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CONSIDERATION OF THE COMPETING FACTORS
IN CALCULATIONS OF THE CHARACTERISTICS
OF NON-MAGNETIC DEGENERATE DWARFS

Using the equation of state of the electron-nuclear model at high densities and the mechanical
equilibrium equation, we have investigated the influence of interparticle interactions and the
axial rotation on the macroscopic characteristics (mass, surface shape) of massive degenerate
dwarfs. We propose a method of solving the equilibrium equation in the case of rotation that
uses the basis of universal functions of the radial variable. The conditions, under which the
axial rotation can compensate for a weight loss of the mass due to the Coulomb interactions,
have been established. The maximal value of the relativistic parameter, at which the stability
is disturbed, is determined within the general theory of relativity (GTR).

K e yw o r d s: mechanical equilibrium equation, interparticle interactions, axial rotation, basis
of universal functions, stability of dwarfs.

1. Introduction

The discovery of the degenerate dwarfs at the begin-
ning of the XXth century [1] gave rise to the prob-
lem of existence and stability of stars, which have no
sources of energy. R. Fowler’s idea [2] that the exis-
tence of these objects is due to the pressure of the
degenerate electron gas at high densities of matter
led to the formation of an electron-nuclear model, in
which a star consists of an ideal degenerate relativis-
tic electron subsystem in the paramagnetic state at
𝑇 = 0 K and a static nuclear subsystem, which is con-
sidered as a continuous classical environment [3,4]. In
the frame of this model, the theory of cold degener-
ate dwarfs was constructed by S. Chandrasekhar, the
main results of which are restrictions on the mass
(𝑀 ≤ 1.45𝑀⊙) and the peculiar “mass-radius” ra-
tio. In the works by E. Shatzman [5], S. Kaplan [6],
R. James [7], E. Salpeter [8], Ya. Zeldovich and I. No-
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vikov [9], S. Shapiro and S. Teukolsky [10], and other
researchers, some generalizations of Chandrasekar’s
model, which consider important factors of the for-
mation of a structure of degenerate dwarfs, were pro-
posed.

The development of the theory was restrained by
the lack of observable data. The situation changed at
the end of the XXth century, when a large amount of
spectral data on the degenerate dwarfs in a vicinity
of the Sun was obtained with help of the space ob-
servatories. It turned out that the degenerate dwarfs
are characterized by the same variety of charac-
teristics like stars of other types. The most strik-
ing fact indicating the limitation of applying Chan-
drasekhar’s model is the distribution of dwarfs with
small and medium masses on the “mass-radius” plane
[11], which is a manifestation of the incomplete degen-
eration of the subsystem of electrons, since the effec-
tive temperatures of the photosphere of some dwarfs
reach 105 K. However, the influence of temperature
effects on the characteristics of massive dwarfs is very
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small. In the case of massive non-magnetic dwarfs,
the main factors of the structure formation are inter-
particle Coulomb interactions and the axial rotation,
which are competing ones. The dwarfs with masses
approaching Chandrasekar’s limit are found in the bi-
nary systems, where the important factor at certain
stages of evolution is the exchange of mass between
the components.

The detailed calculations of the degenerate dwarf
characteristics, when various factors of the forma-
tion of these objects are simultaneously taken into
account, are relevant in connection with the problem
of the stability of the degenerate dwarfs, as well as
with the hypothesis that massive degenerate dwarfs
are precursors of supernovae of type Ia.

The main purpose of our work is to set restrictions
on the mass of dwarfs, while considering the Coulomb
interactions and the axial rotation.

2. Equilibrium Equation

The internal structure of a star with axial rotation is
determined by the equilibrium equation [12]: at each
point given by the radius vector r, the condition

∇𝑃 (r) = −𝜌(r)∇{Φgrav(r) + Φ𝑐(r)} (1)

is satisfied, where 𝑃 (r) is the local pressure, 𝜌(r) is
the local density of matter,

Φgrav(r) = −𝐺
∫︁

𝜌(r′)𝑑r′

|r− r′|
(2)

determines the gravity potential, and Φ𝑐(r) is the cen-
trifugal one. We consider that the distribution of mat-
ter has the axial symmetry, and the axis of rotation
passes through the center of mass of the star. In the
spherical coordinate system, the coordinate origin be-
ing at the center of mass,

Φ𝑐(r) = −1

2
𝜔2𝑟2 sin2 𝜃, (3)

where 𝜔 is the constant angular velocity, and 𝜃 is the
polar angle. The density of matter 𝜌(r) is expressed in
terms of the local value of the relativistic parameter

𝑥(r) =
~
𝑚0𝑐

(3𝜋2𝑛(r))1/3, (4)

𝑚0 is the electron mass, 𝑐 is the speed of light, and
𝑛(r) is the number density of electrons at the point

r. According to definition (4),

𝜌(r) = 𝑚𝑢𝜇𝑒𝑛(r) =
𝑚𝑢𝜇𝑒

3𝜋2
𝑥3(r)

(︁𝑚0𝑐

~

)︁3
, (5)

where 𝑚𝑢 is the atomic mass unit, 𝜇𝑒 = 𝐴/𝑧 (𝐴 is
the mass number, 𝑧 is the charge of a nucleus).

The equation of state of the macroscopic homoge-
neous electron-nuclear model at 𝑇 = 0 K was ob-
tained in work [13]. This equation is convenient to
present in the form

𝑃 (𝑥) =
𝜋𝑚4

0𝑐
5

3ℎ3
{ℱ(𝑥)− 𝑓(𝑥|𝑧)}, (6)

where ℱ(𝑥) is the contribution of the degenerate ideal
relativistic electron gas, and 𝑓(𝑥|𝑧) > 0 is the contri-
bution of interactions (see Appendix 1). To describe
the star, we have used expression (6) in the local
approximation by replacing 𝑥 with its local value
𝑥(r). In this approximation, the equilibrium equation
is reduced to such differential equation for the local
value of the relativistic parameter:

Δ{[1 + 𝑥2(r)]1/2 − 1} = 2
𝜔2𝑚𝑢𝜇𝑒

𝑚0𝑐2
−

− 32𝜋2𝐺

3(ℎ𝑐)3
(𝑚𝑢𝜇𝑒𝑚0𝑐

2)𝑥3(r)+

+ (2𝑥(r))−3

(︂
𝑑

𝑑𝑥(r)
𝑓(𝑥(r))|𝑧)

)︂
Δ𝑥(r)+

+2−3

(︂
𝑑

𝑑𝑥(r)

[︂
1

𝑥3(r)

𝑑

𝑑𝑥(r)
𝑓(𝑥(r)|𝑧)

]︂)︂
(∇𝑥(r))2. (7)

Here, Δ is the Laplace operator in the variables
(𝑟, 𝜃). The derivatives from Eq. (7) are illustrated in
Fig. 1.

Let us introduce the dimensionless variables

𝜉 =
𝑟

𝜆
, 𝑌 (𝜉, 𝜃) = 𝜀−1

0 {[1 + 𝑥2(𝑟)]1/2 − 1}, (8)

as well as the dimensionless angular velocity accord-
ing to the expression

Ω2 = 2
𝜔2𝑚𝑢𝜇𝑒𝜆

2

𝑚0𝑐2𝜀0
, (9)

where

𝜀0 ≡ 𝜀0(𝑥0) = [1 + 𝑥20]
1/2 − 1, 𝑥0 ≡ 𝑥(0). (10)
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If the scale 𝜆 is determined by the expression

32𝜋2𝐺

3(ℎ𝑐)3
(𝑚𝑢𝜇𝑒𝑚0𝑐

2𝜆𝜀0)
2 = 1, (11)

then the equilibrium equation has the following di-
mensionless form:

Δ(𝜉, 𝜃)𝑌 (𝜉, 𝜃) = Ω2 − Γ3(𝜉, 𝜃)+

+𝜙1(𝜉, 𝜃|𝑧)Δ(𝜉, 𝜃)Γ(𝜉, 𝜃)+

+𝜙2(𝜉, 𝜃|𝑧)
{︂[︂

𝜕

𝜕𝜉
Γ(𝜉, 𝜃)

]︂2
+
1− 𝑡2

𝜉2

[︂
𝜕

𝜕𝑡
Γ(𝜉, 𝜃)

]︂2}︂
. (12)

Here, the notations are as follows:

Γ(𝜉, 𝜃) =

[︂
𝑌 2(𝜉, 𝜃) +

2

𝜀0
𝑌 (𝜉, 𝜃)

]︂1/2
;

𝜙1(𝜉, 𝜃|𝑧) = (2𝑥)−3 𝑑𝑓(𝑥|𝑧)
𝑑𝑥

⃒⃒⃒⃒
𝑥=𝑥(𝜉,𝜃)

;

𝜙2(𝜉, 𝜃|𝑧) =
𝜀0
8

𝑑

𝑑𝑥

{︂
1

𝑥3
𝑑𝑓(𝑥|𝑧)
𝑑𝑥

}︂ ⃒⃒⃒⃒
𝑥=𝑥(𝜉,𝜃)

;

𝑥(𝜉, 𝜃) = 𝜀0Γ(𝜉, 𝜃); 𝑡 = cos 𝜃;

Δ(𝜉, 𝜃) = Δ𝜉 +
1

𝜉2
Δ𝜃; Δ𝜉 =

1

𝜉2
𝜕

𝜕𝜉

(︂
𝜉2
𝜕

𝜕𝜉

)︂
;

Δ𝜃 =
𝜕

𝜕𝑡

(︀
1− 𝑡2

)︀ 𝜕
𝜕𝑡
.

(13)

In Eq. (12), the independent parameters 𝑥0, Ω2, 𝑧 ap-
pear. The equation in partial derivatives (12) satisfies
the boundary conditions

𝑌 (0, 𝜃) = 1;
𝜕

𝜕𝜉
𝑌 (𝜉, 𝜃) = 0 by 𝜉 = 0. (14)

In order to highlight the analytical dependence on
model parameters, we introduce an approximate so-
lution of Eq. (12). Let us consider Eq. (12) without
rotation, by setting Ω = 0 and replacing 𝑌 (𝜉, 𝜃) with
the function 𝑦(𝜉) according to the spherical symmetry
of the problem.

3. Influence of the Interactions

The function 𝑦(𝜉) satisfies the one-dimensional differ-
ential equation

Δ𝜉𝑦(𝜉) = −
{︂
𝑦2(𝜉) +

2

𝜀0
𝑦(𝜉)

}︂3/2

+

a

b
Fig. 1. Dependence of the functions 𝜙1(𝑥|𝑧) = (2𝑥(𝑟))−3 ×
× 𝑑𝑓(𝑥(𝑟))|𝑧)/𝑑𝑥(𝑟) (a) and 𝑑𝜙1(𝑥|𝑧)/𝑑𝑥 (b) on the relativistic
parameter 𝑥 and the nuclear charge 𝑧 (curve 1 – 𝑧 = 2; 2 –
𝑧 = 6; 3 – 𝑧 = 12)

+𝜙1(𝜉|𝑧)Δ𝜉

[︂
𝑦2(𝜉) +

2

𝜀0
𝑦(𝜉)

]︂1/2
+

+𝜙2(𝜉|𝑧)
{︂
𝑑

𝑑𝜉

[︂
𝑦2 +

2

𝜀0
𝑦(𝜉)

]︂1/2}︂2

, (15)

in which 𝑥0 and 𝑧 are the parameters, and the func-
tions 𝜙𝑖(𝜉|𝑧) are determined by Eqs. (13), where
one should make a replacement 𝑥 → 𝜀0(𝑦

2(𝜉)+
+ 2

𝜀0
𝑦(𝜉))1/2. Regular solutions of the equation sat-

isfy the conditions 𝑦(0) = 1, 𝑦′(0) = 0. The condi-
tion 𝑦(𝜉) = 0 determines the dimensionless radius of
the star 𝜉1(𝑥0|𝑧). Setting 𝜙1 = 𝜙2 = 0, the equa-
tion becomes a one-parameter equilibrium equation
of Chandrasekar’s model (the standard model). The
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Table 1. Dependence of the dimensionless
radius 𝜉1(𝑥0|𝑧) on the parameters 𝑥0 and 𝑧 (𝜉1(𝑥0)

corresponds to the standard model)

𝑥0 𝜉1(𝑥0)
𝜉1(𝑥0|𝑧)

𝑧 = 2 𝑧 = 6 𝑧 = 12 𝑧 = 26

1.0 1.03401 1.00101 0.98801 0.97401 0.94801

2.0 2.06001 2.02501 2.00601 1.98501 1.94801

3.0 2.78201 2.74601 2.72401 2.70001 2.65601

4.0 3.30701 3.27001 3.24701 3.22001 3.17201

5.0 3.70701 3.67001 3.64501 3.61701 3.56601

6.0 4.02301 3.98601 3.96001 3.93101 3.87801

7.0 4.28001 4.24301 4.21701 4.18701 4.13201

8.0 4.49301 4.45601 4.43001 4.39901 4.34401

9.0 4.67401 4.63701 4.61001 4.57901 4.52201

10.0 4.82801 4.79101 4.76401 4.73301 4.67601

15.0 5.35801 5.32201 5.29401 5.26301 5.20301

20.0 5.67001 5.63501 5.60701 5.57501 5.51501

25.0 5.87701 5.84201 5.81401 5.78201 5.72201

30.0 6.02401 5.98901 5.96101 5.92901 5.86901

Table 2. Dependence of the dimensionless
mass ℳ(𝑥0|𝑧) on the parameters 𝑥0, 𝑧 (ℳ(𝑥0)

corresponds to the standard model)

𝑥0 ℳ(𝑥0)
ℳ(𝑥0|𝑧)

𝑧 = 2 𝑧 = 6 𝑧 = 12 𝑧 = 26

1.0 0.707066 0.689037 0.673304 0.65581 0.624491

2.0 1.24303 1.22092 1.20126 1.17904 1.13834

3.0 1.51862 1.49465 1.47331 1.44912 1.4045

4.0 1.67141 1.64646 1.62426 1.59907 1.55247

5.0 1.76395 1.73843 1.71573 1.68996 1.64222

6.0 1.82404 1.79816 1.77515 1.74901 1.70056

7.0 1.86521 1.83909 1.81586 1.78948 1.74054

8.0 1.89462 1.86832 1.84495 1.81839 1.76911

9.0 1.91634 1.88992 1.86645 1.83976 1.79023

10.0 1.93284 1.90633 1.88277 1.85599 1.80626

15.0 1.97619 1.94943 1.92567 1.89863 1.84839

20.0 1.99337 1.96651 1.94268 1.91554 1.86508

25.0 2.00186 1.97495 1.95108 1.92389 1.87331

30.0 2.00665 1.97972 1.95583 1.92861 1.87795

solutions of Eq. (15) were found numerically. The
dependence 𝜉1(𝑥0|𝑧) on the parameters 𝑥0 and 𝑧 is
shown in Table 1, where the dimensionless radius of
the star in the standard model 𝜉1(𝑥0) is given for
comparison. As can be seen from this table, account-

ing for interactions leads to a decrease of the radius
{𝜉1(𝑥0)− 𝜉1(𝑥0|𝑧)}(𝜉1(𝑥0))−1 by 0.7% at 𝑧 = 2, 1.2%
at 𝑧 = 6, 1.85% at 𝑧 = 12 and 3% at 𝑧 = 26.

The mass and radius of the star are determined by
the expressions

𝑀(𝑥0|𝜇𝑒|𝑧) =
𝑀0

𝜇2
𝑒

ℳ(𝑥0|𝑧),

ℳ(𝑥0|𝑧) =
𝜉1(𝑥0|𝑧)∫︁

0

𝜉2
{︂
𝑦2(𝜉) +

2

𝜀0
𝑦(𝜉)

}︂3/2

𝑑𝜉,

𝑅(𝑥0|𝜇𝑒|𝑧) =
𝑅0

𝜇𝑒

𝜉1(𝑥0|𝑧)
𝜀0

,

(16)

where the mass and radius scale are the combinations
of the universal constants

𝑀0 =

(︂
3

2

)︂1/2
1

4𝜋

(︂
ℎ𝑐

𝐺𝑚2
𝑢

)︂3/2
𝑚𝑢 =

= 5.740247× 1033 g ≈ 2.88695 𝑀⊙;

𝑅0 =

(︂
3

2

)︂1/2
1

4𝜋

(︂
ℎ3

𝑐𝐺

)︂1/2
1

𝑚0𝑚𝑢
=

= 0.776885× 109 cm ≈ 1.11623× 10−2 𝑅⊙.

(17)

The dependence ℳ(𝑥0|𝑧) on the parameters 𝑥0 and
𝑧 and the dimensionless mass ℳ(𝑥0) in the stan-
dard model are given in Table 2. The relative de-
crease of the mass caused by the influence of inter-
actions {ℳ(𝑥0) − ℳ(𝑥0|𝑧)}(ℳ(𝑥0))

−1 is approxi-
mately 1.4% at 𝑧 = 2, 2.7% at 𝑧 = 6, 4.1% at 𝑧 = 12,
and 7% at 𝑧 = 26 in the region 𝑥0 ≥ 10 (see Table 2).

For intermediate and large values of the relativis-
tic parameter, the function 𝑓(𝑥|𝑧) is approximately
proportional to 𝑥4. In other words, the expression
𝑥−3𝑑𝑓/𝑑𝑥 is close to the constant value, and its
derivative with respect to 𝑥 is very small. This gives
the opportunity to get an approximate estimate of
dwarf’s characteristics without solving Eq. (15) nu-
merically. Due to the fact that, in the core of a
massive dwarf, 𝑥(𝑟) is very close to 𝑥0, the expres-
sion 𝑥−3(𝑟)𝑑𝑓(𝑥(𝑟))/𝑑𝑥(𝑟) can be replaced by the
𝜙1(𝑥0|𝑧) = 𝑑𝑓(𝑥0|𝑧)/𝑑𝑥0. One can neglect the term
proportional to (∇𝑥(𝑟))2 and introduce a new dimen-
sionless coordinate 𝜉 = 𝜉/𝑘 at 𝑘 = {1−𝜙1(𝑥0|𝑧)}1/2.
In this case, Eq. (15) can be reduced to the equation
of the standard model. In this approximation, the so-
lution of Eq. (15) is 𝑦(𝜉) = 𝑦(𝜉/𝑘), where 𝑦(𝜉) is a

780 ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 9



Consideration of the Competing Factors

solution of the equation in the standard model

Δ𝜉𝑦(𝜉) = −
{︂
𝑦2(𝜉) +

2

𝜀0
𝑦(𝜉)

}︂3/2

,

𝜉1(𝑥0|𝑧) = 𝑘𝜉1(𝑥0), ℳ(𝑥0|𝑧) = 𝑘3ℳ(𝑥0),

ℳ(𝑥0) =

𝜉1(𝑥0)∫︁
0

𝜉2
{︂
𝑦2(𝜉) +

2

𝜀0
𝑦(𝜉)

}︂3/2

𝑑𝜉.

(18)

The dimensionless mass and radius calculated by for-
mulae (18) are shown in Table 3. As was shown in
Tables 2 and 3, the relative error of the determina-
tion of the mass in the range 𝑥0 > 5 does not ex-
ceed 1%. At 𝑥0 > 10, it is smaller than 0.3%. The
calculation error of the radius increases with 𝑧. At
𝑧 = 2, it is at most 0.4%. At 𝑧 = 26, it is smaller
than 3%.

4. Influence of Interactions
and the Axial Rotation

The comparison of Tables 2 and 3 shows that Eq. (12)
at Ω ̸= 0 can be substantially simplified by neglecting
the multiplier 𝜙2(𝜉, 𝜃|𝑧) and by replacing the term
proportional to 𝜙1(𝜉, 𝜃|𝑧) by 𝜙1(𝑥0|𝑧)Δ(𝜉, 𝜃)𝑌 (𝜉, 𝜃)
without accuracy loss. One can introduce the dimen-
sionless radial coordinate 𝜉 = 𝑟/�̃�, where �̃� is deter-
mined from the equation

32𝜋2𝐺

3(ℎ𝑐)3
(𝑚𝑢𝜇𝑒𝑚0𝑐

2𝜀0�̃�)
2 = 1− 𝜙1(𝑥0|𝑧). (19)

Then Eq. (12) takes the form

Δ(𝜉, 𝜃)𝑌 (𝜉, 𝜃) = Ω̃2 −
{︂
𝑌 2(𝜉, 𝜃) +

2

𝜀0
𝑌 (𝜉, 𝜃)

}︂3/2

, (20)

where

Ω̃2 =
2𝜔2𝑚𝑢𝜇𝑒

𝑚0𝑐2𝜀0
�̃�2 = Ω2(1− 𝜙1(𝑥0|𝑧)). (21)

Formally, Eq. (20) coincides with the equilibrium
equation of a degenerate dwarf with axial rotation
in the standard model written in the dimensionless
form. The solution of Eq. (12) is

𝑌 (𝜉, 𝜃) = 𝑌 (𝜉𝑘, 𝜃) = 𝑌 (𝜉, 𝜃), (22)

where 𝑌 (𝜉, 𝜃) is a solution of Eq. (20), and 𝑘 =
= [1− 𝜙1(𝑥0|𝑧)]1/2. Therefore, we will omit “∼” over
the variable 𝜉, while looking for the solutions of

Table 3. Dependence of ℳ(𝑥0|𝑧) and 𝜉1(𝑥0|𝑧)
on the relativistic parameter and the nuclear charge

𝑥0 𝑧 = 2 𝑧 = 6 𝑧 = 12 𝑧 = 26

ℳ(𝑥0|𝑧)

1.0 0.698071 0.689712 0.680305 0.663335

2.0 1.22614 1.21149 1.19504 1.16539

3.0 1.49846 1.48056 1.46048 1.42434

4.0 1.64937 1.62967 1.60756 1.5678

5.0 1.74063 1.71984 1.6965 1.65452

6.0 1.79981 1.77832 1.75418 1.71075

7.0 1.84033 1.81835 1.79366 1.74923

8.0 1.86927 1.84694 1.82186 1.77671

9.0 1.89065 1.86807 1.84269 1.79701

10.0 1.9069 1.88412 1.85852 1.81242

15.0 1.94967 1.92639 1.9002 1.853

20.0 1.9667 1.9432 1.91678 1.86913

25.0 1.97512 1.95153 1.92498 1.8771

30.0 1.97988 1.95623 1.92961 1.8816

𝜉1(𝑥0|𝑧)

1.0 1.03067 1.02654 1.02185 1.01328

2.0 2.05071 2.04251 2.03323 2.01627

3.0 2.76986 2.75879 2.74626 2.72342

4.0 3.29291 3.27975 3.26485 3.23771

5.0 3.69122 3.67647 3.65977 3.62933

6.0 4.00587 3.98986 3.97173 3.93868

7.0 4.26151 4.24447 4.22518 4.19000

8.0 4.47378 4.4559 4.43563 4.39868

9.0 4.65315 4.63455 4.61347 4.57502

10.0 4.80689 4.78768 4.7659 4.72616

15.0 5.33474 5.31341 5.28922 5.24507

20.0 5.64552 5.62295 5.59735 5.55058

25.0 5.85091 5.82752 5.80097 5.75247

30.0 5.99691 5.97294 5.94573 5.896

Eq. (20). In the case of massive degenerate dwarf,
Eq. (20) has two small parameters Ω̃2 and 𝜀−1

0 =
= [(1 + 𝑥20)

1/2 − 1]−1. In the limit Ω̃ → 0, 𝑥0 → ∞,
Eq. (20) transforms to the equation of the polytropic
model with index 𝑛 = 3. At Ω̃ ̸= 0 and 𝑥0 → ∞,
Eq. (20) describes the equilibrium in the polytropic
model (with index 𝑛 = 3), i.e., one rotating with con-
stant angular velocity Ω̃2.

The solutions of an equilibrium equation in the
standard model (Eq. (15) at 𝜙1(𝜉|𝑧) = 𝜙2(𝜉|𝑧) = 0)
for massive dwarfs can be expanded in the small pa-
rameter 𝜀−1

0 :

𝑦(𝜉) = 𝑦0(𝜉) +
𝑦1(𝜉)

𝜀0
+
𝑦2(𝜉)

𝜀20
+ ... . (23)
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Fig. 2. Numerical solutions of the system of equations (24)

The functions 𝑦0(𝜉), 𝑦𝑖(𝜉) are determined from the
chain of equations

Δ𝜉𝑦0(𝜉) + 𝑦30(𝜉) = 0;

Δ𝜉𝑦1(𝜉) + 3𝑦1(𝜉)𝑦
2
0(𝜉) = −3𝑦20(𝜉);

Δ𝜉𝑦2(𝜉) + 3𝑦2(𝜉)𝑦
2
0(𝜉) =

= −3

2
𝑦0(𝜉){1 + 4𝑦1(𝜉) + 2𝑦21(𝜉)}; ...

(24)

with boundary conditions: 𝑦0(0) = 1; 𝑦𝑙(0) = 0 at
𝑙 ≥ 1; 𝑦′𝑙(0) = 0 at 𝑙 ≥ 0. The functions 𝑦𝑙(𝜉) ob-
tained numerically are depicted in Fig. 2. They do
not have any parameters and represent a universal
basis for calculation of the dwarf characteristics in
the standard model as functions of the parameters 𝑥0
and 𝜇𝑒. Herewith, 𝑦0(𝜉) is a solution of the equilib-
rium equation in the polytropic model with 𝑛 = 3.

Similarly, the solution of Eq. (20) can be repre-
sented as the expansion

𝑌 (𝜉, 𝜃) = 𝑌3(𝜉, 𝜃) +
∑︁
𝑙≥1

𝜀−𝑙
0 (𝑥0)𝐹𝑙(𝜉, 𝜃), (25)

where 𝑌3(𝜉, 𝜃) is a solution of the equilibrium equa-
tion for the polytrope with index 𝑛 = 3 in the pres-
ence of a rotation, and 𝐹𝑙(𝜉, 𝜃) are the unknown
functions. Substituting series (25) in Eq. (20) and ex-
panding the expression

{︀
𝑌 2+2𝑌/𝜀0

}︀3/2 in powers of
𝜀−1
0 , we obtain the following chain of equations:

Δ𝑌3(𝜉, 𝜃) + 𝑌 3
3 (𝜉, 𝜃) = Ω̃2,

Δ𝐹1(𝜉, 𝜃) + 3𝐹1(𝜉, 𝜃)𝑌
2
3 (𝜉, 𝜃) = −3𝑌 2

3 (𝜉, 𝜃),

Δ𝐹2(𝜉, 𝜃) + 3𝐹2(𝜉, 𝜃)𝑌
2
3 (𝜉, 𝜃) =

= −3

2
𝑌3(𝜉, 𝜃){1 + 4𝐹1(𝜉, 𝜃) + 2𝐹 2

1 (𝜉, 𝜃)},

..............................................................

(26)

where Δ ≡ Δ(𝜉, 𝜃). The substitutions

𝑌3(𝜉, 𝜃) = 𝑦0(𝜉) + Ω̃2𝑓0(𝜉, 𝜃);

𝐹𝑙(𝜉, 𝜃) = 𝑦𝑙(𝜉) + Ω̃2𝑓𝑙(𝜉, 𝜃) by 𝑙 ≥ 1
(27)

are justified, because the parameter Ω̃2 is small for
massive dwarfs. With these substitutions, we can ex-
clude the parameter Ω̃2 from system (26) and rewrite
it in a universal form:
Δ𝑓0(𝜉, 𝜃) + 3𝑓0(𝜉, 𝜃)𝑦

2
0(𝜉) = 1;

Δ𝑓1(𝜉, 𝜃) + 3𝑓1(𝜉, 𝜃)𝑦
2
0(𝜉) =

= −6𝑦0(𝜉)𝑓0(𝜉, 𝜃)[1 + 𝑦1(𝜉)];

Δ𝑓2(𝜉, 𝜃) + 3𝑓2(𝜉, 𝜃)𝑦
2
0(𝜉) =

= −6𝑓1(𝜉, 𝜃)[1 + 𝑦1(𝜉)]− 6𝑓0(𝜉, 𝜃)𝑦0(𝜉)𝑦2(𝜉); ... .

(28)

We have used another substitution, namely

𝑓0(𝜉, 𝜃) = 𝜓0,0(𝜉) +𝐴𝑃2(cos 𝜃)𝜓0,2(𝜉),

𝑓𝑙(𝜉, 𝜃) = 𝜓𝑙,0(𝜉) + 𝑃2(cos 𝜃)𝜓𝑙,2(𝜉),
(29)

where 𝑃2(cos 𝜃) is the Legendre polynomial of the
second order, 𝑙 ≥ 1. Substitutions (29) allow us
to separate the variables in Eqs. (28) and to get a
chain of equations for the functions 𝜓𝑙,0(𝜉), 𝜓𝑙,2(𝜉)
at 𝑙 ≥ 0. Only the equation for 𝜓0,2(𝜉) is linear and
homogeneous:
Δ𝜉𝜓0,2(𝜉) = 𝜓0,2(𝜉)

{︂
3𝑦20(𝜉) +

6

𝜉2

}︂
. (30)

All other functions are solutions of the linear inho-
mogeneous equations:
Δ𝜉𝜓0,0(𝜉) + 3𝑦20(𝜉)𝜓0,0(𝜉) = 1;

Δ𝜉𝜓1,0(𝜉) + 3𝑦20(𝜉)𝜓1,0(𝜉) =

= −6[1 + 𝑦1(𝜉)]𝑦0(𝜉)𝜓0,0(𝜉);

Δ𝜉𝜓2,0(𝜉) + 3𝑦20(𝜉)𝜓2,0(𝜉) = −6𝜓1,0(𝜉)[1 + 𝑦1(𝜉)]−
− 6𝑦0(𝜉)𝑦2(𝜉)𝜓0,0(𝜉);
..................................................................

Δ𝜉𝜓1,2(𝜉)−
6

𝜉2
𝜓1,2(𝜉) + 3𝑦20𝜓1,2(𝜉) =

= −6𝐴𝜓0,2(𝜉)[1 + 𝑦1(𝜉)];

Δ𝜉𝜓2,2(𝜉)−
6

𝜉2
𝜓2,2(𝜉) + 3𝑦20𝜓2,2(𝜉) =

− 6[1 + 𝑦1(𝜉)]𝜓0,2(𝜉)− 6𝐴𝑦0(𝜉)𝑦2(𝜉)𝜓0,2(𝜉);
..................................................................

(31)
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According to (14), all functions 𝜓𝑙,0(𝜉), 𝜓𝑙,2(𝜉) at 𝑙 ≥
≥0 satisfy the boundary conditions 𝜓𝑙,0(0)=𝜓𝑙,2(0)=
= 0, 𝜕

𝜕𝜉𝜓𝑙,0(𝜉) =
𝜕
𝜕𝜉𝜓𝑙,2(𝜉) = 0 at 𝜉 = 0.

In work [14] devoted to the polytropic stars with
axial rotation, the functions 𝜓0,0(𝜉) and 𝜓0,2(𝜉) were
calculated by the numerical integration, and the
constant of integration 𝐴 = −0.72325 was deter-
mined. Using the same method, we have found the so-
lutions of the equation for 𝜓𝑙,0(𝜉), 𝜓𝑙,2(𝜉) at 𝑙 = 1 and
2. The results of calculations for the universal func-
tions 𝑦𝑙(𝜉), 𝜓𝑙,0(𝜉) and 𝜓𝑙,2(𝜉) at 𝑙 ≥ 0 have been pre-
sented in the form of the Pade-approximants given in
Appendix 2. The functions 𝑦𝑙(𝜉), 𝜓𝑙,0(𝜉) and 𝜓𝑙,2(𝜉)
do not depend on any parameters and form a univer-
sal system, which makes it possible to present all the
characteristics of massive dwarfs with axial rotation
in the form of an expansion in powers of the small
parameter 𝜀−1

0 (𝑥0).
According to Eq. (25), the solution of (20) reads

𝑌 (𝜉, 𝜃) = 𝑦(𝜉|𝑥0)+

+ Ω̃2{Ψ0(𝜉|𝑥0) + 𝑃2(cos 𝜃)Ψ2(𝜉|𝑥0)}, (32)

where 𝑦(𝜉|𝑥0) is a solution of the equilibrium equation
for a degenerate dwarf in the standard model,

Ψ0(𝜉|𝑥0) = 𝜓0,0(𝜉) +
∑︁
𝑙≥1

𝜓𝑙,0(𝜉)𝜀
−𝑙
0 (𝑥0);

Ψ2(𝜉|𝑥0) = 𝐴𝜓0,2(𝜉) +
∑︁
𝑙≥1

𝜓𝑙,2(𝜉)𝜀
−𝑙
0 (𝑥0).

(33)

The conditions

𝑌
(︁
𝜉,
𝜋

2

)︁
= 0,

𝜕

𝜕𝜉
𝑌
(︁
𝜉,
𝜋

2

)︁
= 0 (34)

determine the maximal value of the angular veloc-
ity Ω̃max(𝑥0) and corresponding maximal value of
the dimensionless equatorial radius 𝜉max

𝑒 (𝑥0). At Ω̃ >
> Ω̃max, the stability of a star is disturbed in a vicin-
ity of the equator, and the function 𝑌 (𝜉, 𝜃) becomes a
non-monotonous function of 𝜉. The root of the equa-
tion 𝑌 (𝜉, 𝜃)=0 at Ω̃ < Ω̃max determines the shape of
a star,

𝜉1(𝜃) ≡ 𝜉1(𝜃|𝑥0, Ω̃). (35)

The dependence of function (32) on the variables
(𝜉, 𝜃) is illustrated in Fig. 3 for 𝜃 = 0 and 𝜃 = 𝜋/2
in the case Ω̃2

max(𝑥0) at 𝑥0 = 10. The solution of
the standard model is given for comparison. One can

Fig. 3. Dependence of function (32) at a fixed value of 𝑥0 and
Ω̃2

max (curve 1 corresponds to the angle 𝜃 = 0, curve 2 shows
solutions of the equilibrium equation in the standard model,
curve 3 presents the angle 𝜃 = 𝜋/2)

Table 4. Dependence of the maximal
value of the parameter Ω̃2 corresponding
to the dimensionless equatorial and polar radii,
as well as the dimensionless radius of the dwarf
without rotation, on the parameter 𝑥0

𝑥0 Ω̃2
max 𝜉1(𝑥0) 𝜉𝑒(𝑥0|Ω̃2

max) 𝜉𝑝(𝑥0|Ω̃2
max)

6.0 0.0164 4.023 5.401 3.801

8.0 0.0119 4.493 6.001 4.271

10.0 0.00972 4.828 6.461 4.591

15.0 0.00733 5.358 7.231 5.111

20.0 0.00632 5.670 7.651 5.421

25.0 0.00579 5.887 8.021 5.631

find the dependence of Ω̃2
max, as well as the equato-

rial 𝜉𝑒(𝑥0|Ω̃2
max) and polar 𝜉𝑝(𝑥0|Ω̃2

max) radii, on the
relativistic parameter 𝑥0 (see Table 4).

The approximate solution of Eq. (12) has been ob-
tained by replacing 𝜉 → 𝑘𝜉 in expression (32), where
𝑘 = [1−𝜙1(𝑥0|𝑧)]1/2. Therefore, the mass of a degen-
erate dwarf in a model with interactions is determined
by the expression

𝑀(𝑥0, 𝜇𝑒, 𝑧, 𝜔) =
𝑀0

𝜇2
𝑒

(1−𝜙1(𝑥0|𝑧))3/2ℳ(𝑥0|Ω̃), (36)

where

ℳ(𝑥0|Ω̃) =
1∫︁

0

𝑑𝑡

𝜉1(𝜃|𝑥0,Ω̃)∫︁
0

𝜉2𝑑𝜉×

×
{︂
𝑌 2(𝜉, 𝜃) +

2

𝜀0
𝑌 (𝜉, 𝜃)

}︂3/2

, (37)
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Fig. 4. Dependence of dwarf’s mass on the relativistic param-
eter in different approximations (see the text)

and the polar and the equatorial radii are

𝑅𝑝(𝑥0, 𝜇𝑒, 𝑧, 𝜔) =
𝑅0

𝜇𝑒𝜀0
𝜉𝑝(𝑥0, 𝑧, Ω̃),

𝑅𝑒(𝑥0, 𝜇𝑒, 𝑧, 𝜔) =
𝑅0

𝜇𝑒𝜀0
𝜉𝑒(𝑥0, 𝑧, Ω̃),

𝜉𝑝(𝑥0, 𝑧, Ω̃) = [1− 𝜙1(𝑥0|𝑧)]1/2𝜉1(0|𝑥0, Ω̃),

𝜉𝑒(𝑥0, 𝑧, Ω̃) = [1− 𝜙1(𝑥0|𝑧)]1/2𝜉1(𝜋/2|𝑥0, Ω̃).

(38)

The dimensionless radius 𝜉𝑒,𝑝(𝑥0, 𝑧, Ω̃) calculated at
Ω̃ = Ω̃max(𝑥0) is given in Table 5.

The influence of interactions and the axial rota-
tion on the dwarf mass as a function of the pa-
rameter 𝑥0 is shown in Fig. 4. Curve 1 corresponds
to the dimensionless mass of a dwarf rotating with
maximal angular velocity Ω̃max(𝑥0) without interac-
tions (ℳ(𝑥0|Ω̃max)). The crosses correspond to the

Table 5. Dependence of the dimensionless
equatorial and polar radii on the relativistic
parameter 𝑥0 and the charge of nucleus 𝑧

𝑥0
𝜉𝑒(𝑥0, 𝑧, Ω̃) 𝜉𝑝(𝑥0, 𝑧, Ω̃)

𝑧 = 2 𝑧 = 12 𝑧 = 26 𝑧 = 2 𝑧 = 12 𝑧 = 26

6.0 5.377 5.331 5.287 3.784 3.752 3.721

8.0 5.974 5.923 5.874 4.252 4.216 4.181

10.0 6.432 6.377 6.324 4.570 4.531 4.494

15.0 7.199 7.137 7.078 5.088 5.045 5.003

20.0 7.617 7.552 7.489 5.397 5.351 5.306

25.0 7.985 7.917 7.851 5.606 5.558 5.511

mass value, which was calculated in work [7] for sev-
eral values of the relativistic parameter in the region
0.5 ≤ 𝑥0 ≤ 6.24. Curve 2 corresponds to formula (36)
and involves both factors, the interactions and the ro-
tation with Ω̃max(𝑥0) at 𝑧 = 12. Curve 3 corresponds
to the standard model and considers neither interac-
tions nor rotation (ℳ(𝑥0)). Curve 4 is constructed
according to formula (18) at 𝑧 = 12 and involves the
influence of interactions in the dwarf model without
rotation. As can be seen from the figure, the maxi-
mal mass of a dwarf at the maximal rotation velocity
exceeds the mass in the standard model without ro-
tation and interactions approximately by a factor of
5.4% at 𝑥0 = 10; 4.4% at 𝑥0 = 20; and 4.1% at
𝑥0 = 30.

The dependences of dwarf’s mass on the 𝑥0
in Chandrasekhar’s model ℳ(𝑥0) [the model wi-
thout rotation, but accounting the interactions [1−
−𝜙1(𝑥0, 𝑧)]

3/2ℳ(𝑥0)], the maximal mass in the
model with rotation (but without the interactions)
ℳ(𝑥0, Ω̃max), and the mass in the model with ro-
tation and interactions [1−𝜙1(𝑥0, 𝑧)]

3/2ℳ(𝑥0, Ω̃max)
are given in Table 6.

5. Stability of Degenerate Dwarfs

The maximal mass of dwarfs is related to the problem
of their stability. There are two main causes for the
instability of such star at high densities. The first of
them is the neutronization process, which leads to a
decrease of the electrons concentration. The thresh-
old value of the relativistic parameter at the center
of the star

𝑥0 = 𝑎0𝛼0

(︂
3𝜋2 𝜌0

𝑚𝑢𝜇𝑒

)︂1/3
, (39)

where 𝑎0 is the Bohr radius, 𝛼0 is the fine structure
constant, and 𝜌0 is the threshold density of neutron-
ization reaction. In Table 7, we give the value of 𝜌0
for several chemical elements (in g/cm3) taken from
work [15] and the calculated threshold value of the
relativistic parameter 𝑥0,

𝑥0 =

(︂
2

𝜇𝑒

)︂1/3
0.7976× 10−2𝜌

1/3
0 . (40)

The influence of the neutronization was considered
in [16].

The second cause for the instability is the effects
of general theory of relativity (GTR). Restrictions
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on the degenerate dwarf mass involving the effects
of GTR were first considered in work [6] in the ap-
proximation of Chandrasehkar’s model (without in-
teractions and rotation). For the consideration of the
interactions, we use the Oppenheimer–Volkoff equa-
tions

𝑑𝑃

𝑑𝑟
= −𝐺𝜌(𝑟)𝑀(𝑟)

𝑟2

(︂
1 +

𝑃 (𝑟)

𝜌(𝑟)𝑐2

)︂
×

×
(︂
1 + 4𝜋𝑟3

𝑃 (𝑟)

𝑀(𝑟)𝑐2

)︂(︂
1− 2𝐺

𝑀(𝑟)

𝑟𝑐2

)︂−1

, (41)

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟),

in which 𝑀(𝑟) is the mass in a sphere of radius 𝑟. Let
us substitute the expression for the pressure (6) in the
left-hand side of the first equation and expand the
right-hand side in a series in 𝑐−2, by retaining only
linear terms and putting 𝑓(𝑥(𝑟)|𝑧) = 0 in them. In
the dimensionless variables (8), Eq. (41) is reduced
to the differential equation

1

𝜉2
𝑑

𝑑𝜉

{︂
𝜉2
𝑑𝑦

𝑑𝜉
− 𝜉2𝜙(𝜉|𝑧) 𝑑

𝑑𝜉

[︂
𝑦2 +

2

𝜀0
𝑦

]︂1/2}︂
=

= −
{︂
𝑦2 +

2

𝜀0
𝑦

}︂3/2 {︂
1 + 𝛾(𝑥0)𝑔(𝜉)

}︂
−

− 𝛾(𝑥0)

𝜉2
ℳ(𝜉)

𝑑𝑔(𝜉)

𝑑𝜉
. (42)

Here, we used the notations

𝜙(𝜉|𝑧) = (2𝑥)−3 𝑑

𝑑𝑥
𝑓(𝑥|𝑧) by 𝑥 = 𝜀0

(︂
𝑦2 +

2

𝜀0
𝑦

)︂1/2
;

𝑔(𝜉) =
1

4

(︂
𝑦2 +

2

𝜀0
𝑦

)︂1/2
+

+
2

𝜉
ℳ(𝜉) +

𝜉3

4ℳ(𝜉)

(︂
𝑦2 +

2

𝜀0
𝑦

)︂2
;

ℳ(𝜉) =

𝜉∫︁
0

(𝜉′)2
{︂
𝑦2(𝜉′) +

2

𝜀0
𝑦(𝜉′)

}︂3/2
𝑑𝜉′.

(43)

In the nonlinear integral-differential equation (42),
two independent parameters 𝑥0 and 𝑧 appear, as well
as the dimensionless parameter

𝛾(𝑥0) = 𝜀0(𝑥0)
𝑚0

𝑚𝑢𝜇𝑒
∼ 𝑥0

4
× 10−3. (44)

Substituting 𝜙(𝜉|𝑧) to 𝜙(𝑥0|𝑧) and introducing the
new variable 𝜉 = 𝜉/𝑘 (where 𝑘 = [1 − 𝜙(𝑥0|𝑧)]1/2),

Table 6. Dependence of the dimensionless
dwarf mass on the parameter 𝑥0 in different
approximations: ℳ(𝑥0), (1 − 𝜙1(𝑥0, 𝑧))3/2ℳ(𝑥0),
ℳ(𝑥0, Ω̃max), (1 − 𝜙1(𝑥0, 𝑧))3/2ℳ(𝑥0, Ω̃max)

(see text)

𝑥0 ℳ(𝑥0)
(1− 𝜙1(𝑥0, 𝑧))3/2ℳ(𝑥0)

𝑧 = 2 𝑧 = 12 𝑧 = 26

5.0 1.76395 1.740419 1.696298 1.654323

6.0 1.82404 1.799697 1.754065 1.710638

7.0 1.86521 1.840310 1.7936401 1.7492106

8.0 1.89462 1.869321 1.821909 1.776757

9.0 1.91634 1.890746 1.842785 1.797095

10.0 1.93284 1.907022 1.858643 1.812542

15.0 1.97619 1.949781 1.900299 1.853099

20.0 1.99337 1.966725 1.916804 1.869154

25.0 2.00186 1.975098 1.924957 1.877079

30.0 2.00665 1.979821 1.929557 1.881546

𝑥0 ℳ(𝑥0, Ω̃max)
(1− 𝜙1(𝑥0, 𝑧))3/2ℳ(𝑥0, Ω̃max)

𝑧 = 2 𝑧 = 12 𝑧 = 26

5.0 1.863482 1.838623 1.792012 1.747669

6.0 1.928908 1.903166 1.854910 1.808987

7.0 1.968121 1.941846 1.892602 1.845721

8.0 1.998099 1.971418 1.921417 1.873799

9.0 2.017770 1.990821 1.940322 1.892214

10.0 2.033656 2.006491 1.955589 1.907083

15.0 2.068962 2.041313 1.989509 1.940093

20.0 2.081174 2.053355 2.001235 1.951486

25.0 2.087382 2.059477 2.007194 1.957270

30.0 2.088186 2.060267 2.007960 1.957998

Table 7. Threshold of of the neutronization
process for several chemical elements

Nucleus 𝜌0 𝑥0

4
2He 1.37× 1011 41.117

12
6 C 3.90× 1010 27.048

16
8 O 1.90× 1010 21.283

20
10Ne 6.21× 109 14.661

24
12Mg 1.97× 109 9.999

56
26Fe 1.14× 109 8.332
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Fig. 5. Dependence of the function 𝑔(𝜉) on the variable 𝜉

at different values of the relativistic parameter 𝑥0 (curve 1 –
𝑥0 = 15; 2 – 𝑥0 = 20; 3 – 𝑥0 = 25)

Fig. 6. Solutions of Eq. (50) at different values of the rel-
ativistic parameter 𝑥0 (curve 1 – 𝑥0 = 15; 2 – 𝑥0 = 20; 3 –
𝑥0 = 25)

we transform (42) to the form

1

𝜉2
𝑑

𝑑𝜉

(︂
𝜉2
𝑑

𝑑𝜉
𝑦

)︂
= −

{︂
𝑦2 +

2

𝜀0
𝑦

}︂3/2

×

×
{︀
1 + 𝛾(𝑥0)𝑔(𝜉)

}︀
− 𝛾(𝑥0)

𝜉2
ℳ̃(𝜉)

𝑑𝑔(𝜉)

𝑑𝜉
, (45)

where

ℳ̃(𝜉) =

𝑘𝜉∫︁
0

(𝜉′)2
{︂
𝑦2 +

2

𝜀0
𝑦

}︂3/2
𝑑𝜉′, (46)

and 𝑔(𝜉) is related to 𝑦(𝜉) by the expression

𝑔(𝜉) =
1

4

(︂
𝑦2 +

2

𝜀0
𝑦

)︂1/2
+

2𝑘2

𝜉
ℳ̃(𝜉)+

+
1

4ℳ̃(𝜉)

(︂
𝑦2 +

2

𝜀0
𝑦

)︂2
. (47)

The terms in Eq. (45), which are proportional to
the parameter 𝛾(𝑥0), play the role of small correc-
tions. So, to simplify the finding of the solution, we
calculate them, by basing on 𝑦0(𝜉), which satisfies the
zero-approximation equation

1

𝜉2
𝑑

𝑑𝜉

(︂
𝜉2
𝑑

𝑑𝜉
𝑦0

)︂
= −

{︂
𝑦20 +

2

𝜀0
𝑦0

}︂3/2
. (48)

In this approximation, the functions 𝑔(𝜉) and 𝑑
𝑑𝜉
𝑔(𝜉)

are simply the given functions of the variable 𝜉 and
the parameter 𝑥0. The function 𝑔(𝜉) is depicted in
Fig. 5.

With the help of the substitution

𝑦(𝜉) = 𝑦0(𝜉) + 𝛾(𝑥0)𝑦1(𝜉), (49)

we get the equation for 𝑦1(𝜉):

1

𝜉2
𝑑

𝑑𝜉

(︂
𝜉2
𝑑

𝑑𝜉
𝑦1(𝜉)

)︂
+ 3𝑦1(𝜉)

[︂
𝑦0(𝜉) +

1

𝜀0

]︂
×

×
[︂
𝑦20(𝜉) +

2

𝜀0
𝑦0(𝜉)

]︂1/2
=

= −𝑔(𝜉)
{︂
𝑦20(𝜉) +

2

𝜀0
𝑦0(𝜉)

}︂3/2
− ℳ̃(𝜉)

𝜉2
𝑑𝑔(𝜉)

𝑑𝜉
. (50)

The boundary conditions corresponding to this equa-
tion are
𝑦1(0) = 0,

𝑑

𝑑𝜉
𝑦1(𝜉) = 0 by 𝜉 = 0, (51)

and the asymptotics

𝑦1(𝜉)=− 𝜉
2

24

{︂
1 +

2

𝜀0

}︂2{︃
1 + 3

(︂
1 +

2

𝜀0

)︂3/2}︃
+ ... (52)

at 𝜉 ≪ 1. Solutions of Eq. (50) obtained by the nu-
merical integration are depicted in Fig. 6.

In the used approximation, the mass of a star

𝑀(𝑥0|𝑧) =
𝑀0

𝜇2
𝑒

{︀
1− 𝜙(𝑥0|𝑧)

}︀3/2 ×

×
{︀
ℳ(𝑥0)− 𝛾(𝑥0)ℳ1(𝑥0)

}︀
, (53)
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where ℳ(𝑥0) corresponds to the standard model,

ℳ1(𝑥0) = 3

𝜉1(𝑥0)∫︁
0

𝜉2𝑦1(𝜉)

[︂
𝑦0(𝜉) +

1

𝜀0

]︂
×

×
[︂
𝑦20(𝜉) +

2

𝜀0
𝑦0(𝜉)

]︂1/2
𝑑𝜉. (54)

Ratios (53) and (54) determine the mass of a dwarf
with regard for the interactions and the effects of
GTR, but without rotation. As is shown in Table 6,
under the influence of the axial rotation, the mass of
a dwarf increases by the magnitude

Δℳ(𝑥0, 𝑧, Ω̃) = {1− 𝜙(𝑥0|𝑧)}3/2 ×

×{ℳ(𝑥0, Ω̃)−ℳ(𝑥0)}. (55)

Now, the dimensionless mass of a degenerate dwarf
in the model with the rotation, interactions, and the
GTR effects can be written in the form

ℳGTR(𝑥0, 𝑧, Ω̃) = ℳ(𝑥0, 𝑧)+Δℳ(𝑥0, 𝑧, Ω̃) =

= {1− 𝜙(𝑥0|𝑧)}3/2{ℳ(𝑥0, Ω̃)−𝛾(𝑥0)ℳ1(𝑥0)}. (56)

The maximal value of the magnitude corresponds to
Ω̃ = Ω̃max(𝑥0), and the minimal one to Ω̃ = 0. Be-
cause the parameter 𝛾(𝑥0) is proportional to 𝜀0(𝑥0),
the quantity ℳGTR(𝑥0, 𝑧, Ω̃) as a function of 𝑥0 has
the maximum at some point 𝑥*0, which is approxi-
mately determined by the equation

𝑚0

𝑚𝑢𝜇𝑒
ℳ1(𝑥

*
0) ≃

𝑑

𝑑𝑥*0
ℳ(𝑥*0,Ω). (57)

We have that 𝑥*0 is in the region of large values
of the relativistic parameter, where the derivative
𝑑

𝑑𝑥0
ℳ(𝑥0, Ω̃) is about 10−3. As can be seen from Ta-

ble 6, this derivative decreases with increasing Ω̃, so
the increase of the angular velocity leads to a de-
crease of 𝑥*0. Furthermore, 𝑥*0 almost does not depend
on the nuclear charge 𝑧, in contrast to the maximal
value of the mass ℳGTR(𝑥*0, 𝑧, Ω̃). In Table 8, we give
the masses with the interactions, ℳGTR(𝑥*0, 𝑧, 0), and
with the interactions and rotation, ℳGTR(𝑥*0, 𝑧, Ω̃)
(SM corresponds to the model without interactions
and rotation). As follows from the numerical calcula-
tion, 𝑥(1)0 ≤ 𝑥*0 ≤ 𝑥

(2)
0 at the change of the angular

velocity from Ω̃ = Ω̃max to Ω̃ = 0. The maximal mass

Table 8. Critical parameters
of the degenerate dwarfs in the difference models

𝑥
(2)
0 ℳGTR(𝑥0, 𝑧, 0)

26.2 SM 𝑧 = 2 𝑧 = 12 𝑧 = 26

1.97531 1.94889 1.89942 1.85217

𝑥
(1)
0 ℳGTR(𝑥0, 𝑧, Ω̃)

23.2 SM 𝑧 = 2 𝑧 = 12 𝑧 = 26

2.06117 2.03362 1.98199 1.93270

of a degenerate dwarf at the fixed value of 𝑧 varies
within ℳGTR(𝑥

(2)
0 , 𝑧, 0) to ℳGTR(𝑥

(1)
0 , 𝑧, Ω̃), where

𝑥
(1)
0 = 23.2 (at Ω̃ = Ω̃max); 𝑥

(2)
0 = 26.2 (at Ω̃ = 0). As

shown in Table 8, the change area 𝑥*0 is small, and 𝑥(1)0

is close to the threshold values of the parameter 𝑥0,
corresponding to the processes of neutronization (see
Table 7).

6. Conclusions

We have shown that the influence of the compet-
ing factors significantly affects the characteristics
and internal structure of degenerate dwarfs. The in-
teractions cause a decrease of the mass of degen-
erate dwarfs. The axial rotation can partially (de-
pending on the Ω̃) compensate the influence of the
Coulomb interactions at 𝑧 . 15. In this case, the
dwarf mass can exceed Chandrasekhar’s limit. In
the region 𝑧 > 15, this compensation is generally
impossible, so the masses of such dwarfs cannot
exceed this limit. The effects of GTR slightly re-
duce the mass of a dwarf, but cause the instabil-
ity. The parameter 𝑥*0, at which instability occurs,
does not depend on 𝑧, but only on Ω̃. The critical
value of 𝑥*0 decreases with increasing the parame-
ter Ω̃. The area of existence for helium, carbon, and
oxygen depends on the effects of GTR. For mag-
nesium, silicon, and iron, the instability is caused
by the neutronization effects. This implies that, for
the majority of real dwarfs, the processes of neu-
tronization and the effects of GTR may be equally
important.

Our conclusions are in accordance with the fact
that the dwarfs with masses, which are very close or
exceed Chandrasekhar’s limit, are observed in binary
systems, where the accretion plays a key role. After
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Table 9. Coefficients of Pade approximants in (68)

Parameter 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2

𝜓0,0(𝜉) 0.153879 0.0053588 0.000783991 0.128076 0.00472131

𝐴𝜓0,2(𝜉) −0.715078 −0.0281033 −0.00189924 0.246085 0.0107499

𝜓1,0(𝜉) −0.07444 0.00657361 −5.31141 · 10−5 0.0325496 −8.49965× 10−5

𝜓1,2(𝜉) −0.0474332 0.220168 −0.0139001 0.522588 0.000121221

𝜓2,0(𝜉) 0.0855804 −0.0143799 0.000190155 0.00216296 4.69667× 10−5

𝜓2,2(𝜉) −0.399671 0.0584875 −0.00113677 −0.0051055 3.2652× 10−5

𝑦1(𝜉) −0.499189 −0.034939 −1.42124× 10−5 0.315363 0.0286252

𝑦2(𝜉) −0.377538 0.162672 0.000116145 1.00894 0.057591

all, the matter consisting of elements with small 𝑧
falls, during the accretion process, on a degenerate
dwarf.

APPENDIX 1.
The equation of state in the electron-nuclear
model at 𝑇 = 0 K

In work [13], the energy in the electron-nuclear model was pre-
sented in the form

𝐸(𝑥|𝑧) = 𝐸𝑒(𝑥) + 𝐸pol(𝑥|𝑧) + 𝐸𝐿(𝑥|𝑧), (58)

where 𝐸𝑒(𝑥) is the energy of the homogeneous relativistic elec-
tron subsystem with the Coulomb interactions, 𝐸pol(𝑥|𝑧) is the
energy of a polarization of the electron subsystem by nuclei,
𝐸𝐿(𝑥|𝑧) is the energy of effective 𝑛-particle screening interpar-
ticle interactions.

Herewith,

𝐸𝑒(𝑥) = 𝐸0(𝑥) + 𝐸HF(𝑥) + 𝐸𝑐(𝑥), (59)

where 𝐸0(𝑥) is the energy in the homogeneous ideal electron
model, 𝐸HF(𝑥) = −3/(4𝜋)𝑁𝑒𝛼0𝑚0𝑐2𝑥 is the Hartree–Fock ap-
proximation term, 𝐸𝑐(𝑥) = = 𝑁𝑒𝑚0𝑐2𝛼2

0𝜀𝑐(𝑥) is the correla-
tion energy, and 𝛼0 = = 𝑒2/(~𝑐) is the fine structure constant.

The dimensionless factor 𝜀𝑐(𝑥) was approximated with the
expression

𝜀𝑐(𝑥) = −
𝑏0

2

𝑥∫︁
0

𝑏1𝑎+ 𝑡1/2

𝑡3/2 + 𝑡𝑏1𝑎+ 𝑡1/2𝑏2𝑎2 + 𝑏3𝑎3
×

×
1 + 𝑎1𝑡+ 𝑎2𝑡2

1 + 𝑑0𝑡
𝑑𝑡, (60)

𝑎 = (𝛼0𝜂)
1/2; 𝜂 = (9𝜋/4)1/3; 𝑎1 = 2.25328;

𝑎2 = 4.87991; 𝑑0 = 0.924022; 𝑏0 = 0.0621814;

𝑏1 = 9.81379; 𝑏2 = 2.82214; 𝑏3 = 0.69699.

The polarization energy

𝐸pol(𝑥) = 𝑁𝑒𝑚0𝑐
2𝑧𝛼

3/2
0 𝜀pol(𝑥), (61)

where, in the approximation of two-particle correlations,

𝜀pol(𝑥) = −
𝑥∫︁

0

𝑐0 + 𝑐1𝑡+ 𝑐2𝑡2 + 𝑐3𝑡3

1 + 𝑑1𝑡+ 𝑑2𝑡2 + 𝑑3𝑡3
𝑑𝑡, (62)

𝑐0 = 4.06151; 𝑐1 = 32.6118; 𝑐2 = −43.6587;

𝑐3 = 104.13; 𝑑1 = 73.8252; 𝑑2 = −67.1028;

𝑑3 = 189.781.

In the same approximation, the lattice energy (the sum of
two-particle effective interactions)

𝐸𝐿(𝑥|𝑧) = 𝑁𝑒𝑚0𝑐
2𝛼0𝑧

0.61803𝜀𝐿(𝑥),

𝜀𝐿(𝑥) = −
𝑥∫︁

0

𝑔1 + 𝑔2𝑡+ 𝑔3𝑡2

1 + 𝑞1𝑡+ 𝑞2𝑡2 + 𝑞3𝑡3
𝑡 𝑑𝑡, (63)

𝑔1 = 18.5394; 𝑔2 = −15.7018; 𝑔3 = 52.9999;

𝑞1 = 42.5037; 𝑞2 = −39.1122; 𝑔3 = 132.253.

The relationship between the pressure and the energy

𝑃 (𝑥|𝑧) =
𝑑𝐸(𝑥|𝑧)
𝑑𝑉

=
𝑥4

𝑁𝑒

(︁𝑚0𝑐

~

)︁3 1

9𝜋2

𝑑𝐸(𝑥|𝑧)
𝑑𝑉

(64)

leads to expression (6), where

𝑓(𝑥|𝑧) = 2𝛼0𝑥
4

{︂
1

𝜋
−

−
4

3

𝑑

𝑑𝑥

(︁
𝑧0.61803𝜀𝐿(𝑥)+𝑧𝛼

1/2
0 𝜀pol(𝑥)+𝛼0𝜀𝑐(𝑥)

)︁}︂
. (65)

At large values of the relativistic parameter 𝑥, all energy terms
are proportional to 𝑥. The contributions of three-particle cor-
relations are negligible.

APPENDIX 2.
Approximation for the basis functions

The Pade approximant for 𝑦0(𝜉) given in (31)

𝑓(𝜉) =
1 + 𝑎1𝜉2 + 𝑎2𝜉4 + 𝑎3𝜉6

1 + 𝑏1𝜉2 + 𝑏2𝜉4 + 𝑏3𝜉6
, (66)

where

𝑎1 = 37.9322, 𝑎2 = −0.339691, 𝑎3 = −0.00963653,

𝑏1 = 38.0974, 𝑏2 = 5.9891, 𝑏3 = 10.0382075. (67)
The Pade approximant for 𝑦1(𝜉), 𝑦2(𝜉), 𝜓𝑙,0(𝜉), 𝜓𝑙,2(𝜉) (see

(31))

𝑓(𝜉) =
𝑎1𝜉2 + 𝑎2𝜉4 + 𝑎3𝜉6

1 + 𝑏1𝜉2 + 𝑏2𝜉4
. (68)

The coefficients are shown in Table 9.
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ВРАХУВАННЯ КОНКУРУЮЧИХ
ФАКТОРIВ ПРИ РОЗРАХУНКАХ ХАРАКТЕРИСТИК
НЕМАГНIТНИХ ВИРОДЖЕНИХ КАРЛИКIВ

Р е з ю м е

На основi побудованого ранiше рiвняння стану електрон-
ядерної моделi при високих густинах та за допомогою рiв-
няння механiчної рiвноваги дослiджено вплив мiжчастин-
кових взаємодiй i осьового обертання на макроскопiчнi ха-
рактеристики (маса, форма поверхнi) масивних виродже-
них карликiв. Запропоновано метод знаходження розв’язкiв
рiвняння рiвноваги за наявностi обертання, що ґрунтується
на використаннi базису унiверсальних функцiй радiальної
змiнної. Встановлено умови, при яких осьове обертання мо-
же компенсувати зменшення маси, зумовлене кулонiвськи-
ми взаємодiями. Визначено максимальне значення параме-
тра релятивiзму, при якому порушується стабiльнiсть за ра-
хунок ефектiв загальної теорiї вiдносностi.
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