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NANOCELLULOSE AS THE MAIN COMPOSITE
COMPONENT OF ELECTROMECHANICAL SENSORS1

Within the methods of the electron density functional and the ab initio pseudopotential, we
have obtained the spatial distributions of the density of valence electrons, density of electron
states, band gap, valence band, and charge for the cellulose-based model composite structures
under mechanical influences, using authors’ program complex. It is determined that the elec-
tronic properties of composite structures based on nanocellulose can be controlled, for example,
by changing the distance between the layers of composite components that happens during a
mechanical compression or stretching.
K e yw o r d s: heterocomposites, nanocellulose, graphene, electron density functional, ab initio
pseudopotential.

1. Introduction

Modern electronic devices are usually made from
materials which cannot be biodegradable and some-
times potentially toxic. At present, their production
includes processes that require high vacuum and high
temperature, i.e., costly operations [1].

However, the service life of electronics is becoming
increasingly shorter. This creates not only technolog-
ical, but also increasing environmental problems [2].

In this regard, the promising direction is the use of
cellulose as a substrate and a functional element of
electronics. Half the biomass produced by photosyn-
thetic organisms such as plants, algae, and some bac-
teria consists of cellulose, which is the most common
molecule on the planet. This is a renewable, portable,
and flexible material [3].

Deformation sensors are used to detect an electri-
cal displacement under mechanical deformations and
are widely used in the automotive industry, mechan-
ical engineering, in sensors of various types, etc. In
works [4, 5], the mechanical properties of a piezoresis-
tive strain gauge based on a graphene/nanocellulous
nanopaper and cellulose/graphene sensory mate-
rial are studied. However, theoretical knowledge of
the electronic properties of crystalline nanocellulose
(CNC) composite structures does not exist com-
pletely. For the expansion of information about the
electronic properties of composite structures with
nanocellulose, such as the density of electronic states,
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the bandgap, and the core charge under a mechani-
cal compression, we will calculate them by means of
the electron density functional methods and the first-
principles pseudopotential, by using our own program
code [6].

2. Methods of Research

The ground states of the electron-nucleus systems
are obtained, by finding a self-consistent-field solu-
tion of the Kohn–Sham equations. Electronic vari-
ables are only determined with the fixed atomic
cores. Following the Kohn–Sham procedure, the elec-
tronic density can be written in terms of occupied
orthonormal one-particle wave functions:

𝑛(r) =
∑︁
𝑖

|𝜓𝑖(r)|2. (1)

The point on the surface of potential energy in the
Born–Oppenheimer approximation is determined as
a minimum energy functional with regard to the wave
functions:

𝐸[{𝜓𝑖}, {𝑅𝑗}, {𝛼𝜈}] =
∑︁
𝑖

∫︁
Ω

𝑑3𝑟𝜓*
𝑖 (r)×

×
[︂
− ~2

2𝑚
∇2

]︂
𝜓𝑖(r) + 𝑈 [{𝑛(r)}, {𝑅𝑗}, {𝛼𝜈}], (2)

where {𝑅𝑗} are coordinates of atomic cores; {𝛼𝜈} are
any external influences on the system.

1 The paper was presented at the XXIII Galyna Puchkovska
International School-Seminar “Spectroscopy of Molecules
and Crystals”.
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In the generally accepted formulation, the mini-
mization of the energy functional (2) with respect
to one-particle orbitals with additional orthonormal
constraint on the one-particle orbitals 𝜓𝑖(r) results in
Kohn–Sham one-particle equations:{︂
− ~2

2𝑚
∇2 +

𝜕𝑈

𝜕𝑛(r)

}︂
𝜓𝑖(r) = 𝜀𝑖𝜓𝑖(r). (3)

In the solution of these equations, the pseudopoten-
tial formalism was used, according to which a solid is
considered as a set of valence electrons and the ion
cores. In the pseudopotential approximation, the op-
erator of the pseudopotential 𝑉𝑃𝑆 , which describes
the interaction of valence electrons with the core,
is small, and the corresponding pseudowavefunction
is smooth. Pseudopotentials are required to correctly
represent the long-range interactions of the core and
to produce pseudowavefunction solutions that ap-
proach the full wavefunction outside a core radius
𝑟𝑐. In addition, it is necessary that a pseudopotential
be transferable. This means that the same pseudopo-
tential can be used in calculations of different chem-
ical environments resulting in calculations with com-
parable accuracy. For example, Bachelet, Hamann,
and Schliiter proposed an analytic fit to the pseu-
dopotentials. This ab initio pseudopotential will be
used in the present work.

The full crystalline potential is constructed as a
sum of ion pseudopotentials that do not overlap and
are associated with ions (nucleus + core electrons)
located at the R𝑆 positions which are periodically
repeated for crystals:

𝑉cryst(r) → 𝑉𝑃𝑆(r) =
∑︁
p

∑︁
𝑆

𝑉 𝑃𝑆
𝑆 (r− p−R𝑆). (4)

For nonperiodic systems, such as a thin film or a
cluster, the problem of the lack of periodicity is cir-
cumvented by the use of the supercell method. Na-
mely, the cluster is periodically repeated, but the dis-
tance between each cluster and its periodic images is
so large that their interaction is negligible. The ubiq-
uitous periodicity of a crystal (or artificial) lattice
produces a periodic potential and thus imposes the
same periodicity on the density (implying Bloch’s the-
orem). The Kohn–Sham potential of a periodic sys-
tem exhibits the same periodicity as a direct lattice,
and the Kohn–Sham orbitals can be written in the
Bloch form:

𝜓(r) = 𝜓𝑖(r,k) = exp(𝑖k r)𝑈𝑖(r,k) (5)

where k is a vector in the first Brillouin zone. The
functions 𝑢𝑖(r,k) have the periodicity of a direct lat-
tice. The index 𝑖 runs over all states. The periodic
functions 𝑢𝑖(r,k) are expanded in the plane wave ba-
sis. This heavily suggests to use plane waves as the
generic basis set in order to expand the periodic part
of the orbitals. Since the plane waves form a com-
plete orthonormal set of functions, they can be used
to expand orbitals according to:

Ψ𝐽(k, r) =
1

√
𝑁0

√
Ω

∑︁
G

𝑏𝐽(k+G) exp(𝑖(k+G) r),

(6)

where G is a vector in the reciprocal space, Ω is the
volume of elemental cells, which consists of a periodic
crystal or an artificial superlattice, when reproducing
nonperiodic systems.

After the Fourier transform to the reciprocal space,
Eq. (3) has the form:∑︁
G

[︂{︂
~2

2𝑚
(k+G)2 − 𝜀𝑗

}︂
𝛿G,G′ +

+𝑉KS(k+G,k+G′)

]︂
𝑏𝑗(k+G) = 0, (7)

where 𝑉KS is the Kohn–Sham potential:

𝑉KS(k+G,k+G′) = 𝑉𝑝𝑠(k+G,k+G′)+

+𝑉𝐻(G′ −G) + 𝑉𝑋𝐶(G
′ −G), (8)

and 𝑉𝑋𝐶 is the exchange-correlation potential. To
calculate it, we used Ceperley–Alder’s LDA app-
roximation that has been parametrized by Perdew
and Zunger. It is well known that a choice of the
exchange-correlation functional predetermines a band
gap [7, 8]. Nevertheless, LDA in DFT does repro-
duce a lot of the basic physics, but, without some
fine tuning, it generally provides no details of the ex-
perimental band structure correctly. By carrying out
a comparative analysis of the behavior of the elect-
ron-structural characteristics of nanosystems during
the transition from one configuration to another one,
we give the opportunity to avoid the imperfection of
LDA and to reveal reliable information.

In the general case, the expressions describing the
potentials of interactions are complex. The use of the
atomic bases containing the inversion operation in
the point symmetry group leads to the fact that the
Fourier-components in the expansion of all expres-
sions are real.
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The main quantity in the formalism of the elec-
tron density functional is the charge density. It is
estimated from a self-consistent solution of Eqs. (6)
which should be performed at all points of the non-
reduced section of the Brillouin zone:

𝜌(G) =
2

𝑁𝑇

∑︁
k

∑︁
j

∑︁
𝛼∈𝑇

∑︁
G′

𝑏*𝑗 (k+G′+𝛼G)𝑏𝑗(k+G′),

(9)

where the index 𝑗 runs over all occupied states, k is
a vector in the first Brillouin zone, 𝑁𝑇 is the number
of the operators 𝛼 in the point group 𝑇 of the atomic
basis, and the factor 2 takes the spin degeneracy into
account.

The estimated effort can be reduced, if there is the
integral over the Brillouin zone to approximate by
summing over special points of the Brillouin zone. It
is possible to replace, with satisfactory precision, the
summation over the finite number of special points
to one point in the Brillouin zone. It is possible to
distinguish only the Γ-point in the Brillouin zone, es-
pecially as it relates to the artificial periodic systems.

The distribution of electrons along the energy zones
for the Γ-state of the investigated structures was
found by means of a numerical calculation of the
derivative limΔ𝐸→0 Δ𝑁/Δ𝐸 (where Δ𝑁 is a number
of allowed states for the Δ𝐸 interval of energy). The
one-particle energy spectrum was obtained from cal-
culations of the eigenvalues of the Kohn–Sham ma-
trix. In accordance with the ideology of electronic
density functional, the occupied states at absolute
zero temperature were defined. This allowed us to de-
fine the position of the last occupied state, number of
occupied states, being half the number of electrons
(due to ignoring the spin of the electron), and posi-
tion of the first free states.

The result of calculations of the electronic struc-
ture of the polyatomic system within the theory of
electronic density functional is the electron density,
which is a continuous quantity normalized to the to-
tal number of electrons in the system (in our case, the
total number of electrons in the unit cell of a super
lattice). To estimate the redistribution of the electron
charge between atoms, the charge in the surrounding
region with volume 𝑉𝛼 of an atom 𝛼 was calculated:

𝑞𝛼 = 𝑍𝛼 −
∫︁
𝑉𝛼

𝑛(r)𝑑3. (10)

3. Atomic Systems
and the Results of Their Calculation

Since the calculation algorithm provides for transla-
tional symmetry in the explored atomic systems, the
orthorhombic-type artificial superlattice was initially
created. The researched systems are determined by
parameters of the superlattice and the atomic ba-
sis. The dimensions of the unit cell in the X, Y,
and Z directions were chosen to avoid the interac-
tion of the translated cellulose/graphene composites
(CNC/Gr). The calculations were made only for Γ-
point of the Brillouin zone of an artificial super-
grid. The response of the electronic subsystem of the
composite on a mechanical impact was determined,
by comparing the characteristics of such systems:

∙ system 1: the isolated nanocellulose fiber frag-
ment – (С6Н10О5)3Н3. To reproduce it, the atomic
basis contained 18 С atoms, 15 О atoms, and 33
Н atoms, 3 of which were terminated by the bro-
ken nanocellulose bonds; the symbol of this system
is (CNC);

∙ system 2: fragment of the graphene plane. To re-
produce it, the atomic basis contained 96 С atoms;
the symbol of this system is (Gr);

∙ system 3: the isolated fragment of a nanocelulose
fiber with a three-atom copper cluster in its vicin-
ity. To reproduce it, the atomic basis contained 18 С
atoms, 15 О atoms, 33 Н atoms, and 3 Cu atoms; the
symbol of this system is (CNC/Cu3);

∙ system 4: fragment of the graphene plane, on
which fragments of nanocellulose fibers are located
on both sides of the composite. To reproduce it, the
atomic basis contained 90 С atoms, 30 О atoms, and
66 Н atoms; the symbol of this system is (2CNC/Gr).
The distance between graphene and nanocellulose was
equal to the length of the chemical bond between car-
bon atoms and a hydrogen equal to 1.1 Å (such a
composite was considered mechanically non-strained)
(Fig. 1);

∙ systems 5, 6, and 7 were composites that orig-
inated from system 4, with a distance between the
graphene plane and nanocelulose to be reduced by
3%, 4%, and 5%, respectively. The symbols of this
system are (2CNC/Gr – 3%), (2CNC/Gr – 4%), and
(2CNC/Gr – 5%) respectively; such composites were
considered mechanically strained (compressed);

∙ system 8 was a composite that originated from
system 4, with an increase in the distance between the
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graphene plane and nanocelulose by 5%. The symbol
of this system is (2CNC/Gr + 5%); such composite
was considered mechanically strained (stretched);

∙ system 9: a fragment of a nanocelulose fiber
on the graphene plane with a three-atom cluster of
copper in its vicinity. To reproduce it, the atomic
basis contained 90 С atoms, 30 О atoms, 66 Н
atoms, and 6 Cu atoms; the symbol of this system
is (2CNC/2Cu3/Gr); the composite is mechanically
non-strained;

∙ system 10: the composite that originated from
system 9, with an increase in the distance between
the graphene plane and nanocelulose by 5%. The
symbol of this system is (2CNC/2Cu3/Gr + 5%);
such composite was considered mechanically strained
(stretched).

Table 1 and Figs. 2 and 3 demonstrate the calcu-
lated values of the band gap 𝐸𝑔 and the valence band
width 𝐸𝑣 of the nanocellulose-containing systems.

From the obtained results, it can be seen that the
maximum width of the valence band belongs to the
isolated fragment of a nanocelulose fiber with a three-
atom copper cluster in its vicinity. Wherein, the num-
ber of electrons in the unit cell in this system is not
the largest.

It is determined that the value of the band gap
of an isolated nanocellulose fiber fragment is the
largest in comparison with composites with any ad-
dition to nanocellulose of other materials such as
graphene planes and copper atoms. The exception is
the (2CNC/Gr+ 5%) system. The calculated value
of the band gap of an isolated nanocellulose fiber
fragment is in good agreement with the experimen-

Table 1. Calculated values
of the band gap 𝐸𝑔 and the valence band width 𝐸𝑣

of the nanocellulose-containing systems

No. System Δ𝐸𝜈 , eV/e−e− 𝐸𝑔 , eV

1 CNC 17.01 4.63
2 Gr 2.31 0.54
3 CNC/Cu3 18.25 1.63
4 2CNC/Gr 10.14 1.90
5 2CNC/Gr – 3% 10.13 1.09
6 2CNC/Gr – 4% 10.13 2.45
7 2CNC/Gr – 5% 10.12 2.72
8 2CNC/Gr+5% 10.16 5.17
9 2CNC/2Cu3/Gr+5% 9.14 0.68

Fig. 1. Structure of a composite based on graphene and cellu-
lose used for calculations (left); the spatial distribution of the
valence electrons density within the interval of 1.0–0.9 of the
maximum value for CNC/Gr

Fig. 2. Valence band width of systems 1–10, which are nor-
malized to the number of electrons in a unit cell

Fig. 3. Band gap width of systems 1–10

tal value (𝐸𝑔 ≈ 4.5 eV), which is given in [9] for a
nanofibrillated cellulose film.

The electronic properties of the composite struc-
tures based on nanocellulose can be controlled, for
example, by changing the distance between the lay-
ers of the composite components, which happens dur-
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Fig. 4. The Spatial distributions of the density of valence electrons for (2CNC/Gr)
and (2CNC/2Cu3/Gr) systems within an interval of 0.8–0.7 of the maximum value; and
(2CNC/2Cu3/Gr) system within an interval of 0.2–0.1 of the maximum value

Table 2. Values of the charge in a vicinity of the carbon core (С) with radius of 0.73 Å

Atom CNC 2CNC/Gr 2CNC/Gr – 3% 2CNC/Gr – 4% 2CNC/Gr – 5%

1 1.076 0.050 0.049 0.050 0.052
2 1.536 0.511 0.568 0.585 0.599
3 1.529 0.485 0.523 0.553 0.570
4 1.477 0.692 0.720 0.725 0.732
5 1.302 0.206 0.211 0.216 0.222
6 1.406 0.407 0.460 0.459 0.463
7 1.088 0.048 0.037 0.035 0.031
8 1.441 0.257 0.264 0.271 0.280
9 1.576 0.371 0.381 0.395 0.405

10 1.425 0.477 0.491 0.500 0.506
11 1.326 0.203 0.218 0.221 0.222
12 1.372 0.235 0.231 0.231 0.229
13 1.056 0.088 0.103 0.108 0.113
14 1.473 0.206 0.215 0.218 0.218
15 1.456 0.239 0.248 0.255 0.258
16 1.398 0.144 0.147 0.151 0.154
17 1.294 0.261 0.261 0.252 0.247
18 1.397 0.370 0.407 0.407 0.406

Fig. 5. Values of the charge in a vicinity of the carbon core
for systems 1, 4–7

ing a mechanical compression or stretching. This is a
physical mechanism for using nanocellulose/graphene
composites as electromechanical sensors.

So, the valence band width decreases with the me-
chanical compression of the nanocellulose/graphene
composite and grows with the stretching. The change
in the band gap of such composites under a mechan-
ical impact has the tendency to increase.

The spatial distributions of thedensity of valence
electrons for the nanocellulose/graphene composite
with the addition of copper are showed in Fig. 4.

The analysis of these spatial distributions of the
density of valence electrons showed that the maxi-
mum density of the composite is concentrated around
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Table 3. Values of the charge in a vicinity of the hydrogen core (H) with a radius of 0.37 Å

Atom CNC 2CNC/Gr 2CNC/Gr – 3% 2CNC/Gr – 4% 2CNC/Gr – 5%

19 0.761 0.592 0.596 0.597 0.597
20 0.789 0.663 0.676 0.677 0.680
21 0.769 0.655 0.655 0.658 0.659
22 0.672 0.570 0.566 0.566 0.565
23 0.689 0.563 0.559 0.556 0.552
24 0.778 0.690 0.694 0.694 0.695
25 0.792 0.711 0.719 0.719 0.721
26 0.758 0.630 0.627 0.626 0.625
27 0.753 0.637 0.643 0.644 0.646
28 0.691 0.595 0.598 0.599 0.600
29 0.769 0.568 0.572 0.573 0.574
30 0.762 0.612 0.616 0.618 0.619
31 0.791 0.640 0.637 0.637 0.636
32 0.687 0.569 0.568 0.568 0.567
33 0.965 0.567 0.569 0.569 0.569
34 0.776 0.655 0.657 0.658 0.660
35 0.788 0.698 0.699 0.700 0.699
36 0.761 0.631 0.626 0.627 0.628
37 0.767 0.620 0.623 0.624 0.624
38 0.716 0.616 0.617 0.618 0.620
39 0.767 0.637 0.635 0.635 0.636
40 0.758 0.591 0.588 0.588 0.586
41 0.763 0.629 0.629 0.631 0.631
42 0.692 0.585 0.586 0.584 0.583
43 0.685 0.584 0.586 0.587 0.586
44 0.790 0.527 0.516 0.514 0.511
45 0.772 0.566 0.557 0554 0.550
46 0.709 0.602 0.600 0.598 0.599
47 0.753 0.620 0.615 0.612 0.611
48 0.762 0.673 0.678 0.678 0.678
49 0.700 0.590 0.579 0.576 0.575

nanocellulose for all systems in various mechanical
states of the composite.

Tables 2–4 and Figs. 5–7 show the calculated value
of the charge in the surrounding region with volume
𝑉𝛼 of atoms that belong to a nanocellulose fiber for
systems 1, 4–7. Charges were estimated in a vicinity
of the carbon core with a radius of 0.73 Å, hydro-
gen core with a radius of 0.37 Å, and oxygen one
with a radius of 1.2 Å. The charge was in units of
electron charge, the value of which was equal to 1 in
the atomic system of units, which was used in the
calculations.

As can be seen from Tables 2–4, the values of
the charge in vicinities of the carbon cores, hydro-
gen and oxygen cores of nanocellulose decrease for all

Fig. 6. Values of the charge in a vicinity of the hydrogen core
for systems 1, 4–7
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Table 4. Values of the charge in a vicinity of the oxygen core (О) with a radius of 1.2 Å

Atom CNC 2CNC/Gr 2CNC/Gr – 3% 2CNC/Gr – 4% 2CNC/Gr – 5%

50 −2.823 −8.064 −6.683 −6.622 −6.579

51 −0.222 −3.342 −2.485 −2.477 −2.470

52 −0.797 −4.345 −3.343 −3.327 −3.302

53 −0.902 −5.303 −4.327 −4.337 −4.349

54 −0.488 −3.234 −2.422 −2.413 −2.402

55 −2.589 −7.755 −6.448 −6.406 −6.369

56 −2.666 −8.129 −6.849 −6.842 −6.832

57 −5.633 −5.448 −4.425 −4.391 −4.357

58 −0.807 −5.345 −4.336 −4.323 −4.311

59 −0.426 −3.263 −2.541 −2.505 −2.468

60 −2.885 −8.777 −7.644 −7.727 −7.821

61 −2.646 −7.970 −6.631 −6.604 −6.576

62 −0.640 −4.216 −3.287 −3.290 −3.293

63 −0.794 −4.488 −3.567 −3.570 −3.571

64 −0.760 −4.645 −3.899 −3.949 −3.975

65 −0.446 −3.922 −3.297 −3.321 −3.317

Fig. 7. Values of the charge in a vicinity of the oxygen core
for systems 1, 4–7

nanocellulose/graphene composites and under their
mechanical impact compared with the charges on all
cores of an isolated nanocellulose fiber fragment. The
exception is the behavior of an oxygen atom that
is closest to graphene. The core charge on the oxy-
gen atom begins to increase under a mechanical
impact.

4. Conclusions

The spatial distribution of valence electrons, the den-
sity of electron states, the band gap, the valence
band width, the values of charge in the vicinity
of the atomic cores have been computed by meth-

ods of the electron density functional theory and
the first-principles pseudopotentials for the cellulose-
based model composite structures under a mechanical
impact.

The values of the charge in vicinities of the carbon
cores, hydrogen and oxygen cores of nanocellulose de-
crease for all nanocellulose/graphene composites and
their mechanical impact.

The maximum of the valence electron density of
the cellulose-based composite is concentrated around
cellulose for different composites under different me-
chanical impacts.

The electronic properties of the composite struc-
tures based on nanocellulose can be controlled, by
changing the distance between the layers of composite
components, which happens during the mechanical
compression or stretching. This is a physical mecha-
nism for using nanocellulose/graphene composites as
electromechanical sensors.
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НАНОЦЕЛЮЛОЗА
ЯК ОСНОВНИЙ КОМПОЗИТНИЙ КОМПОНЕНТ
ЕЛЕКТРОМЕХАНIЧНИХ ДАТЧИКIВ

Р е з ю м е

Методами теорiї функцiонала електронної густини та псев-
допотенцiалу iз перших принципiв, використовуючи автор-
ський програмний комплекс, було розраховано просторо-
вi розподiли густини валентних електронiв, густину еле-
ктронних станiв, ширину забороненої зони, валентної зо-
ни та значення зарядiв в околi ядра атомiв для модельних
композитних структур на основi наноцелюлози пiд меха-
нiчним впливом. Встановлено, що електроннi властивостi
структур на основi наноцелюлози можна регулювати, на-
приклад, шляхом змiн вiдстаней мiж шарами композитних
компонентiв при механiчному впливi.
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