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ATOMIC MOMENTUM DIFFUSION
IN THE FIELD OF COUNTER-PROPAGATING
STOCHASTIC LIGHT WAVES

The momentum diffusion of atoms in the field of two counter-propagating stochastic light
waves, one of which reproduces the other one with a certain time delay, has been studied. It
is shown that the parameters of atom-field interaction, at which the light pressure force is
maximum, correspond to the increasing momentum diffusion coefficient. In the case of high-
intensity field described by the stochastic field model, the momentum diffusion coefficient was
found to be proportional to the square root of the field autocorrelation time. The wave function
describing the inner state of atoms is modeled, by using the Monte-Carlo method. Numerical
calculations are carried out for cesium atoms.
K e yw o r d s: light pressure, stochastic fields, Monte-Carlo method, wave function.

1. Introduction

Till now, the force of light pressure on atoms in
the field of counter-propagating correlated stochas-
tic waves has been studied in a number of works [1–
6]. Like the “bichromatic force”, i.e. the force of light
pressure on atoms in the field of counter-propagating
bichromatic waves [7–9], the force of light pressure
on an atom in the field of counter-propagating light
waves can significantly exceed the maximum of the
light pressure force on an atom in the field of a run-
ning monochromatic wave

𝐹𝑠𝑝 = ~𝑘𝛾/2, (1)

where 𝑘 = 2𝜋/𝜆 is the wave vector and 𝜆 the wave-
length of electromagnetic radiation, and 𝛾 is the in-
verse lifetime of an atom in the excited state (the
two-level atomic model is assumed).

It should be noted that the momentum diffusion of
atoms, which always accompanies the light pressure
on atoms [10], has not been studied yet in the case of
stochastic light waves. In this work, we have tried to
partially fill this lacuna by analyzing the dependence
of the statistical characteristics of an atomic ensem-
ble on the parameters of the interaction between the
atoms and the stochastic field. Our research is based
on the computer simulation of the atomic motion
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in the field of stochastic waves (the stochastic field
model), by using the Newton equations, which was
followed by the calculation of the statistical charac-
teristics of the atomic ensemble. The interaction be-
tween the atom and the field is modeled in the frame-
work of the two-level atomic excitation scheme. The
density matrix, which is required to calculate the
force, is determined from the probability amplitudes
of the state vector, by using the Monte-Carlo method
for the wave function [11]. The numerical simulation
is carried out for the parameters corresponding to the
interaction of cesium atoms with the light field.

The structure of the work is as follows. In Section 2,
a model of the interaction between the atom and the
field is discussed. In Section 3, the equations describ-
ing the atom-field interaction and the evolution of
the state vector are formulated, and the method used
for calculating the statistical characteristics of the
atomic ensemble is described. The results obtained
are quoted and their discussion is made in Section 4.
A brief summary of the research results is made in
Conclusions.

2. Model of the Interaction
between an Atom and the Field

Let an atom move along the 𝑧-axis in the field of two
counter-propagating waves

E =
1

2
e [𝐸0(𝑡− 𝑧/𝑐) exp(𝑖𝜔𝑡− 𝑖𝑘𝑧)+
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+ 𝐸0(𝑡+ 𝑧/𝑐) exp(𝑖𝜔𝑡+ 𝑖𝑘𝑧)] + к.с., (2)

where e is the polarization vector. At the coordinate
𝑧, where the atom is located, one of the waves re-
produces the other one with a certain time delay
𝜏 = 2𝑧/𝑐. The coordinate origin is selected so that
the field strengths of counter-propagating waves co-
incide at the point 𝑧 = 0.

Laser radiation is described in the framework of
the chaotic field model [12, 13]. Namely, the real
and imaginary parts of the complex-valued field am-
plitude fluctuate independently, their average val-
ues equal zero, an the corresponding autocorrelation
functions look like

⟨ℜ𝐸0(𝑡)ℜ𝐸0(𝑡
′)⟩ = 1

2
⟨|𝐸0|2⟩𝑒−𝐺|𝑡−𝑡′|, (3)

⟨ℑ𝐸0(𝑡)ℑ𝐸0(𝑡
′)⟩ = 1

2
⟨|𝐸0|2⟩𝑒−𝐺|𝑡−𝑡′|, (4)

where the angle brackets ⟨...⟩ denote the averaging
over the ensemble of states obtained in the course
of a stochastic process, 𝐺 is the inverse autocorre-
lation time of the field amplitude, and ⟨|𝐸0|2⟩ =
⟨𝐸0(𝑡)𝐸

*
0 (𝑡)⟩ is time-independent. Figure 1 illustrates

the interaction of an atom with this field. A stochas-
tic process with the exponential time dependence of
the correlation function of type (3), (4) is called the
“colored noise” [14].

The interaction of the atom with the field is charac-
terized by the Rabi frequency Ω0 = −de

√︀
⟨|𝐸0|2⟩/~,

where d is the matrix element of the atomic
dipole moment operator corresponding to the work-
ing transition.

The corresponding illustrative calculations are car-
ried out for an atom 133Cs. The wavelength of
the working transition 62𝑆1/2 − 62𝑃3/2 equals 𝜆 =
= 852.35 nm, the spontaneous emission rate 𝛾 =
= 2𝜋 × 5.18 MHz, and the Doppler cooling limit of
atoms 𝑇D = 124.39 𝜇K [15].

3. Basic Equations

An atom in field (2) is subjected to the action of light
pressure with the force [10, 15]

𝐹 = (𝜚12d21 + 𝜚21d12)
𝜕E

𝜕𝑧
, (5)

where d12 and d21 are the matrix elements of the
dipole moment operator, and 𝜚12 and 𝜚21 are the el-
ements of the density matrix 𝜚. Under the action of

0 z

Fig. 1. Scheme of the interaction between an atom (exhibited
as a circle) and the field of counter-propagating waves. One of
the waves reproduces the other one. The stochastic amplitude
envelopes are shown

force (5), the atom moves according to the second
Newton law

�̇� = 𝐹/𝑚, (6)

where 𝑚 is the mass of the atom, and 𝑣 = �̇� is its
velocity. To find the changes of the atomic velocity
and coordinate in time from Eqs. (5) and (6), the
matrix of the atomic density has to be known. Its
elements for the atomic state vector

|𝜓⟩ = 𝑐1 |1⟩+ 𝑐2𝑒
−𝑖𝜔0𝑡 |2⟩ (7)

are calculated by the formulas

𝜚12 = 𝑐1𝑐
*
2𝑒

𝑖𝜔0𝑡, 𝜚21 = 𝑐2𝑐
*
1𝑒

−𝑖𝜔0𝑡, (8)

where the probability amplitudes 𝑐1 and 𝑐2 of the
atomic states |1⟩ and |2⟩, respectively, are determined
from the Schrödinger equation

𝑖~
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩. (9)

The state vector is calculated, by making allowance
for quantum jumps that are responsible for the atomic
spontaneous emission (the Monte-Carlo method for
the wave function [11]). The Hamiltonian in the
Schrödinger equation (9) looks like

𝐻 = 𝐻0 +𝐻int +𝐻rel. (10)

Here, the term

𝐻0 = ~𝜔0|2⟩⟨2| (11)

describes the atom in the absence of the field and
relaxation; the term

𝐻int = −d12|1⟩⟨2|E(𝑡)− d21|2⟩⟨1|E(𝑡), (12)

where d12 is the matrix element of the electric dipole
moment operator for the transition between states |1⟩
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and |2⟩, describes the interaction between the atom
and the field; and the term

𝐻rel = − 𝑖~𝛾
2

|2⟩⟨2| (13)

describes the relaxation due to the spontaneous radi-
ation emission.

Let the state vector be |𝜓(𝑡)⟩ at the time moment
𝑡. The wave function |𝜓(𝑡+Δ𝑡)⟩ at the time moment
𝑡+Δ𝑡 is determined in two stages [11].

1. From Eq. (9), it follows that, after a small time
interval Δ𝑡, the state vector |𝜓(𝑡)⟩ transforms into

|𝜓(1)(𝑡+Δ𝑡)⟩ =
(︂
1− 𝑖Δ𝑡

~
𝐻

)︂
|𝜓(𝑡)⟩. (14)

Since Hamiltonian (10) is non-Hermitian, the state
vector |𝜓(1)(𝑡 + Δ𝑡)⟩ is not normalized. At a small
Δ𝑡, the square of its norm equals

⟨𝜓(1)(𝑡+Δ𝑡)|𝜓(1)(𝑡+Δ𝑡)⟩ = 1−Δ𝑃, (15)

where
Δ𝑃 =

𝑖Δ𝑡

~
⟨𝜓(𝑡)|𝐻 −𝐻+|𝜓(𝑡)⟩ = 𝛾Δ𝑡|𝑐2|2. (16)

2. At the second stage, let us take into account that
a quantum jump is possible. If the random variable 𝜖,
which is uniformly distributed between zero and one,
is larger than Δ𝑃 , there is no spontaneous emission,
and we simply normalize the state vector:

|𝜓(𝑡+Δ𝑡)⟩ = |𝜓(1)(𝑡+Δ𝑡)⟩√
1−Δ𝑃

if Δ𝑃 < 𝜖. (17)

But if 𝜖 < Δ𝑃 , the atom spontaneously emits a pho-
ton and transits into the ground state:

|𝜓(𝑡+Δ𝑡)⟩ = |1⟩ if Δ𝑃 > 𝜖. (18)

Equations for the probability amplitudes follow
from the Schrödinger equation (9). In the rotating-
wave approximation, i.e. neglecting the rapidly oscil-
lating terms ∼ 𝑒±2𝑖𝜔0𝑡 [16], they acquire the form

𝑑

𝑑𝑡
𝑐1 = − 𝑖

2

(︀
Ω1𝑒

−𝑖𝑘𝑧 +Ω2𝑒
𝑖𝑘𝑧

)︀
𝑐2𝑒

−𝑖𝛿𝑡, (19)

𝑑

𝑑𝑡
𝑐2 = − 𝑖

2

(︀
Ω*

1𝑒
𝑖𝑘𝑧 +Ω*

2𝑒
−𝑖𝑘𝑧

)︀
𝑐1𝑒

𝑖𝛿𝑡 − 𝛾

2
𝑐2, (20)

where Ω1 = Ω(𝑡 − 𝑧/𝑐), Ω2 = Ω(𝑡 + 𝑧/𝑐), Ω(𝑡) =
= −d12e𝐸0(𝑡)/~, and 𝛿 = 𝜔0 − 𝜔.

As follows from Eqs. (3) and (4), the autocorrela-
tion functions for the real and imaginary parts of Ω(𝑡)
equal

⟨ℜΩ(𝑡)ℜΩ(𝑡′)⟩ = 1

2
Ω2

0𝑒
−𝐺|𝑡−𝑡′|, (21)

⟨ℑΩ(𝑡)ℑΩ(𝑡′)⟩ = 1

2
Ω2

0𝑒
−𝐺|𝑡−𝑡′|, (22)

where Ω0 =
√︀

⟨|Ω|2⟩. Furthermore,

⟨ℜΩ(𝑡)ℑΩ(𝑡′)⟩ = 0, (23)
⟨ℜΩ(𝑡)⟩ = ⟨ℑΩ(𝑡)⟩ = 0. (24)

The found wave function makes it possible, by us-
ing Eqs. (5) and (8), to calculate the force of light
pressure on the atom and describe the motion of this
atom by simultaneously integrating the Schrödinger
and Newton equations. After averaging the force ex-
pression (5) over the field oscillation period 2𝜋/𝜔0,
we have

𝐹 =
~𝑘 Im

[︀
𝑐1𝑐

*
2𝑒

𝑖𝛿𝑡
(︀
Ω*

1𝑒
𝑖𝑘𝑧 − Ω*

2𝑒
−𝑖𝑘𝑧

)︀]︀
|𝑐1|2 + |𝑐2|2

. (25)

The chaotic field is modeled by the Ornstein–
Uhlenbeck process Ξ(𝑡) [14]. Its autocorrelation func-
tion

⟨Ξ(𝑡)Ξ(𝑡′)⟩ = 𝐵𝐺𝑒−𝐺|𝑡−𝑡′| (26)

at Ω0 =
√
2𝐵𝐺 coincides with Eq. (21), if Ξ(𝑡) =

= ReΩ(𝑡), and with Eq. (22), if Ξ(𝑡) = ImΩ(𝑡). This
process is a solution of the equation
𝑑

𝑑𝑡
Ξ(𝑡) = −𝐺Ξ(𝑡) +𝐺𝜉(𝑡), (27)

where 𝜉(𝑡) is the Gaussian white noise, which is char-
acterized by the following mean values over the en-
semble:

⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝐵𝛿(𝑡− 𝑡′), ⟨𝜉(𝑡)⟩ = 0. (28)

Here, 𝛿(𝑡) is the Dirac delta-function. The Ornstein–
Uhlenbeck process is a “colored noise” [14], which
transforms into the white one at 𝐺→ ∞.

We simulated the Ornstein–Uhlenbeck process by
the sequence [17, 18]

Ξ(𝑡𝑗+1) = Ξ(𝑡𝑗) exp (−𝐺Δ𝑡) + ℎ(𝑡𝑗). (29)

Here, Δ𝑡 = 𝑡𝑗+1 − 𝑡𝑗 , and ℎ(𝑡𝑗) are distributed ac-
cording to the Gaussian law with the first moment
equal to zero, and the second moment equal to

⟨ℎ(𝑡𝑗)2⟩ = 𝐷𝐺
(︀
1− 𝑒−2𝐺Δ𝑡

)︀
. (30)
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4. Results and Discussion

Cesium atoms 133Cs were chosen for the numeri-
cal simulation, because they allow a two-level sys-
tem with the atom-field interaction to be realized
[15]. Furthermore, their atomic mass is large enough
for their average velocity not to change much within
the time interval required for the atomic velocity dis-
tribution typical of a diffusion process to be estab-
lished. The force of light pressure and the coefficient
of momentum diffusion at the point with the coordi-
nate 𝑧 depend on the time delay

𝜏 =
2𝑧

𝑐
(31)

between the counter-propagating stochastic waves at
this point.

We calculated the diffusion coefficient of atomic ve-
locities, 𝐷𝑣, which is more illustrative than the mo-
mentum diffusion coefficient 𝐷. In view of the rela-
tion 𝑝 = 𝑚𝑣 between the momentum 𝑝 and the ve-
locity 𝑣 of the atom, it is easy to express one of the
constants in terms of the other one: 𝐷 = 𝑚2𝐷𝑣. The
time, 𝑡, dependence of the mean square deviation Δ𝑣
of the atomic velocity from its mean value is given by
the formula

Δ𝑣 =
√︀
2𝐷𝑣𝑡.

The values of the light pressure force and the velocity
diffusion coefficient were calculated from the time de-
pendences of the mean velocity and the mean square
deviation of atomic velocities from the mean value for
an ensemble of cesium atoms. Some examples of cal-
culation results obtained for 𝜏 = 2.3 ns (𝑧 = 0.35 m)
are shown in Fig. 2.

In the case of low-intensity counter-propagating
waves, Ω0 ≪ 𝛾, and one-dimensional model, which is
considered here, the momentum diffusion coefficient
was calculated analytically in work [6]:

𝐷 = (~𝑘)2Ω2
0

𝐺+ 𝛾
2(︀

𝐺+ 𝛾
2

)︀2
+ 𝛿2

. (32)

This result is used to test the software program of
atomic motion simulation in the field of counter-
propagating stochastic waves.

The dependences exhibited in Fig. 2 make it possi-
ble to determine the average acceleration of the atom
(and, hence, the average force acting on the latter)

Fig. 2. Time dependences of the average velocity (𝑎) and
the root-mean-square deviation of atomic velocities from the
average value (𝑏). The Rabi frequency Ω0 of each of counter-
propagating bichromatic waves is equal to 60 MHz, the initial
velocity of atoms 𝑣 = −0.5 m/s, and the time delay between
the waves at the point of initial atomic localization is 2.3 ns.
The parameter 𝐺 = 2𝜋×10 (1 ), 2𝜋×50 (2 ), and 2𝜋×100 MHz
(3 ). Calculations were made for an ensemble of 10,000 atoms
of 133Cs

and the momentum diffusion coefficient. Some exam-
ples of the calculated dependences of the light pres-
sure force and the atomic velocity diffusion coefficient
on the time delay between the counter-propagating
stochastic waves are depicted in Fig. 3. It is evident
that, in accordance with the results of work [5], if
the Rabi frequency Ω0 and the inverse autocorrela-
tion time 𝐺 of stochastic waves are fixed, there is
a certain optimal value for the time shift 𝜏 between
the counter-propagating waves, at which the force of
light pressure on the atoms is maximum. By compar-
ing the dependences shown in Fig. 3, one can see that
the maximum force of light pressure at the fixed Rabi
frequency Ω0 is achieved at a certain optimal value of
the inverse correlation time, 𝐺 ∼ Ω0. In the case con-
cerned (see Fig. 3, 𝑎), this is 𝐺 = 30 MHz. At the
same time, the diffusion coefficient 𝐷𝑣 decreases as
the parameter 𝐺 grows (see Fig. 3, 𝑏). Thus, by in-
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Fig. 3. Dependences of the light pressure force (in the 𝐹𝑠𝑝

units) (𝑎) and the coefficient of atomic velocity diffusion 𝐷𝑣 (𝑏)
on the time shift between the waves for various inverse times
of correlation between the counter-propagating waves 𝐺 =2𝜋×
× 10 (1 ), 2𝜋 × 20 (2 ), 2𝜋 × 30 (3 ), 2𝜋 × 50 (4 ), 2𝜋 × 70 (5 ),
and 2𝜋 × 100 MHz (6 ). The Rabi frequency Ω0 of each of the
counter-propagating bichromatic waves equals 2𝜋 × 60 MHz,
and the initial velocity of atoms is −0.5 m/s. The force is
directed toward the coordinate origin (𝑧 = 0). Calculations
were made for an ensemble of 10,000 atoms of 133Cs
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Fig. 5. Dependences of the light pressure force (in the 𝐹𝑠𝑝

units) (𝑎) and the coefficient of atomic velocity diffusion 𝐷𝑣

(𝑏) on the time shift between the waves for various Rabi fre-
quencies Ω0 = 2𝜋×10 (1 ), 2𝜋×30 (2 ), 2𝜋×60 (3 ), 2𝜋×90 (4 ),
and 2𝜋×120 MHz (5 ). The inverse correlation time of counter-
propagating waves 𝐺 =2𝜋 × 50 MHz, and the initial velocity
of atoms is 0.5 m/s. The force is directed toward the coordi-
nate origin (𝑧 = 0). Calculations were made for an ensemble of
10,000 atoms of 133Cs

creasing 𝐺 at a fixed Ω0, we, at first, achieve a maxi-
mum value of the light pressure force accompanied by
a simultaneous decrease of the parameter 𝐷𝑣. Then,
as 𝐺 continues to grow, the intensity of light pressure
at first decreases slowly (near the maximum) and,
afterward, rather quickly. Simultaneously, the diffu-
sion coefficient decreases monotonically and rather
rapidly. In particular, for curves 2 to 5, whose maxi-
mum amplitudes differ by no more than 10%, the dif-
fusion coefficient decreases by a factor of about two
(see Fig. 3, 𝑏).

It is quite natural that the light pressure force has
a maximum at a certain 𝐺 value. In work [5], it was
shown that this maximum is associated with the delay
between the counter-propagating waves at the point
where the atom is located. As a result, if the param-
eter 𝐺 is small, the counter-propagating waves act
almost in antiphase on the atom (practically, there is
no delay), so that the force of light pressure on a sta-
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tionary or slowly moving atom is close to zero. In the
case of large 𝐺, the counter-propagating waves fluctu-
ate practically independently. Therefore, proceeding
from the problem symmetry (the waves have the same
average intensity), the force of light pressure should
be small. At intermediate 𝐺 values, the correlation
between the waves is substantial, and the intensity
of the light pressure can be rather strong, exceeding
Eq. (1) and reaching a maximum at a certain 𝐺 value.

The reduction of the diffusion coefficient 𝐷𝑣, as 𝐺
grows and Ω0 is fixed (see Fig. 3, 𝑏), qualitatively
agrees with the behavior of 𝐷𝑣 at a low-intensity laser
radiation [Eq. (32)]. At the same time, the origins of
the diffusion coefficient reduction in the case Ω0 ≪ 𝛾,
when formula (32) is valid, and in the case Ω0 ≫ 𝛾,
which is illustrated in Fig. 3, are different. Indeed, un-
der a low-intensity laser radiation, the momentum dif-
fusion coefficient is proportional to the excited state
population 𝑛2 [6]:

𝐷 = (~𝑘)2𝛾𝑛2. (33)

By comparing Eqs. (32) and (33), one can see that, in
the case of low-intensity counter-propagating waves,
the decrease of the momentum diffusion coefficient
occurs due to the reduction in the excited state popu-
lation, as the fluctuation rate 𝐺 increases. In the case
of high-intensity laser radiation, Ω0 ≫ 𝛾 (the plots in
Fig. 3), the diminishing of the diffusion coefficient can
no longer be explained by the reduction in the excited
state population. According to the results of our cal-
culations corresponding to the curves shown in Fig. 3,
the population 𝑛2 changes insignificantly for various
𝐺 values, being close to 𝑛2 ≈ 0.45. If Eq. (33) with
Ω0 = 2𝜋 × 60 MHz had been valid for the momen-
tum diffusion coefficient 𝐷, then 𝐷𝑣 would have been
close to 170 m2/s3 for all curves in Fig. 3, 𝑏. Actually,
the dependences exhibited in this figure correspond
to much larger values of 𝐷𝑣. Such 𝐷𝑣 values may
probably be associated with the processes of stim-
ulated radiation emission and absorption, when the
atom interacts with the fluctuating fields of counter-
propagating stochastic waves. As a result, the motion
of the atom in the momentum space looks like the
Brownian one, but with the step decreasing with the
increasing 𝐺, which can explain the reduction of the
momentum diffusion coefficient.

Of course, our speculations about an analogy with
the Brownian motion are not sufficient to establish a

relationship between 𝐷𝑣 and 𝐺. To elucidate this is-
sue, we numerically simulated the dependence 𝐷𝑣(𝐺)
for two values of the Rabi frequency: Ω0 = 2𝜋 × 30
and 2𝜋×60 MHz. To “switch-off” the effects of mutual
correlation between the counter-propagating waves,
the calculations were made for a rather large time de-
lay between the waves, 𝜏 = 2𝑧/𝑐 = 12 ns (𝑧 = 1.8 m).
The results obtained are shown in Fig. 4. One can see
that the obtained dependences are described well by
the expression𝐷𝑣 = 𝐴/

√
𝐺 if 𝐺 > 𝛾. Since 1/𝐺 is the

wave autocorrelation time, we may assert that the co-
efficient of momentum diffusion is proportional to the
square root of this parameter at Ω0 ≫ 𝛾. At a lower
intensity of the laser radiation (Ω0 = 2𝜋 × 30 MHz),
a deviation from the given approximation formula is
observed, in accordance with the fact that, at low in-
tensities, the form of the dependence 𝐷𝑣(𝐺) has to
change from 𝐷𝑣 ∝ 𝐺− 1

2 to 𝐷𝑣 ∝ 𝐺−1.
Finally, as an appendix to Fig. 3, let us compare

the dependences of the momentum diffusion coeffi-
cient on the delay time between the waves obtained
for various intensities of counter-propagating waves,
but for the same 𝐺 (see Fig. 5). The dashed curves in
Figs. 3 and 5 correspond to the same parameter set
(Ω0 = 2𝜋 × 60 MHz, 𝐺 = 2𝜋 × 50 MHz). In Fig. 5,
unlike Fig. 3 and in accordance with the results of
work [5], there is no optimal value of the ratio Ω0/𝐺,
at which the force acting on an atom would be max-
imum. Instead, the force maximum increases mono-
tonically together with the Rabi frequency. The force
maximum and the maximum of the diffusion coeffi-
cient shift toward smaller 𝜏 values with the growth of
Ω0. From Fig. 5, one can see that the diffusion coef-
ficient increases, as the Rabi frequency increases and
the 𝐺 value is fixed. At the same time, it decreases
as 𝐺 increases and Ω0 is fixed (see Fig. 3).

5. Conclusions

Using cesium atoms as an example, the dependence
of the momentum diffusion coefficient for atoms in
the fields of two counter-propagating stochastic light
waves on the delay between those waves has been
studied and compared with analogous dependences
obtained for the light pressure force. The results
demonstrate that both the light pressure force and
the momentum diffusion coefficient have a maxi-
mum at a certain delay value, with the maximum
of the momentum diffusion coefficient being less pro-
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nounced. If the laser radiation intensity is constant,
there is an optimal value for the inverse autocorrela-
tion time 𝐺 of counter-propagating waves, at which
the force is maximum. At the same time, the mo-
mentum diffusion coefficient monotonically decreases,
as 𝐺 increases and the laser radiation intensity is
constant. We have found that if the time delay be-
tween the waves is rather large, so that the ampli-
tude fluctuations in the waves can be considered as
independent, and the intensity of the laser radiation
is large (Ω0 ≫ 𝛾), the momentum diffusion coeffi-
cient is proportional to 𝐺− 1

2 . In other words, under
those conditions, the momentum diffusion coefficient
becomes proportional to the square root of the field
auto-correlation time. This dependence substantially
differs from the dependence 𝐷𝑣 ∝ 𝐺−1 obtained by
us earlier for the case of low-intensity fields [6].

We also compared the dependence of the momen-
tum diffusion coefficient on the wave delay time at
various intensities of counter-propagating waves, but
at the same 𝐺 value. It is found that the diffu-
sion coefficient increases together with the Rabi fre-
quency. At the same time, it decreases, if 𝐺 increases
and Ω0 is fixed.
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Translated from Ukrainian by O.I. Voitenko

В.I. Романенко, О.Г.Удовицька,
В.М.Ходаковський, Л.П.Яценко

IМПУЛЬСНА ДИФУЗIЯ АТОМIВ У ПОЛI
ЗУСТРIЧНИХ СТОХАСТИЧНИХ СВIТЛОВИХ ХВИЛЬ

Р е з ю м е

Дослiджено iмпульсну дифузiю атомiв у полi зустрiчних
свiтлових стохастичних хвиль, одна з яких повторює iн-
шу з деякою затримкою. Показано, що параметрам взає-
модiї атома з полем, оптимальним для досягнення вели-
кого свiтлового тиску в таких полях, вiдповiдає зростання
коефiцiєнта iмпульсної дифузiї. У полi iнтенсивних хвиль,
що описуються моделлю стохастичного поля, коефiцiєнт iм-
пульсної дифузiї пропорцiйний квадратному кореню з часу
автокореляцiї хвиль. Внутрiшнiй стан атомiв моделювався
методом Монте-Карло для хвильової функцiї. Чисельне мо-
делювання проведено для атомiв цезiю.
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