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HARMONIC OSCILLATOR CHAIN

IN NONCOMMUTATIVE PHASE SPACE
WITH ROTATIONAL SYMMETRY

We consider a quantum space with a rotationally invariant noncommutative algebra of co-
ordinates and momenta. The algebra contains the constructed tensors of noncommutativity
involving additional coordinates and momenta. In the rotationally invariant noncommutative
phase space, the harmonic oscillator chain is studied. We obtain that the noncommutativity
affects the frequencies of the system. In the case of a chain of particles with harmonic oscil-
lator interaction, we conclude that, due to the noncommutativity of momenta, the spectrum
of the center-of-mass of the system is discrete and corresponds to the spectrum of a harmonic

oscillator.
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1. Introduction

Owing to the development of String Theory and
Quantum Gravity [1, 2|, studies of the idea that
space coordinates may be noncommutative has at-
tracted much attention. The noncommutativity of co-
ordinates leads to the existence of the minimal length
and minimal area [3, 4] and to the space quanti-
zation. The canonical version of a noncommutative
phase space is characterized by the algebra

(X, X;] = ihb;5, (1)
[P, Py] = il (2)
[Xs, Pj] = ih(8s; + 7i5), (3)
where 0,5, 1:5, 7i; are elements of the constant matri-

ces. The parameters vy;; are considered to be defined
as vij = Y, Oarnjr/4 [5].

The noncommutative algebra (1)—(3) with 6,5, 75,
and v;; being constants is not rotationally invariant
[6,7]. Different generalizations of the commutation re-
lations (1)—(3) were considered to solve the problem
of rotational symmetry breaking in the noncommuta-
tive space [8—11]. Many papers are devoted to studies
of the position-dependent noncommutativity [12-18]
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and spin noncommutativity [19, 20]. The algebras of
these types of noncommutativity are rotationally in-
variant and are not equivalent to noncommutative al-
gebras of the canonical type.

In work [21], a rotationally invariant noncommuta-
tive algebra of the canonical type was constructed on
the basis of the idea of a generalization of parame-
ters of noncommutativity to tensors. Introducing ad-
ditional coordinates (@;, b;) and additional momenta
(p?, pP), we proposed to define these tensors in the
form

Cel% ~
Oij = == > ek, (4)
enh e b
My = o > ity (5)
Pk

where the constants cy and ¢, are dimensionless, and
lp is the Planck’s length. To preserve the rotational
symmetry, the coordinates and momenta (a;, b; and
D, ;5?) are supposed to be governed by rotationally
invariant systems. The systems are considered to be

harmonic oscillators

~a\2 ~2
Hgsc = hwosc ((pQ) + (;)7 (6)
~b\2 72
HCI:SC = MOSC <(p2) + b2>7 (7)
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with v/A/ V/MoscWose = lp and large frequency wosc
(the distance between energy levels is very large,
and oscillators are considered to be in the ground
states). The algebra for the additional coordinates
and additional momenta reads

(@, ;] = [bi, bs] = [as, b5] = 0, (8)

¢, 53] =[5y, 8] = (¢ 53] = 0, (9)
[a:, 7] = [bs, B} = 0, (10)
[ai, X;) = [ai, Py] = B}, X;] = [}, P] = O, (11)
[, 5] = [bi, ) = b (12)

Therefore, we have [0;;, Xj] = [0:5, Px] = [1:5, X] =
= [mij, Px) = [Vij>» X&] = [vij, Pe] = 0, as in the case
of canonical noncommutativity (1)-(3) with 6;;, 75,
7i; being constants.

In the present paper, we will study the influence of
the noncommutativity of coordinates and noncommu-
tativity of momenta on the spectrum of a harmonic
oscillator chain. Studies of a system of harmonic oscil-
lators are important in various fields of physics includ-
ing molecular spectroscopy and quantum chemistry
[22-25], quantum optics [26-28], nuclear physics [29—
31], and quantum information processing [28, 32, 33].

Harmonic oscillators were intensively studied in the
frame of noncommutative algebras [34—48|. Recently,
the experiments with micro- and nanooscillators were
implemented for probing the minimal length [49]. In a
noncommutative space of the canonical type, two cou-
pled harmonic oscillators were studied in [50-52]. In
[53], the spectrum of a system of N oscillators inter-
acting with each other (symmetric network of cou-
pled harmonic oscillators) has been examined in a ro-
tationally invariant noncommutative phase space. In
[54], the classical N interacting harmonic oscillators
were examined in a noncommutative space-time. In
[55, 56|, the influence of the noncommutativity of
coordinates and the noncommutativity of momenta
on the properties of a system of free particles was
examined.

The paper is organized as follows. In Section 2,
we study the energy levels of a harmonic oscilla-
tor chain in a rotationally invariant noncommuta-
tive phase space. A particular case of a chain of par-
ticles with harmonic oscillator interaction is exam-
ined. Conclusions are presented in Section 3.
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2. Spectrum of a Harmonic
Oscillator Chain in the Rotationally
Invariant Noncommutative Phase Space

Let us consider a chain of NV interacting harmonic os-
cillators with masses m and frequencies w in a space
with (1)—(3) and (4), (5) in the case of the closed con-
figuration of the system. So, let us study the Hamil-
tonian

n-y 0

X (1))2

2y mat O

n:l n=1
+ kZ(X(”“) — X(m)2 (13)
n=1

with the periodic boundary conditions XV+1) =
= XM k is a constant.

In general case, the coordinates and momenta
which correspond to different particles satisfy a non-
commutative algebra with different tensors of non-
commutativity. We have

(n) y(m)y _
(X; 7Xj ] zhémneu , (14)
9 p(m)
(X PO = i, (513 +Z ik 4““ ) (15)
[P, PI™] = ilibyn’) (16)
(n);2
cy 'l .
91(;1) = % Z5ijkaka (17)
k
(n)
ny __Cy B N
m(j) = 7;2 EijkDh (18)
Pk

where indices m,n = (1, ..., N) label the particles [57].
Because of the presence of additional coordinates
and momenta in (17), (18), we have to study the
Hamiltonian, which includes the Hamiltonians of har-
monic oscillators
H=H,+H. +H

osc osc*

(19)

The noncommutative coordinates and noncommuta-
tive momenta can be represented as

1
XMW =a™ 4 5[0@ x p™];, (20)
P(n) _ pgn) 5 [X(n) % n(n)]i» (21)
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where coordinates and momenta sc(n), pgn)

ordinary commutation relations

ihémnv

satisfy the

[, 2{™)] (22)

[ (n) (m)]

N (23)

and the vectors 8("), (") have the components 91(”) =

=ik €k} /2 771(”) =ik Eijkf]](-z)/2 In our paper
[57], we proposed the constants ¢, ¢ in the ten-
sors of noncommutativity to be determined by the
mass as c(g")mn = 4 = const, cg,n)/mn = & = const
with 7, &, being the same for different particles. The-

refore, one has

y12
91(?) TZLPH Z Sljkak) (24)
n ahmn -
771(]) = l% Zfiﬂcpk- (25)
k

The determination of the tensors of noncommuta-
tivity in the forms (24) and (25) gives a possibility
to consider the noncommutative coordinates as kine-
matic variables [57] and to recover the weak equiv-
alence principle [58]. Taking (24) and (25) into ac-
count in the case where the system consists of os-

cillators with the same masses, one has Q(n) = 0,

nz(gn) = 1;. Using (20)—(21), the Hamiltonian H,
reads

40 (p ) - p)), (26)

In [57], we showed that, up to the second order in
AH defined as
AH = Hs - <Hs>aba

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 2

(27)

the Hamiltonian

Hy= (H)) o + H., + H?

osc osc

(28)

can be studied, because the corrections to the spec-
trum of Hy caused by terms AH = H — Hy =
= H, — (Hs)qp vanish up to the second order in per-
turbation theory. Here, the notation (...)4 is used for
the averaglng over the well-known eigenstates of H,

and Hosc (dab = <1/’0,0,01/’0,0,0|-~-‘¢0,0,o¢0,0,0> For
the harmonic oscillator chain, we have

2

N n)
AH=Z("XX + g x p™2 -
n=1
_me?(@x™ xp™))  (n[x™ xp™))
2 2m
— kO [(X(n+1) _ X(ﬂ)) % (p(n+1) _ p(n+1))] 4
2 (n))2
K (n+1) _ _(n)\12 _ (n*) (x") _
+ 710 x () — pl2 — L

02)mw? ()2 k

- e el e —p2) (2

12

Here, we take into account that (Y o ol@:|v6o0) =
= (Y8 0.0Pil6 0.0) = 0 and use the notations

iy, c2ls (62)6;;
(0:0;) = o <¢000|az%|w000> 207;2)5 -3 .,
(30)
202 b 2C2 7’]2 62
() = " Ul oo = gzt = 0%
P
(31)

So, analyzing the form of AH (29), we see that,
up to the second order in the parameters of noncom-
mutativity, one can study the Hamiltonian Hy. This
Hamiltonian can be rewritten for convenience as

(n) 2 (n))2

1Y meﬂwcﬁ(x )

Hy

Z(Qmﬁ et

=+ k(x("'H) _ X(”))

PR 2 H HHL)  (32)
with
2,202 -1
e = m (1 A0 >) , (33)
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m2w2(92> 1/2
6> . (34)

commute with Hy. The co-
p(™) satisfy (22) and

n2 1/2
= 2+ 21+

The terms H% . + H®

osc osc
ordinates and momenta x(™,

(23). Let us rewrite Hy as

huwe 4kmeg(02) . 5 T\ - (1)) ~(n
Ho= "0 Z <1—|—;<>smz N) B (YT +

CHZ(

using

————sin® N) £ (xM)T - (35)

meffweﬁ

2minl
(n) ()
xW = —— Nmeﬁ%ﬁ Z ( ) %W, (36)

(see, e.g., [28]). Introducing operators agn) defined as

m_ 1 ~(n) | .<(n
a; —\/m(wna:j + ip; ), (38)
< k 5N L/2
wy, = (1 + 5~ sin® — X
MefWig N
Al (62 12
x <1+ m;< ) 27;7) : (39)
we have
/2
4kmeff e 7rn>1
- eﬁzz( m
n=1j=1 N

The spectrum of Hy reads

8k . ,ma\’?
E{m}{nz}{ns}hz<eff+ L N> X

a=1

dkmeg(02) . , ma 1/ a a
><<1—|—381n2N n()+n(2)+
n® + e (1@ + 0 0@ 1+ 3) (41
e § e ()2 4 5) (o)

where n( 9 are quantum numbers (nz(a) =0,1,2,...).
In view of (33) and (34), the frequencies read

wh = <w2 + <772>> (1 n m2wg<92> .

6m?2
134

n 4k*m{6?) m2 T\ % sin2 ™
3 N N
2 2/p2
%Wsmzl%. (42)

For a chain of particles with harmonic oscillator in-
teraction described by Hamiltonian (13) with w = 0,
up to the second order in the parameters of noncom-
mutativity, one has

E{m} {n2}{ns} =

a a 3
_Zhw ( )+n +n§) 2> (43)
with
8k . o ma  (n?)  32k*6?) . ,ma
ngESIH2W+W T 1 4= (44)

It is worth noting that, in the case of a space with
noncommutative coordinates and commutative mo-
menta (1)—(3) with (4) and 7;; = 0, the spectrum of
a chain of particles with harmonic oscillator interac-
tion reads as (43) with

o, 8k . ,ma  32k%0?) . ,ma

w, = —sin® — 4+ ———=sin” —.

4
9 m N 3 N (45)

Note that w3 equals zero and corresponds to the spec-
trum of the center-of-mass of the system. The non-
commutativity of momenta leads to a discrete spec-
trum of the center-of-mass of a chain of interacting
particles. From (43) and (44), we have that the spec-
trum of the center-of-mass of the system corresponds
to the spectrum of a three-dimensional harmonic os-
cillator with the frequency determined as

wi = éﬁ# (46)

In the limit (§2) — 0, (n?
the well-known result w? = w?+ fn
instance, was presented in [28, 62].

) — 0, relation (42) yields

2 Ta
& » which, for

3. Conclusions

We have considered a rotationally invariant algebra
with the noncommutativity of coordinates and the
noncommutativity of momenta. The algebra is con-
structed, by involving additional coordinates and ad-
ditional momenta (1)—(3) with (4), (5). We have stud-
ied the influence of the noncommutativity on the

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 2
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spectrum of a harmonic oscillator chain with peri-
odic boundary conditions. For this purpose, the total
Hamiltonian has been examined (19), and the energy
levels of the harmonic oscillator chain have been ob-
tained up to the second order in the parameters of
noncommutativity. We have found that the noncom-
mutativity does not change the form of chain’s spec-
trum (41). The noncommutativity of coordinates and
the noncommutativity of momenta affect the frequen-
cies of the system (42).

The case of a chain of particles with harmonic oscil-
lator interaction described by Hamiltonian (13) with
w = 0 has been studied. We have obtained that the
spectrum of the center-of-mass of the system is dis-
crete because of noncommutativity of momenta. This
spectrum corresponds to the the spectrum of a har-
monic oscillator with frequency (46).
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X.II. "'amenko

JTAHITIO?KOK TAPMOHIYHUX
OCHMJIATOPIB ¥ HEKOMYTATUBHOMY
DOAB0OBOMY ITPOCTOPI 3 COEPMTYHOIO CUMETPIEIO

Peszowme

Mu posrisaeMo KBaHTOBHII IMPOCTIp 3 ceprdHO-CUMETPUY-
HOIO HEKOMYTATHUBHOIO aJre6poI0 KOODAHHAT Ta IMILYJILCIB.
Ausrebpa MICTUTH TEH30PH HEKOMYTATHBHOCTI, IOOYAOBaHU-
MU 3 3aJIy9YeHHSIM JOJATKOBHX KOODJHHAT Ta IMIYJbCiB. Y
cEePUIHO-CUMETPUYHOMY IIPOCTOPI JTOCJIKYETbCH JIAHITIO-
2KOK I'apMOHIYHUX OCIMIATOPiB. MK oTpuMasn, 110 HEKOMyTa-
THUBHICTH BIUINBAE HA YACTOTU CUCTEMU. Y BUIAJKY JIAHIIOXKKA
YaCTHHOK 3 OCHMJISTOPHOIO B3a€MOJIEI0 MU IPUHIIIN 10 BU-
CHOBKY IIPO Te, IO CIEKTP IEHTPa MaC CUCTEMH € NUCKPETHUM
i BiATIOBi1a€ CIIEKTPY rapMOHIYHOI'O OCHMJISATOPA, [0 3yMOBJIE-
HO HEKOMYTATHBHICTIO IMITyJIbCiB.
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