied the necessary
conditions for the existence of the electromagnetic
solitary waves in plasma channels. They presented
the equation of evolution of the pulse spot size
and illustrated some solitary wave solutions numer-
ically. When the velocity of a charged particle pass-
ing through a dielectric medium exceeds the phase
speed of light in that medium, the molecules of the
medium will be polarized. Then the molecules may
emit a specific type of emission, viz., Cherenkov emis-
sion, when they turn back to their ground state. The
Cherenkov wakes excited by intense laser drivers in
a perpendicularly magnetized plasma are a potential
source of high-power terahertz radiation. Cherenkov
radiation is possible under certain conditions in the
plasma and nuclear environment. Since the plasma
is a diffuser, different frequencies are emitted at dif-
ferent angles. Cherenkov radiation is emitted mostly
in the forward direction, because a significant speed
is required to enable the exit of radiation out of
the plasma. When the plasma is deposited with a
laser pulse, the energy exits in the minimum time
interval between the plasma energy transition and
plasma wave life. Cherenkov wave creates some of
dusty plasma waves: acoustic-dust and acoustic ion-
dust ones. These shear waves support Alfven ones and
are the cause for the Mach cone observed in Saturn’s
dense rings.

In a recent research paper, El-Bendary et al. [23],
by using a kinetic method based on the Vlasov equa-
tion, found a dispersion relation for a 1D Cherenkov
wave in an inhomogeneous plasma. Considering some
restrictive conditions, they estimated the growth rate
of kinetic Cherenkov waves.

Here, we will extend the previous works in the non-
relativistic limit [16, 23] and study the effect of the
relativistic flow velocity of a plasma on the solitary
wave solutions.

The aim of this paper is to investigate the exis-
tence of relativistic solitary waves of a Gaussian laser
pulse in a preformed plasma channel with a parabolic
density profile. The organization of this paper is as
follows: In Section 2, considering the appropriate
equations, we obtain the differential equation describ-
ing the evolution of the laser spot size. The govern-
ing equation presents the effects of ponderomotive
self-channeling, preformed channel focusing, and self-
focusing with relativistic corrections. Section 3 is de-
voted to the numerical analysis. Some solitary wave
solutions are illustrated. In Section 4, the relativistic
corrections to the kinetic dispersion relation for the
Cherenkov radiation are discussed briefly. Section 5
summarizes the finding of this study.

2. Evolution Equations
for the Laser Spot Size

The normalized vector potential with a slowly varying
complex envelope for a circularly polarized laser pulse
propagating the plasma channel with a parabolic den-
sity profile of the form 𝑛(𝑟) = 𝑛0(1 + 𝑟2/𝑟2ch) can be
written as [16]

a(𝑟, 𝑧, 𝑡) =
𝑎(𝑟, 𝑧, 𝑡)

2
(ê𝑥+ 𝑖ê𝑦) exp [𝑖(𝑘0𝑧 − 𝜔0𝑡)]+ c.c,

(1)

where ê𝑥 and ê𝑦 show the unit vectors along the 𝑥
and 𝑦 directions, respectively, in a Cartesian coordi-
nate system, 𝑛0 is the initial axial electron density, 𝑟ch
is the effective channel radius, 𝑎(𝑟, 𝑧, 𝑡) is the complex
amplitude, and 𝑘0 and 𝜔0 are the laser center wave
number and the frequency, respectively. In the rela-
tivistic regime with the use of the Coulomb gauge
∇ · a = 0, we present the wave equation for the laser
field as(︂
∇2 − 1

𝑐2
𝜕2

𝜕𝑡2

)︂
a = 𝑘2𝑝

(︂
1 + 𝛾𝜈

(1− 𝛽0𝜈)

𝛾0(𝛽0 − 𝜈)2
𝑟2

𝑟2ch
−

− |a|2

2
+ 𝛾2

𝜈

(1− 𝛽0𝜈)
2

𝛾2
0(𝛽0 − 𝜈)4

∇2
⊥
|a|2

2

)︂
a, (2)

where 𝑘𝑝 = 𝜔𝑝/𝑐 is the plasma wave number, and
𝛾𝜈 = (1 − 𝜈2)−1/2 is the relativistic factor associ-
ated with the velocity of the wave and should not
be confused with the particle relativistic factor, 𝛾 =
= (1 − 𝛽2)−1/2 related to the fluid velocity of the
plasma. We have 𝛽 = 𝑢/𝑐, 𝜈 = 𝑉/𝑐, and the sub-
script 0 represents the quantities at infinity. We note
that, in the derivation of Eq. (2), the long pulse
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limit, i.e., 𝜔𝑝𝜏𝐿 ≫ 1 is used. The quantities 𝜔𝑝 =
= (4𝜋𝑛0𝑒

2/𝑚𝑒)
1/2 and 𝜏𝐿 are the plasma frequency

and the laser pulse duration, respectively. It is worth
to note that, in the weakly relativistic limit, Eq. (2)
reduces to its counterpart in [16]. Let us substitute
Eq. (1) into Eq. (2) and assume that the complex
amplitude of the vector potential has a solution with
the Gaussian transverse profile

𝑎(𝑟, 𝑧) = 𝑎𝑟(𝑧) exp

[︂
−𝑟2

𝑟2𝑠(𝑧)

]︂
exp

[︀
𝑖
(︀
𝑏(𝑧)𝑟2 +Φ(𝑧)

)︀]︀
. (3)

Then the relativistic equation describing the evolu-
tion of the laser spot size is given as

𝜕2𝑟𝑠
𝜕𝑧2

=
𝛾𝜈(1− 𝛽0𝜈)

𝛾0(𝛽0 − 𝜈)2
(1− 𝑝)

𝑟3𝑠
−𝑁𝑐𝑟𝑠 −

− 𝛾2
𝜈(1− 𝛽0𝜈)

2

𝛾2
0(𝛽0 − 𝜈)4

𝑎20
2𝑟5𝑠

, (4)

where 𝑎𝑟(𝑧), 𝑟𝑠(𝑧), 𝑏(𝑧), and 𝜑(𝑧) are the real am-
plitude, spot size, spatial chirp parameter, and
phase shift of a laser pulse, respectively. The quan-
tity 𝑝 = 𝑘2𝑝𝑎

2
0𝑟

2
0/16 is the normalized laser power,

𝑁𝑐 = 𝛾2
0𝑘

2
𝑝𝑟

4
0/4𝑟

2
ch is a parameter related to the ef-

fect of reformed channel focusing, and the dimen-
sionless variables 𝑧/𝑍𝑅 → 𝑧 and 𝑟𝑠/𝑟0 → 𝑟𝑠, where
𝑍𝑅 = 𝑘20𝑟

2
0/2 is the Rayleigh length, are used. Now,

considering a collimated incident laser pulse, i.e.,
𝑏0 =

(︀
𝜕𝑟𝑠/𝜕𝑧

)︀
𝑧=0

= 0 and the initial condition 𝑟𝑠 = 1
at 𝑧 = 0 and integrating Eq. (4), we get

1

2

(︂
𝜕𝑟𝑠
𝜕𝑧

)︂2
+ 𝑉 (𝑟𝑠) = 0, (5)

where

𝑉 (𝑟𝑠) =
𝛾𝜈(1− 𝛽0𝜈)

𝛾0(𝛽0 − 𝜈)2
(1− 𝑝)

2𝑟2𝑠
+

𝑁𝑐𝑟
2
𝑠

2
−

− 𝛾2
𝜈(1− 𝛽0𝜈)

2

𝛾2
0(𝛽0 − 𝜈)4

𝑎20
8𝑟4𝑠

− 𝑉0, (6)

in which

𝑉0 =
𝛾𝜈(1− 𝛽0𝜈)(1− 𝑝)

2𝛾0(𝛽0 − 𝜈)2
+

𝑁𝑐

2
− 𝛾2

𝜈(1− 𝛽0𝜈)
2𝑎20

8𝛾2
0(𝛽0 − 𝜈)4

. (7)

We note that, for 𝛽0 = 0, Eqs. (4)–(7) can be obvi-
ously reduced to the expressions for the nonrelativis-
tic limits [16].

3. Solution and Results

The evolution equation, Eq. (5), can be used to study
the variation of the spot size of a laser beam. Putting
𝑉 (𝑟𝑠) = 0 and defining 𝑟2𝑠 ≡ 𝑅𝑠, one obtains a cubic
equation for the spot size as

𝑁𝑐𝑅
3
𝑠 − 2𝑉0𝑅

2
𝑠 +

1

2

(︂
𝑁𝑝 + 𝑎20

)︂
𝑅𝑠 −

− 1

16

(︂
𝑁𝑝 + 𝑎20
1 + 𝑝

)︂2
𝑎20 = 0, (8)

in which

𝑁𝑝 =
4𝛾𝜈(1− 𝛽0𝜈)(1− 𝑝)

2𝛾0(𝛽0 − 𝜈)2
− 𝑎20. (9)

Then the roots of the relativistic effective potential
function can be easily found, by using the solutions
of the cubic equation. Solving Eq. (8) gives three so-
lutions as

𝑟𝑠1 = 1, (10)

𝑟𝑠2 =

[︂(︂
𝑁𝑝 +

√︁
𝑁2

𝑝 − 16𝑁𝑐𝑎20

)︂
/8𝑁𝑐

]︂1/2
, (11)

𝑟𝑠2 =

[︂(︂
𝑁𝑝 −

√︁
𝑁2

𝑝 − 16𝑁𝑐𝑎20

)︂
/8𝑁𝑐

]︂1/2
. (12)

Three cases can be considered:
(1) if 𝑝 > 1 − 𝜂𝑎0

√
𝑁𝑐 − 𝜂2𝑎20/4, where 𝜂 =

= 𝛾𝜈(1−𝛽0𝜈)
𝛾0(𝛽0−𝜈)2 , the equation has three real roots: 𝑟𝑠1 =

= 1 and 𝑟𝑠2 = 𝑟𝑠3 =
√︀
𝜂𝑎0/2

√
𝑁𝑐 > 1;

(2) if 𝑝 < 1−𝑁𝑐 − 𝜂2𝑎20/2, the equation 𝑉 (𝑟𝑠) = 0
has three distinct real roots 𝑟𝑠3 < 𝑟𝑠2 < 𝑟𝑠1 = 1;

(3) if 1−𝑁𝑐 − 𝜂2𝑎20/2 ≤ 𝑝 ≤ 1− 𝜂𝑎0
√
𝑁𝑐 − 𝜂2𝑎20/4,

three kinds of cases can be considered:
(3-1) if 𝑁𝑐 = 𝑁⋆

𝑐 , where the critical channel param-
eter 𝑁⋆

𝑐 = 𝜂2𝑎20/4, the equation 𝑉 (𝑟𝑠) = 0 has three
real roots: twofold root 𝑟𝑠1 = 𝑟𝑠2 = 1 and 𝑟𝑠3 < 1;

(3-2) if 𝑁𝑐 > 𝑁⋆
𝑐 , three types can be discussed as

follows:
(3-2-1) if 𝑝 > 1 − 𝜂𝑎0

√
𝑁𝑐 − 𝜂2𝑎20/4, the equation

𝑉 (𝑟𝑠) = 0 has only one real root, i.e., 𝑟𝑠1 = 1;
(3-2-2) if 1 − 𝑁𝑐 − 𝜂2𝑎20/2 < 𝑝 < 1 − 𝜂𝑎0

√
𝑁𝑐 −

− 𝜂2𝑎20/4, the equation 𝑉 (𝑟𝑠) = 0 has three real roots:
twofold root 𝑟𝑠2 < 𝑟𝑠1 < 𝑟𝑠3;

(3-2-3) if 𝑝 = 1 − 𝑁𝑐 − 𝜂2𝑎20/2, then the equation
𝑉 (𝑟𝑠) = 0 has three unequal real roots: 𝑟𝑠1 = 1 <
< 𝑟𝑠3 < 𝑟𝑠2;

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 12 1019



E. Heidari

Fig. 1. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.3 and 𝑝 = 0.85

Fig. 2. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.3 and 𝑝 = 0.95

Fig. 3. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.04 and 𝑝 = 0.95

Fig. 4. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.4 and 𝑝 = 0.75

Fig. 5. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.45 and 𝑝 = 0.9

(3-3) if 𝑁𝑐 < 𝑁⋆
𝑐 , the following results are given:

(3-3-1) if 𝑝 = 1 − 𝜂𝑎0
√
𝑁𝑐 − 𝜂2𝑎20/4, the equation

𝑉 (𝑟𝑠) = 0 has triple root, i.e., 𝑟𝑠1 = 𝑟𝑠2 = 𝑟𝑠3 = 1;
(3-3-2) if 1 − 𝑁𝑐 − 𝜂2𝑎20/2 < 𝑝 < 1 − 𝜂𝑎0

√
𝑁𝑐 −

− 𝜂2𝑎20/4, the equation 𝑉 (𝑟𝑠) = 0 has only one real
root, i.e., 𝑟𝑠1 = 1;

(3-3-3) if 𝑝 = 1−𝑁𝑐−𝜂2𝑎20/2, the equation 𝑉 (𝑟𝑠) =
= 0 has three real roots: twofold roots: 𝑟𝑠1 = 1 and
𝑟𝑠2 = 𝑟𝑠3 =

√︀
𝜂𝑎0/2

√
𝑁𝑐 < 1.

Figures 1–9 show the variations of the potential, 𝑉,
for various values of 𝑝 and 𝑁𝑐 corresponding to the
cases (1)-(3-3-3), respectively. In all cases, the fixed
parameters 𝜈 = 0.4, 𝛽 = 0.8, and 𝑎0 = 0.3 are con-
sidered. In Fig. 3, the position 𝑟𝑠 = 1 is stable. In
this case, (3-1), the particle will be at rest. This case
could be related to a constant spot size. In Figs. 1,
4, 5, 8, and 9, the position 𝑟𝑠 = 1 is unstable. These
cases correspond to the catastrophic focusing. In fact,
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Fig. 6. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.45 and 𝑝 = 0.65

Fig. 7. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.02 and 𝑝 = 1.01

in this position, the particle will move to the position
𝑟𝑠 → 1 for the certain parameters introduced in these
cases. As is clear from Figs. 2 and 6, the particle will
move periodically between 𝑟𝑠1 and 𝑟𝑠2 in cases (2) and
(3-2-3), which shows the characteristic feature of pe-
riodic solutions. Finally, in the case of (3-3-1), Fig. 7,
the particle is in the critical state.

4. Relativistic Kinetic Dispersion
Relation of Cherenkov Radiation

In this section, we present the relativistic corrections
to the kinetic dispersion relation for the Cherenkov
radiation waves briefly. We start with the Vlasov
equation

𝜕𝑓𝛼(x,u, 𝑡)
𝜕𝑡

+ V(u) · ∇𝑓𝛼(x,u, 𝑡) +
𝑞𝛼
𝑚𝛼

×

Fig. 8. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.02 and 𝑝 = 1.02

Fig. 9. Relativistic effective potential 𝑉 (𝑟𝑠) as a function of
the spot size 𝑟𝑠 for 𝑁𝑐 = 0.02 and 𝑝 = 1

×
[︂
E +

1

𝑐

(︀
V(u)× H

)︀]︂𝜕𝑓𝛼(x,u, 𝑡)
𝜕V

= 0. (13)

Here, 𝑚 is the mass, 𝑐 the speed of light in vacuum, 𝑞
the charge, and 𝐸 and 𝐻 are the electric and magnetic
field vectors, respectively. The quantity 𝛼 represents
the species of the plasma. Now, in the case where the
thermal pressure is much smaller than the magnetic
one, the kinetic dispersion relation of the system with
regard for relativistic corrections can be written as

1 + 𝛾2
𝜈(𝛽 − 𝑉 )𝛾0𝑘

−2
𝑥

∑︁
𝛼

𝜔2
𝑝𝛼

𝜈2𝑡ℎ,𝛼
(1 + 𝑖𝑠𝛼) = 0, (14)

where 𝑠𝛼 =
√
𝜋𝐿𝛼𝑍𝛼𝑊 (𝑍𝛼)𝐴(𝜇𝛼), 𝜇 = 𝑘2⊥𝑟

2
⊥, 𝑟𝐿 =

= 𝜈th/𝜔𝑐 is the Larmor radius, 𝜔𝑐 = 𝑞𝐻/𝑚𝑐 the cy-
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clotron frequency, 𝜈𝑡ℎ = (𝑘B𝑇/𝑚)1/2 the thermal ve-
locity, 𝜔𝑝 = (4𝜋𝑛𝑒2/𝑚)1/2 the plasma frequency, 𝑛
the number density, 𝐴 = 𝐼0𝑒

−𝜇 describes the effect of
the magnetic field parameter, 𝐼0 the zero-order mod-
ified Bessel function, 𝑧 = 𝜔−k𝑈√

2𝑘𝑠𝜈𝑡ℎ
, and

𝐿 = 1− 𝑘𝑥𝜈
2
𝑡ℎ

𝜔𝑐(𝜔 − k𝑈)

𝑑

𝑑𝑥
(ln𝑛+ ln𝑇 ) (15)

represents the effects of the temperature and the
inhomogeneity of the plasma, and 𝑘𝑥 and 𝑘⊥ are
the components of the wave number which are ori-
ented in parallel and perpendicularly to the magnetic
field, respectively. Note that, in the limit 𝛽 → 0,
Eq. (14) includes the nonrelativistic dispersion rela-
tion of Cherenkov radiation [23].

5. Conclusions

Assuming a circularly polarized Gaussian laser pulse
propagating in a plasma channel with a parabolic
density profile, we have obtained a relativistic ef-
fective potential and its governing equation. Then,
by analyzing the differential equation of the pulse
spot size, we have investigated the conditions for
the existence of electromagnetic solitary waves. We
have illustrated some solitary wave solutions numeri-
cally. Furthermore, the relativistic corrections to the
kinetic dispersion relation for the Cherenkov radia-
tion are presented. To this end, we started with the
Vlasov equation and have investigated the dispersion
relation in the case where the thermal pressure is
much smaller than the magnetic one.
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Azad University, Bushehr Branch.
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РЕЛЯТИВIСТСЬКI ЛАЗЕР-ПЛАЗМА ВЗАЄМОДIЇ.
СОЛIТОНИ, ЩО РУХАЮТЬСЯ В КАНАЛАХ ПЛАЗМИ,
I КIНЕТИЧНЕ ДИСПЕРСIЙНЕ СПIВВIДНОШЕННЯ
ДЛЯ ЧЕРЕНКОВСЬКОГО ВИПРОМIНЮВАННЯ

Р е з ю м е
Вивчено поширення iнтенсивного лазерного пучка в пла-
змовому каналi. Розглянуто поширення гаусового лазерно-

го iмпульсу в релятивiстському плазмовому каналi з пара-
болiчним профiлем густини. Рiвняння еволюцiї для розмiру
лазерної плями отримано аналiтично i вирiшено чисельно.
Його рiшення в термiнах релятивiстського ефективного по-
тенцiалу застосованi для знаходження умов iснування еле-
ктромагнiтних солiтонiв. Визначальне рiвняння описує ефе-
кти релятивiстських поправок до пондеромоторних самока-
налiруванню, фокусуванню i самофокусуванню попередньо
створеного каналу. Дано кiлькiсний опис деяких солiтонних
рiшень. Знайдено релятивiстськi поправки до закону дис-
персiї черенковського випромiнювання в запиленiй плазмi.
У межах малих швидкостей усi результати роботи перехо-
дять до вiдповiдних нерелятивiстських виразiв.
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