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PULSES OF THE EXCITONIC CONDENSED PHASE
IN SEMICONDUCTORS WITH DOUBLE QUANTUM
WELL AT STEADY PUMPING: SIZE EFFECTS 1

The conditions, under which the generation and movement of solitons (regions of exciton con-
densed phases) occurs in double quantum wells of semiconductors under a stationary pumping
and in the presence of an external driving force, are analyzed. It is shown that there is a min-
imal size of the system, in which a state with moving solitons can be created. The dependence
of the minimum value of the driving force necessary for the generation of moving solitons on
the size of the system is found.
K e yw o r d s: luminescence, indirect excitons, double quantum well, self-organization, travel-
ing pulses.

1. Introduction
The formation of spatial structures in the exciton
density distribution in double quantum wells is an
intriguing phenomena in the physics of strong excit-
ing systems. Firstly, unusual effects were observed in
works [1, 2]. In the work by Butov et al. [1], the pe-
riodic distribution emission was revealed from a ring
situated around a laser spot in the double quantum
well on the base of AlGaAs. In the work by Tim-
ofeev et al. [2], the periodic distribution emission
was shown along the perimeter of a window, through
which the quantum well was excited. It seems that
the indirect excitons in double quantum wells are a
perspective object for the observation of the exciton
Bose–Einstein condensation: they have the integer
spin and the same orientation of dipole moments,
which leads to the repulsion interaction between exci-
tions, manifesting itself in a short-wave shift of the lu-
minescence with increasing the exciton pumping. But
the attempts to explain these phenomena and the ap-
pearance of the structures in the other special cre-
ated non-homogeneous systems from the viewpoint of
the Bose–Einstein condensation were not successful so
far. There are investigations [3–12], in which different
mechanisms of the appearance of periodic structures
in multiexciton systems are suggested. However, they
have particular nature and do not touch on a variety
of the observed effects.
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In works [13, 14], the model were suggested, accord-
ing to which the appearance of the condensed phase of
indirect excitons is connected with the attractive in-
teraction between excitons. The dipole-dipole repul-
sion causes a shortwave shift of the excitonic lumi-
nescence frequency with increasing the exciton den-
sirty. But, at some exciton density, the exchange and
van der Waals interactions prevail over the dipole-
dipole repulsion, and the excitonic condensed phase
may arise. Such conclusion is confirmed by 1) the
presence of binding states of two indirect excitons
obtained by quantum mechanical calculations [15–
17] and 2) calculation of many-particle problem of
the system of indirect excitons at zero tempera-
ture, taking the correlation and exchange interactions
into account [18]. But the considered system is non-
equilibrium due to the presence of a pumping and
the finite value of the exciton lifetime. In works [13,
14, 19], a generalization of the phase transition the-
ory was presented for non-equilibrium systems, and
the explanation of the results of experiments in [1,
2] was given. In addition, the analysis of another ex-
periments was fulfilled. The peculiarities of the ap-
pearance of a structure in the luminescence of in-
direct excitons in the presence of a periodic poten-
tial [20] were presented in [21]. The structures that

1 The paper was presented at the XXIII Galyna Puchkovska
International School-Seminar “Spectroscopy of Molecules
and Crystals”.
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arise in the luminescence from double quantum wells
with electrodes of the different form [22, 23] were
explained in [24]. The explanation of the fragmenta-
tion of the inner ring in a laser sport observed in
[25] was given in [26]. The developed theory allows
one to predict the appearance of solitons [27], which
present the localized regions of the exciton condensed
phase, the movement of solitons in external fields [28,
29], the generation of autowaves in the exciton con-
densed phases (solitons) at a steady state irradiation
of double quantum wells, and the movement of the
autowaves on macroscopic distances [30]. According
to [27], several conditions should be realized for the
appearance of the generation. The system should con-
sist of 1) long regions irradiated by the pumping
on the level of bistability, at which the two types
of the exciton distribution may exist – uniform and
non-uniform, 2) small region irradiated with a higher
pumping, the generation arises in this region; 3) the
presence of a driving force, which turns off the exci-
tons from one region to another, where they move in
the form of the exciton condensed phase pulses. The
flux of pulses may be controlled by the switching-on
or switching-off the pumping.

In the presented work, the peculiarities of the pulse
generation process and the values of parameters, at
which it occurs, are studied. Particularly, the thresh-
olds of appearance and their dependence on the sizes
of irradiated regions and on the properties of the
boundaries are investigated.

2. Analysis of the Stability: Dependence
on the Lifetime and the Density of Excitons

We now consider the inhomogeneous nonstationary
distribution of excitons in the presence of a pumping
with regard for the finite lifetime of particles. Usually,
the many-particle exciton problem is described by
the Gross–Pitaevskii equation. However, in a given
nonequilibrium nonuniform system, the chemical po-
tential is inhomogeneous. Even under a uniform exci-
tation, the structures with different exciton densities
arise, and there is an influx of excitons from one re-
gion to another. The current occurs due to the scat-
tering of particles by phonons and impurities. The
process is incoherent, and the resulting structures are
dissipative. Therefore, to describe the dynamics of ex-
citons, we use, like the previous papers, the equation
involving the conservation of the number of excitons,
interaction between excitons, pumping, and finite life-

time of excitons:
𝜕𝑛

𝜕𝑡
+ div j = 𝐺− 𝑛

𝜏ex
. (1)

Here, 𝑛 is the exciton concentration, j is the exciton
current, 𝐺 is the number of excitons produced per
unit of time and unit of surface (pumping), and 𝜏ex
is the exciton lifetime. We suggest that the state of
local equilibrium is realized, and the system can be
described by the free energy, which depends on the
exciton density. The current of excitons can be found
[31] in terms of the gradient of the chemical poten-
tial 𝜇, linking the exciton mobility with the exciton
diffusion coefficient 𝐷 by the Einstein relation

j = − 𝑛𝐷

𝑘B𝑇
∇𝜇. (2)

The chemical potential 𝜇 is found from the free
energy 𝐹 as

𝜇 =
𝛿𝐹

𝛿𝑛
.

The free energy is approximated by the expression

𝐹 =

∫︁
𝑑𝑆

[︂
𝐾

2
(∇𝑛)

2
+ 𝑓(𝑛) + 𝑛 𝑉 (𝑥)+

+ 𝑘B𝑇 𝑛 (ln𝑛− 1)

]︂
, (3)

where 𝐾
2 (∇𝑛)

2 is the energy of heterogeneity, 𝑛 𝑉 (𝑥)
is the energy of interaction of excitons with an exter-
nal field with potential 𝑉 (𝑥), and 𝑓(𝑛) is the free
energy density. We will approximate it as a series of
𝑛. In our works, we used expansions up to 𝑛4 or up
to 𝑛6 in the description of exciton systems. Both rep-
resentations correctly describe the appearance and
properties of the radiation from the spatial structures
of excitons. However, the absence of quantitative ex-
perimental values of the distribution of exciton den-
sities does not allow one to give preference to one or
other presentation of 𝑓(𝑛). In this paper, we approx-
imate it in the form

𝑓(𝑛) =
𝑎

2
𝑛2 +

𝑏

4
𝑛4 +

𝑐

6
𝑛6. (4)

The parameters 𝑎, 𝑏, and 𝑐 in Eq. (4) are chosen so
that the free energy as a function of the exciton den-
sity has a minimum corresponding to the condensed
phase and describes both the existence of the phase
transition and the spectral shift to higher frequen-
cies with increasing 𝑛 due to the dipole-dipole re-
pulsion. To accomplish this, the following conditions
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Fig. 1. Diagram of the stability of uniform and nonuniform
exciton distributions on the plane of the lifetime of the exci-
tons and the pump intensity. The following parameters were
used: 𝑏 = −1.9, 𝐷 = 0.03 (dimensionless values, see the text
for details). Area with stable uniform distribution is filled by
horizontal lines. Area with stable periodic distribution is filled
by vertical lines. Area with both stable distributions allows
the existence of a soliton solution

should be valid: 𝑎 > 0, 𝑏 < 0, 𝑐 > 0. Note that,
at 𝑇 = 0 and for a uniform system, the free energy
(4) has form obtained in [18] by quantum mechanical
calculations.

The last term in (3) is the free energy of an ideal
gas. After its substitution into the equation for the
concentration of excitons, it gives the usual linear
term for the diffusion. In the region of large values
of 𝑛, this term is unimportant; it is introduced to de-
scribe the density distribution in a region with small
values (far from the irradiation region).

The term with 𝑉 (𝑥) specifies the inhomogeneity in-
troduced by external conditions (𝑥 is the coordinate
along the quantum well surface); for example, such
an inhomogeneity can be created by the inhomogene-
ity of an external electric field, which separates an
electron and a hole in different wells and affects the
energy of an exciton, or by applying a pressure.

To make the analysis simpler, the dimensionless
variables are introduced. Let us define

𝑙0 =

√︂
𝐾

𝑎
, 𝑛0 =

(︁𝑎
𝑐

)︁1/4
, 𝑡0 =

𝐾B𝑇𝐾

𝐷𝑛0𝑎2
. (5)

We use

�̃� =
𝑥

𝑙0
, 𝑡 =

𝑡

𝑡0
, �̃� =

𝑛

𝑛0
, �̃� = 𝐺

𝑡0
𝑛0

, 𝜏ex =
𝜏ex
𝑡0

,

�̃� = 𝐷
𝑡0
𝑙20
, �̃� =

𝑏√
𝑎𝑐

, 𝑉 =
𝑉

𝑎𝑛0
.

The ∼ sign will be omitted in what follows. In the
dimensionless units, the equation for the density of
excitons (1) takes the form

𝜕𝑛

𝜕𝑡
= 𝐷Δ𝑛+𝐺− 𝑛

𝜏ex
+

(︀
𝑛+ 3𝑏𝑛3 + 5𝑛5

)︀
Δ𝑛+

+
(︀
1 + 9𝑏𝑛2 + 25𝑛4

)︀
(∇𝑛)

2 − 𝑛ΔΔ𝑛−

−∇𝑛∇Δ𝑛− 𝐹 ∇𝑛, (6)

where 𝐹 = −𝜕𝑉 (𝑥)
𝜕𝑥 is called the driving force.

Possible solutions of Eq. (6) are analyzed in [27]
in the absence of a driving force. We need a char-
acterization of these solutions to analyze the effect
of the driving force and the parameters of the irradi-
ated regions on the process of generation of condensed
phases. We consider one-dimensional solutions of Eq.
(6) in a quantum well, where a region 𝐿 in length is ir-
radiated. One-dimensional solutions can be realized,
for example, by irradiating a quantum well through a
gap in the electrode that creates an electric field in the
well. We consider a system, in which the pump region
is restricted, with no pumping outside. The concen-
tration of excitons is still described by Eq. (6), which
leads to the exponential decay of the exciton concen-
tration to zero, and the zero boundary conditions are
fulfilled at large distances from the irradiated region.

A numerical analysis of the solutions of Eq. (6)
leads to a diagram on the plane of the lifetime of
the excitons and the pump intensity presented in
Fig. 1. The parameter 𝑏 = −1.9 in Fig. 1 is taken
such that the condensed phase exists in the system,
i.e., slightly above the threshold. The estimate of
the dimensionless diffusion coefficient �̃� = 0.03 is
taken from (5) for the typical values of the dimen-
sional parameters 𝑡0 = 10−10 s, 𝑙0 = 2 × 10−8 cm,
𝐷 = 10 cm2/s. Let us analyze the dynamics of the
change in states with increasing the pumping for par-
ticles with a definite lifetime 𝜏ex. The typical lifetime
is about 10−8–10−7 s; so, according to (5), 𝜏ex is
about 100–1000. Let 𝜏ex = 300, then a change in the
density with increasing the pumping is determined by
the vertical dashed curve shown in Fig. 1. There are
several important values on this way. At small values
of the density 𝐺𝜏ex < 𝑛1, the gas phase of excitons is
realized in the system, which means a homogeneous
exciton distribution. In the region 𝑛1 < 𝐺𝜏ex < 𝑛2,
the homogeneous distribution is unstable, and a pe-
riodic distribution of the exciton density arises in the
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Fig. 2. Scheme of the nonuniform irradiation as a function of
the pumping versus the coordinate. Region A is illuminated
intensively to the level of the condensed phase (𝐺𝜏ex = 1.2).
Region B is illuminated to the level of the bistability (𝐺𝜏ex =

0.5). Dashed horizontal lines represent the values of 𝑛10, 𝑛1,
𝑛2, and 𝑛20

system. The period increases with the pumping. For
𝐺𝜏ex > 𝑛2, the condensed phase of excitons is formed
in the system, which appears to be homogeneous
again. Calculations show that there are bistability ar-
eas near the borders of instability (𝑛10 < 𝐺𝜏ex < 𝑛1

and 𝑛2 < 𝐺𝜏ex < 𝑛20), where both homogeneous
and periodic distributions of excitons are stable. In
these regions, the exciton distributions can also be
realized in the form of single peaks (solutions in this
form were obtained in [27]). They are called static
solitons [32].

In the linear external potential (𝐹 = const ̸= 0),
the considered structures move, by forming autowa-
ves. In the case where the boundary effects can be
neglected, the replacement 𝑛(𝑥, 𝑡) = 𝑛st(𝑥 − 𝐹𝑡) in
Eq. (6) allows us to express the solution 𝑛(𝑥, 𝑡) for
𝐹 ̸= 0 in terms of the stationary solution 𝑛st(𝑥) for
𝐹 = 0. The solution has the form of a wave moving
with velocity equal to 𝐹 .

3. Simulation Results

Following [30], we consider a semiconductor with a
double quantum well, in which the creation of ex-
citons occurs in several adjacent regions (Fig. 2). A
narrow region 𝑑 in width is denoted as A; the sec-
ond wide region (B) 𝐿 in width is irradiated with an
intensity creating the exciton density with its value
in the bistability region (i.e., 𝑛10 < 𝐺𝜏ex < 𝑛1, see
Fig. 1). This region can be in a state of uniform exi-
ton distribution or in the exciton soliton state. We

Fig. 3. Spatial distribution of the density of excitons in a
steady state with the driving force 𝐹 = 0.028. In time, the
peaks – islands of a denser phase – move to the right with
the velocity equal to 𝐹 . Thin green lines show the envelopes
of propagating peaks. Vertical red lines limit the region with
strong pumping of excitons, vertical blue lines – a region with
the intermediate pumping of excitons. On the top graph, the
pumping in region A corresponds to the instability (𝐺𝜏ex =

= 0.9). On the lower graph, which corresponds to a small size of
region B, the concentration of excitons appears to be stationary
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Fig. 4. Minimum value of the driving force necessary for the
generation of autowaves as a function of the size of region B
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will see that the state in region B is regulated by
the irradiation intensity of region A. If the pumping
is absent, the exciton concentration 𝑛 exponentially
decays to zero due to the finite lifetime of excitons.

Let us study the dependence of the process of soli-
ton generation in region B on the sizes of the region
and the magnitude of an applied driving force. In the
absence of the irradiation in region A, there are no
solitons in region B, and the luminescence from this
region is homogeneous. Let us increase the irradiation
intensity in region A. When the intensity appears to
correspond to the instability region, the exciton den-
sity pulses appear in region A, travel through region
B, and disappear at the boundary of the irradiation
region (Fig. 3, top). When the pumping intensity in
region A corresponds to the excitation of the con-
densed phase, the situation is similar, when the size
of region B is large, and the value of the driving
force is above some threshold [30]. In this case, the
pulses of high-density excitons appear at the bound-
ary between regions A and B (Fig. 3, middle). If we
lower the irradiation intensity in region A, then no
new pulses appear. When all pulses go away from
region B, the exciton density returns to the uniform
distribution.

If the size of region B is small, larger driving forces
are needed to start the generation from the region
pumped to the condensed phase. There is a minimum
value of the size of the region, at which the genera-
tion is possible. Let the size of region B be less than
the critical value. When the irradiation of region A is
switched-on, a certain stationary distribution of the
exciton density is established in the system (Fig. 3,
bottom). However, if the parameters of the system
are such that the generation is started, it takes place
with the same frequency and shape as in the absence
of a boundary.

Figure 4 shows the critical values of the driving
force that causes the generation of autowaves as a
function of the size of region B. Smaller regions B re-
quire larger driving forces to trigger the generation. If
the region of a pumping is too small, the autowave
generation does not occur even for large values of the
driving force.

Let us make estimations of possible soliton ve-
locities in the system. In dimensional units, the ve-
locity is equal to 𝑣 = −𝐷𝐹/(𝑘𝑇 ). In the case of
𝐷 = 100 cm2/s, 𝑇 = 2 K, 𝐹 = 10−3 eV/(100 𝜇m),
we obtain 𝑣 = 5.7× 104 cm/s.

4. Conclusions

The conditions of generation and motion of exciton
solitons in the double quantum wells of semiconduc-
tors under a constant pumping and the presence of
an external driving force have been analyzed. Solitons
are localized regions (islands) of the condensed phase
of excitons that appears under the certain conditions
of pumping. The generation of solitons by a station-
ary pumping was proposed in [30] and is based on the
fact that, in a definite pumping region, the system is
in a bistable state – one solution is uniform, another
solution is with solitions, which move in the presence
of an inhomogeneous potential (driving force). With
the help of an additional pumping, which irradiates
the neighboring region, it is possible to transfer the
system from one state to another one – from a state
without solitons to a state with moving solitons and
vice versa. In this paper, we have investigated the
generation of solitons, depending on the size of the
system. It is shown that there exists a minimal size
of the system, for which a state with moving soli-
tons can be created. The dependence of the minimum
value of the driving force necessary for the generation
of solitons on the size of the regions is found.
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IМПУЛЬСИ ЕКСИТОННОЇ КОНДЕНСОВАНОЇ
ФАЗИ В НАПIВПРОВIДНИКАХ З ПОДВIЙНИМИ
КВАНТОВИМИ ЯМАМИ ПРИ СТАЦIОНАРНОМУ
НАКАЧУВАННI: РОЗМIРНI ЕФЕКТИ

Р е з ю м е

Проаналiзовано умови, за яких виникає генерацiя i рух солi-
тонiв (областей екситонних конденсованих фаз) в подвiйних
квантових ямах напiвпровiдникiв при стацiонарнiй накачцi
i наявностi зовнiшньої тянучої сили. Показано, що iснує мi-
нiмальний розмiр системи, при якому стан з рухомими со-
лiтонами може бути створений. Знайдена залежнiсть мiнi-
мального значення тянучої сили, необхiдної для генерацiї
рухомих солiтонiв, вiд розмiрiв системи.
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