NEW MODEL OF DENSITY DISTRIBUTION FOR FERMIONIC DARK MATTER HALOS

We formulate a new model of density distribution for halos made of warm dark matter (WDM) particles. The model is described by a single microphysical parameter – the mass (or, equivalently, the maximal value of the initial phase-space density distribution) of dark matter particles. Given the WDM particle mass and the parameters of a dark matter density profile at the halo periphery, this model predicts the inner density profile. In the case of initial Fermi–Dirac distribution, we successfully reproduce cored dark matter profiles from N-body simulations. We calculate also the core radii of warm dark matter halos of dwarf spheroidal galaxies for particle masses $m_{FD} = 100$, 200, 300, and 400 eV.

Keywords: dark matter: warm, cold; dark matter halo profile; cores; Navarro–Frenk–White profile.

1. Introduction

The nature of dark matter – the largest gravitating substance in the Universe – is not yet identified. Usual (left-handed) neutrinos – the only natural dark matter candidate within the Standard Model of particle physics – are too light to form the observed large-scale structure of the Universe [1] and the densest dark matter-dominated objects, dwarf spheroidals (dSphs) [2]. So far, many extensions of the Standard Model containing a viable dark matter candidate have been proposed; see, e.g., reviews [3–6]. In terms of their initial velocities, valid dark matter candidates can be split in two groups\(^1\) (see, e.g., [9]):

- cold dark matter (CDM) composed of particles with small (non-relativistic) initial velocities [10,11];
- warm dark matter (WDM) composed of particles with large (relativistic) initial velocities [12,13].

The density distribution of CDM haloes is often described by the Navarro–Frenk–White (NFW) profile [14,15]

$$\rho_{\text{NFW}}(r) = \rho_s r_s \left(1 + \frac{r}{r_s} \right)^{-2}. \tag{1}$$

Its parameters ρ_s and r_s are connected with the halo mass M_{200} (the mass within the sphere of radius R_{200}, within which the average density is 200 times larger than the critical density ρ_{crit} of the Universe) and halo concentration parameter $c_{200} = R_{200}/r_s$.

\(^1\) Note that, for some specific dark matter particle candidates, their initial velocity spectrum can be approximated by a mixture of “cold” and “warm” components [7,8].
The phase-space density for CDM haloes becomes infinite toward the halo center; see, e.g., [16]. For WDM, this is not true: its maximal phase-space density \(f_{\text{max}} \) is finite at early times and does not increase during the halo formation [17]. Usually, the density distributions with finite \(f_{\text{max}} \) are derived either from analytical studies of self-gravitating Fermi–Dirac dark matter (see, e.g., [18–27]) or from N-body simulations imitating initial dark matter velocities (see, e.g., [28–32]).

The first method requires non-trivial assumptions about dark matter microphysics. In addition, it often has problems with a simultaneous description of the whole dark matter halo including the central part (where the dark matter phase-space density is close to \(f_{\text{max}} \)) and the outskirts (where it is \(\ll f_{\text{max}} \)). This, in turn, is well-established by N-body simulations. But simulations are computationally expensive; to determine the dark matter properties, one requires too many of them to compare to specific observations.

In this paper, we present a new model of density distribution that overcomes both difficulties. It is constructed in Sec. 2 avoiding any assumptions about dark matter microphysics apart from the knowledge of the maximal value of the dark matter phase-space density. As we show in Sec. 3.3.1, this model predicts the flattening of the inner density profile at small radii (producing dark matter cores) consistent with WDM simulations [28, 29]. In Sec. 3.3.2, we study the formation of dark matter cores for ‘classical’ and “ultra-faint” dSphs\(^2\). Finally, in Sec. 4, we discuss the obtained results.

2 Method

According to strong Jeans’ theorem [34–36], the phase-space density distribution \(f(r, v) \) of a collisionless system in the steady state depends on coordinates \(r \) and velocities \(v \) only through the isolating [37] integrals of motion. Assuming the steady-state dark matter halo to be non-rotating, isotropic, and spherically symmetric\(^3\), the phase-space density \(f(r, v) \) of dark matter particles with mass \(m_{\text{FD}} \) inside the halo depends only on their total energy \(E \),

\[
E \equiv \frac{\varepsilon}{m_{\text{FD}}} = \frac{v^2}{2} + \Phi(r) \quad [36],
\]

where \(\Phi(r) \) is the local gravitational potential:

\[
\Phi(r) = -4\pi G_N \int_0^\infty \frac{dx}{x^2} \int_0^\infty \rho(y) y^2 dy. \quad (2)
\]

Under this assumption, the Eddington transformation [36,66,67] unambiguously determines the phase-space density distribution given the dark matter density \(\rho \):

\[
f(E) = \frac{1}{\pi^2 \sqrt{8}} \frac{d}{dE} \int_0^\infty \frac{d\rho}{\Phi} \frac{d\Phi}{\sqrt{E - \Phi}}. \quad (3)
\]

We start from dark matter haloes with the NFW dark matter density distribution; see Eq. (1). For such haloes, the phase-space density \(f_{\text{NFW}}(E) \) becomes infinite as \(E \to \Phi(0) = -4\pi G_N \rho_c r_s^2 \) \([68]\). This behavior contradicts the expectations of the WDM model: according to the Liouville theorem, \(f(E) \) should not exceed some finite maximal value \(f_{\text{max}} \) of the initial phase-space density defined by dark matter microphysics. A particular example of interest is dark matter with the initial Fermi–Dirac distribution having particle mass \(m_{\text{FD}} \) and \(q \) internal degrees of freedom. For this dark matter model, the maximal value of the initial phase-space density is [17]

\[
f_{\text{max}} = \frac{g m_{\text{FD}}^4}{2(2\pi\hbar)^2} = 1.31 \times 10^4 \left(\frac{m_{\text{FD}}}{400 \text{ eV}} \right)^4 \frac{M_\odot}{\text{kpc}^3} \left(\frac{\text{km/s}}{100} \right)^3
\]

(henceforth, we assume \(q = 2 \)). For any other dark matter particle model with known \(f_{\text{max}} \), one can express it in terms of \(m_{\text{FD}} \), by using Eq. (4).

To account for the maximal phase-space density, we truncate \(f(E) \) in a way that it cannot exceed the pre-selected maximal value \(f_{\text{max}} \):

\[
f_{\text{tNFW}}(E) = \begin{cases} f_{\text{NFW}}(E), & f_{\text{NFW}}(E) < f_{\text{max}}, \\ f_{\text{max}}, & f_{\text{NFW}}(E) \geq f_{\text{max}}. \end{cases}
\]

(5)

The obtained phase-space density \(f_{\text{tNFW}}(E) \) is then converted to the mass density via [67]

\[
\rho_{\text{tNFW}}(r) = 4\pi \int_0^{r_{\text{max}}} f_{\text{tNFW}}(E) \sqrt{2(E - \Phi(r))} dE.
\]

(6)

Since the potential \(\Phi(r) \) in Eq. (6) depends on the actual \(\rho(r) \), we can solve the system of equations (3)–(6) iteratively. We use the following iterative procedure: we calculate numerically the \(\Phi_{i-1}(r) \) and \(f_{i-1}(E) \) from the density distribution \(\rho_{i-1}(r) \) obtained in the previous step. Then we truncate \(f_{i-1}(E) \) as in Eq. (3) and obtain the new density distribution \(\rho_i(r) \) from this truncated distribution function, by using Eq. (6). We perform all the calculations on a grid in the interval \((r_0, r_{\text{max}}) \). We choose \(r_0 \ll r_s \) for the regularization at the first iteration. The quantity \(r_{\text{max}} \) is defined as \(r_{\text{NFW}}(r_{\text{max}}) = \rho_{\text{DM}} \), and \(r_{\text{max}} \gg R_{200} \), so we use it as the upper limit of integration in Eq. (2). We use the value max \(\left| \frac{\rho_i(r) - \rho_{i-1}(r)}{\rho_{i}(r)} \right| < 0.01 \) as a convergence criterion. As demonstrated in Fig. 1, five iterations are sufficient to achieve the convergence for our chosen grid parameters (max \(\left| \frac{\rho_i(r) - \rho_{i-1}(r)}{\rho_{i}(r)} \right| < 0.01 \)). We demonstrate the convergence of this iterative procedure by the numerous numerical tests and do not strictly prove it. The obtained results show the very weak dependence of the obtained truncated density profiles on the grid parameters.

3. Results

3.1. Comparison with N-body simulations

To check the validity of the proposed approach, we compared the truncated dark matter density distribution \(\rho_{\text{tNFW}}(r) \) to the results of two independent N-body simulations [28, 29]. Both simulations include the effect of maximal phase-space density by assigning non-zero initial velocities to dark matter particles. More precisely, [28] assumes the Fermi-Dirac distribution \(f(v) = [\exp(v/v_0) + 1]^{-1} \), where \(v_0 \) is the characteristic velocity of dark matter particles [69], while [29] approximates it with a Gaussian velocity distribution.

In Figure, we compare the tNFW density profile to simulation P-WDM512 from [28] and simulation WDM-5 from [29], corresponding to \(v_{\text{FD}} = 30 \) eV and 23 eV, respectively. We extracted the NFW parameters from Fig. 2 of [28] and Fig. 2 of [29], respectively, and calculated the corresponding tNFW profiles. Figure shows that the tNFW profiles match the corresponding WDM distributions at the \(\lesssim 30\% \) level. We do not observe any systematic disagreement between the tNFW profile and other WDM profiles from N-body simulations [28, 29, 31].

3.2. Core radii of dwarf spheroidal galaxies

An important property of the distribution \(\rho_{\text{tNFW}}(r) \) is its flattening toward small radii. This flattening is usually characterized by the radius of the so-called dark matter core. In this paper, we define the core radius \(r_c \) for a given dark matter distribution \(\rho_{\text{DM}}(r) \) as follows:

\[
\rho_{\text{tNFW}}(r_c) = \frac{\rho_{\text{tNFW}}(0)}{4}.
\]

(7)

This definition coincides with the characteristic radius of the widely used Burkert density distribution [71], as well as with the core radius defined in [24, 72]. The largest effect from a finite phase-space density on the core sizes is expected in the systems hosted by the densest dark matter haloes – dwarf spheroidals (dSphs).

We analyzed the two types of halos of dwarf spheroidals: “classical” dSph with corresponding NFW parameters \(M_{200} = 4 \times 10^8 \) M\(_\odot\) and \(c_{200} = 30 \), and “ultra-faint” dSph with \(M_{200} = 1 \times 10^8 \) M\(_\odot\) and

\[
\rho_{\text{DM}} = \frac{\rho_{\text{DM}}}{(2\pi\sigma^2)^{3/2}}.
\]

For WDM-5 simulation of [29],

\[
f_{\text{max}} = 0.151 \ M_{\odot} \ kpc^3/(km/s)^3
\]

which corresponds to \(v_{\text{FD}} = 23 \) eV according to Eq. (4).

\[\text{[Footnote 4]} \]

The last number differs from the value reported in Table 1 of [29] To obtain it, we took into account that [29] assumed the Gaussian velocity distribution with the velocity dispersion \(\sigma = 3.571 v_0 \) [69], so that their maximal phase-space density can be calculated from the dark matter density \(\rho_{\text{DM}} \):

\[
f_{\text{max}} = \frac{\rho_{\text{DM}}}{(2\pi\sigma^2)^{3/2}}.
\]

\[\text{[Footnote 5]} \]

There are many different definitions of core radii in the literature; see, e.g., [29, 70].
A.V. Rudakovskyi, D.O. Savchenko

Left: Comparison of the tNFW profile with \(N\)-body simulation P-WDM\(_{512}\) of [28]. We started from the NFW profile with \(\rho_s = 4.9 \times 10^7 \, \text{M}_\odot/\text{kpc}^3\) and \(r_s = 26\,\text{kpc}\) corresponding to the parameters of P-WDM\(_{512}\) halo in Fig. 2 of [28]. Then we built the tNFW profile with \(m_{FD} = 30\,\text{eV}\), by using Eqs. (3)–(6). For individual iterations, the mass density profiles (shown by black dash-dotted curve) started to converge quickly, so we used the sixth iteration (shown by a solid curve) as a final tNFW profile. Due to the truncation of the phase-space density distribution, the final value of \(M_{200}\) for this tNFW profile becomes \(1.27 \times 10^{12} \, \text{M}_\odot\), by decreasing from its initial value by 9%. Note the similarity between the tNFW profile and the result of \(N\)-body simulations of [28] (dotted curve): the resulting mass densities and core radii differ by less than 30%.

Right: comparison of the density distribution from simulation WDM-5 of [29] and the corresponding tNFW profile starting from \(\rho_s = 1.2 \times 10^6 \, \text{M}_\odot/\text{kpc}^3\), \(r_s = 33\,\text{kpc}\) and using \(m_{FD} = 23\,\text{eV}\) (see the text). For this tNFW profile, the final value of \(M_{200}\) is \(4.7 \times 10^{11} \, \text{M}_\odot\), by decreasing from the initial value by 11%. The differences between the density profiles and derived core radii are also \(\lesssim 30\%\) in this case.

\[c_{200} = 40.\] Assuming the initial Fermi–Dirac distribution of warm dark matter particles, we generated tNFW profiles with \(m_{FD} = 100, 200, 300,\) and 400 eV for these halos. The obtained core radii \(r_c\) are summarized in Table.

4. Discussion

Here, we describe a new simple model to quantify the effect of the maximal phase-space density \(f_{\text{max}}\) on the dark matter distribution. In contrast to other models, we start from the well-known Navarro–Frenk–White (NFW) density profile [14, 15] consistent with \(N\)-body simulations with \(f_{\text{max}} = \infty\). After that, we truncate the corresponding phase-space density profile at the value of \(f_{\text{max}}\) and recalculate the corresponding density profile, by using the Eddington transformation [66]. The obtained “truncated NFW” (tNFW) density distribution flattens at small radii, by producing a core. Despite its simplicity, the tNFW profile matches the detailed \(N\)-body simulations from [28, 29] with high precision, \(\lesssim 30\%\) as demonstrated in Figure.

The recent papers [24, 72] have questioned the lower bound on \(m_{FD} \gtrsim 0.48\,\text{keV}\) obtained in [17]. By assuming an anisotropic velocity distribution, the authors of [24] claimed that the velocity dispersion profiles in “classical” dSphs are consistent with the mass of degenerate fermions as low as \(m = 0.2\,\text{keV}\) (equivalent to \(m_{FD} = 0.24\,\text{keV}\)). Work [72] extended this result, by using data on both “classical” and “ultra-faint” dSphs. According to [72], the lower bound of [17] should be further weakened down to \(m_{FD} \gtrsim 0.12\,\text{keV}\) in the case of arbitrary stellar velocity anisotropy and no relation between the stellar and dark matter velocity dispersions.

It was suggested in [73] that the Fornax dSph has a core with \(r_c = 1.0^{+0.8}_{-0.4}\,\text{kpc}\). To create sizeable cores in

<table>
<thead>
<tr>
<th>dSph</th>
<th>(m_{FD},) eV</th>
<th>(r_c,) kpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>“classical”</td>
<td>100</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.26</td>
</tr>
<tr>
<td>“ultra-faint”</td>
<td>100</td>
<td>5.57</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.27</td>
</tr>
</tbody>
</table>
the halos of dwarf galaxies without involving baryonic processes, one requires rather light dark matter particles ($m_{\text{DM}} < 300$ eV; see Table). Such dark matter is in tension with a number of constraints from observations of the large-scale structure; see, e.g., recent works [74–85]. However, due to the smallness of their potential wells, the dwarf galaxies are very sensitive to baryonic feedback processes; see, e.g., [86–95]. Working together with the finite dark matter phase-space density effect, these processes could produce much larger cores, with core sizes being close to ~ 1 kpc.

The authors are grateful to D. Iakubovskyi and Yu. Shtanov for the collaboration and valuable comments. This work was partially supported by the National Academy of Sciences of Ukraine (project No.0116U003191), by the Program of Fundamental Research of the Division of Physics and Astronomy of the National Academy of Sciences of Ukraine (project No.0117U00240), by grant 6F of the Department of Targeted Training of the Taras Shevchenko National University of Kyiv under the National Academy of Sciences of Ukraine, and by the Program of Cosmic Research of the National Academy of Sciences of Ukraine.

30. A.V. Macciò, S. Paduroiu, D. Anderhalden, A. Schneider, B. Moore. Erratum: Cores in warm dark matter haloes: a
А.В. Рудаковський, Д.О. Савченко

НОВА МОДЕЛЬ ПРОСТОРОВОГО РОЗПОДІЛУ ГУСТИНИ В ГАЛО ФЕРМІОНОЇ ТЕМНОЇ МАТЕРІЇ

Р е з ю м е

В цій роботі ми пропонуємо нову модель розподілу густини в гало, утвореного з теплої темної матерії. Ця модель опи-сується одним параметром мікрофізики – масою частинки темної матерії (чи, що еквівалентно, максимальним значенням фазової густини). Знайоми масу частиночки темної матерії та параметри, що описують розподіл густини на периферії гало, наша модель описує поведінку густини у внутрішніх областях гало. Для випадку початкового розподілу Феррі-Дірака, ми успішно відтворили результати симуляцій [28, 29]. Також, нами були розраховані радіуси центральних областей для гало карликових сферичних галактик утворених з теплої темної матерії з масами частинок $m_{FD} = 100, 200, 300, 400$ еВ.