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NONLINEAR MODEL

OF CALCIUM EXCITATIONS IN BIOMEMBRANES

A model is proposed to describe the calcium redistribution in biological substances. The model
takes into comsideration that calcium can be located inside or outside a cell. Calcium is re-
distributed due to its transport from the cell volume into the outer space and backward. The
model makes allowance for the calcium diffusion into the outer space. It is shown that there
are two modes of functioning of the system. In one of them, the initial perturbation of the
calcium concentration in the extracellular space monotonically vanishes in time. In the other
mode, this perturbation first grows, but afterward decreases to the zero value. The calcium
concentration in the intracellular space is shown to be a critical parameter that governs the

system operation mode.
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1. Introduction

Even the simplest biological systems are difficult to
be researched. Accordingly, their modeling, as well
as the modeling of processes in them, requires a lot
of efforts. As a rule, the progress can be achieved if
the most common properties and relations are dis-
tinguished. This is a heuristic task that requires a
thorough understanding of the functioning laws and
principles of biological objects. In particular, when
studying various systems involving biomembranes, it
is often necessary to deal with calcium fluxes [1-
3]. Calcium plays a significant role in many physio-
logical processes, and it is a regulator responsible for
important functions of complex organisms. A good
example is the redistribution process of calcium ions
in the extracellular space, when the cardiac mus-
cle cells contract (see, e.g., work [4] and references
therein). Let us consider the main stages of this pro-
cess at the general level.

Cardiomyocyte, the cardiac muscle cell, is known
to contain a reticulum that is a container, or a reser-
voir, to store calcium ions. This is calcium that is lo-
cated in the intracellular space. It can transit into the
outer space and return back. Such a transition takes
place by means of special calcium channels, which are
activated in the presence of an action potential. The
peculiarity of the situation consists in that the re-
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lease of calcium ions from the intracellular space into
the extracellular one creates an additional potential,
which stimulates the functioning of calcium chan-
nels, so that additional calcium is released. Hence, in
this case, there exists a positive feedback. We should
also take into account that the considered process is
non-local owing to the calcium diffusion in the outer
space [4-9].

Sparks, spontaneous events of calcium release into
the extracellular space, are elementary signaling
events. It is well known that sparks can form clusters
or generate calcium waves [4, 10]. However, experi-
mental data and theoretical calculations give grounds
to assert that the appearance of calcium waves cannot
be explained by a sporadic release of calcium into the
extracellular space (see, e.g., work [4] and references
therein). Although there is a significant body of vari-
ous studies that explain or describe the mechanisms of
calcium ion redistribution in the intra- and extracellu-
lar spaces, the task of creating a simple model at the
qualitative level, which would explain the enhance-
ment of initial calcium pertirbations in the extracel-
lular space, remains challenging. The present work is
devoted to the solution to this problem.

2. Researched System

While constructing a mathematical model, we maxi-
mally simplified the situation without losing the key
issues. Our main assumptions were as follows:
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e Calcium (calcium ions) can be in either of two
states. First, calcium is accumulated in special vesi-
cles (couplons) in the cells (in the intracellular
space). Second, calcium can exist in the free state in
the extracellular space.

e Calcium can transit from the intracellular space
into the extracellular one and backward.

e The presence of calcium in the extracellular space
stimulates a more intensive calcium release from the
intracellular space.

¢ A positive feedback arises: the process of calcium
release from the intracellular space into the extracel-
lular one enhances itself. However, since the amount
of calcium in the intracellular space decreases, this
process is finite in time.

Below, we propose a simple mathematical model
that allows the process of calcium redistribution
in the intra- and extracellular spaces to be ana-
lyzed. In particular, let us consider a plane that sep-
arates the intra- and extracellular spaces. We are
interested in the calcium distribution on the both
sides of the plane, i.e. in the intra- and extracellular
spaces. The whole system is considered as one-dimen-
sional, i.e. the spatial dependence of the calcium con-
centration can vary along the axis x oriented normally
to the plane. In other spatial directions, the calcium
concentration is constant. On the one hand, this as-
sumption substantially simplifies the analysis; on the
other hand, it does not seem to be too unrealistic.

Let u(t,z) and v(t,x) be the calcium concentra-
tions in the extra- and intracellular spaces, respec-
tively. We consider the both concentrations as func-
tions of the time ¢ and the spatial coordinate z. The
dynamics of the calcium concentrations in the extra-
and intracellular spaces in the general case can be de-
scribed by the following system of partial differential
equations:

ou

Fri Dy Au + kiuv — kou, (1)
% = D,Av — kiuv + kau. (2)

Here, A is the Laplace operator, D, and D, are the
diffusion coefficients in the extra- and intracellular
spaces, respectively, and k; and ko are phenomeno-
logical parameters of the model. In Egs. (1) and (2),
the first terms describe the diffusion processes (the
calcium motion along the z-axis). The term kjuv de-
scribes the calcium flux from the intracellular space
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into the extracellular one. Here, we took into account
that the intensity of this flux, on the one hand, should
depend on the calcium concentration in the intracellu-
lar space (the source of calcium). On the other hand,
the intensity of the calcium release into the extracel-
lular space increases with the concentration of already
released calcium. The term ksu describes the calcium
flux from the extracellular space to the intracellular
one. We assume that this flux is proportional to the
calcium concentration in the extracellular space.

For the further analysis, let us make our equa-
tions dimensionless. The following changes are made:
U — ugu, v — vov, t — tot, and x — Lz, where
L is a typical system size, ug = vg = ko/k1, and
to = 1/ka. We also consulted the available experimen-
tal data, which testify that the calcium mobility in
the intracellular space is substantially restricted, and
put D, = 0. Then we obtained the following system
of equations that determines the calcium dynamics
(its redistribution between the extra- and intracellu-
lar spaces):

ou  ,0%u

o Vo T ®)
ov

_— = — 4
r U — uv, (4)

where the parameter a? = kl:gz was introduced.

These equations can be reduced to a single integro-
differential equation,

Ju 5 0%u

o = a pr + cuexp <— /u(T)dT), (5)

0

in which the function e(z) is related to the initial cal-
cium distribution in the intracellular space: e(z) =
= v(t = 0,z) — 1. To solve Eq. (5), we also have to
know the initial calcium distribution in the extracel-
lular space u(t = 0,2) = p(z) and the boundary con-
ditions for the function u(t, ) at x = 0 and z = 1. We
assume that calcium cannot transit into the extracel-
lular space across the system boundary and put the
corresponding conditions to be zero:

u(t,x =0) =u(t,x =1) =0. (6)

We also assume that the function e does not de-
pend on the spatial coordinate x, being a con-
stant. However, it is clear that, even in this simpli-
fied formulation, the problem is not trivial and has to
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be solved numerically. However, let us first consider
some partial cases.

3. Analysis of Limiting Cases

One of the simplest cases is realized if there is no cal-
cium diffusion in the extracellular space. In this case,
we have to put a = 0. Then we obtain an ordinary
differential equation that governs the dynamics of the
calcium concentration in the extracellular space:

du

— =u(t)(C =1 —u(t)), (7)
dt

where C is the time-independent total calcium con-
centration for the intra- and extracellular spaces,

u(t) +v(t) = C. (8)
The stable stationary solution looks like

u(t)=C -1, (9)
v(t) =1 (10)

in the case C' > 1 and

in the case C' < 1. It was rather easy to obtain precise
analytical solutions for the dependences u(t) and v(t),
but they are trivial and invoke no particular inter-
est. The main conclusion that can be drawn on their
basis and by analyzing the stability of stationary solu-
tions is as follows: if the calcium concentration in the
extracellular space at the initial time moment differs
from the stationary value, then, in time, calcium be-
comes so redistributed that a stable stationary solu-
tion is realized. For the function u(t), which describes
the calcium concentration in the extracellular space,
the stationary solution equals zero under the condi-
tion C' < 1 and differs from zero if C' > 1. Hence,
there is a critical value for the total calcium concen-
tration: if the actual amount of calcium is less than
this value, there is no calcium in the extracellular
space. In a sense, this result is important, but as will
be shown below, the calcium diffusion in the extracel-
lular space makes the situation even more interesting.

At the next stage, let us take into account the dif-
fusion of calcium in the extracellular space. We also
assume that the parameter € > 0 does not depend on
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the spatial coordinate. Another assumption consists
in that the solution w(¢,x) is small. This assumption
does not seem to be false, because, in the case of zero
initial condition for the function w(t,z) and taking
into account Eq. (5) and boundary conditions (6), we
obtain the solution u(t,z) = 0. It is reasonable to
assume that, if the initial calcium distribution in the
extracellular space is negligibly small, then there is an
opportunity for this concentration to remain small. If
S0, by substituting the exponential function in expres-

sion (5) by unity, exp [— fot u(7’)d7’:| ~ 1, we obtain
the following equation:

ou _ pi
ot Ox?

It has the analytical solution in the form of an infinite
series

+ eu. (13)

u(t,x) = Z U, exp(—Apt) sin(mnx),

n=1

(14)

where the expansion coefficients U,, are determined
from the initial condition u(t = 0,x) = ¢(x) by the
formula

1

U, = 2/<p(x) sin(mnx)dx, (15)
0

and the parameters

A\, = (mna)? —e. (16)

It is easy to understand that if

e > (ma)?, (17)

solution (14) contains terms that grow exponentially
in time. This means that the initial assumption that
the calcium concentration in the extracellular space
remains negligibly low is invalid. Hence, we may as-
sert that there is a critical value for the parameter
e = (ma)? If it is exceeded, the initial small devia-
tions of the calcium concentration from the equilib-
rium value in the extracellular space will grow. In this
case, no infinite increase of the calcium concentration
in the extracellular space will take place, because,
according to relation (5), the growth of wu(t,z) will
increase the value of integral in the exponential func-
tion, so that the term that stimulates the growth of
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Fig. 1. Dependence u(t,z) for the parameters a = 0.4, a =
=100, A =10, and € = 33.6
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Fig. 2. Dependence u(t,z) for the parameters a = 0.4, a =
=100, A =10, and e = 11.2

Fig. 3. Dependence u(t,z) for the parameters a = 0.4, a =
=100, A =10, and € = 4.8
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the initial disturbance will decrease. In other words,
we have a negative feedback. In order to describe the
features in the calcium redistribution in more details,
we have to solve numerically the initial system of par-
tial differential equations (1), (2).

4. Mode of Calcium
Excitation Enhancement

The results presented above, which were obtained at
a qualitative level, give grounds to expect that, in the
case of initial calcium excitation (a release of an addi-
tional portion of calcium into the extracellular space),
two scenarios are possible for the further redistribu-
tion of calcium in the system:

¢ the calcium spark monotonically vanishes,

e the calcium spark firstly grows and then vanishes.

In the framework of our research of the calcium re-
distribution, let us simulate system’s response to the
following initial perturbation of the calcium concen-
tration in the extracellular space:

o(x) = Aexp(—a(z — 0.5)?). (18)
This is a Gaussian-like distribution around system’s
middlepoint, which corresponds to modern ideas
about the stochastic release of calcium into the extra-
cellular space. If the initial calcium distribution ¢(x)
in the extracellular space is known, we can estimate
the time derivative of the function u(¢, ) at the initial
time moment:

ou(t, )
ot

= @e@)" +ep(@).

(19)

If the initial distribution ¢(z) is determined by for-
mula (18), we obtain

ou(t, )
o
It is evident that, for the initial perturbation to grow,
it is sufficient (but not required) that the condition
% +—o > 0 should be obeyed in a certain spatial
interval. The indicated condition is obviously equiva-
lent to the following one:

=@ (e +aa®(a2e =12 = 1)) (20)

£+ aad’(a(2z — 1)* = 1) > 0. (21)

The expression on the left-hand side of this inequal-
ity has a minimum at x = 0.5 (the system middle-
point). At # = 0.5, condition (21) transforms into
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the expression
£ > aa®. (22)

However, even if this condition is not satisfied, it
does not mean that there cannot be any enhance-
ment of the initial perturbation. The calcium con-
centration may firstly decrease. Afterward, the stage
of calcium concentration growth in the extracellular
space begins. This scenario is confirmed by the re-
sults of a numerical simulation. To obtain numerical
solutions, a standard method of lines was used. It is
based on the spatial discretization of original equa-
tions. As a result, the original problem is reduced
to the solution of a system of ordinary differential
equations.

In order to obtain numerical solutions for the sys-
tem of equations (1) and (2), we used the follow-
ing values of the parameters: a = 0.4, a = 100,
and A = 10. Then the critical value of the param-
eter € calculated according to formula (17) equals
1.56. The value of aa? on the right-hand side of in-
equality (22) equals 16. Figure 1 demonstrates the
dependence u(t, ) calculated for the parameter value
e = 33.6. It is quite expected that, in this case, we
have a growth of the initial perturbation, which is
associated with the presence of calcium in the extra-
cellular space. However, in time, this perturbation, as
was predicted, vanishes.

A similar situation takes place in the case depicted
in Fig. 2. The figure illustrates the dependence u(t, x)
calculated for the parameter value ¢ = 11.2. The spe-
cific feature of this scenario consists in that the initial
perturbation firstly decreases, and, only afterward,
the amplification stage begins. Finally, the calcium
concentration in the extracellular space returns back
to zero.

As the value of the parameter ¢ decreases, the max-
imum amplitude of the calcium concentration profile
in the extracellular space also decreases. In Fig. 3,
the dependence u(t,z) for the parameter e = 4.8 is
shown. Now, there is no enhancement of the initial
perturbation. If the parameter ¢ decreases further,
the time dependence of the calcium concentration be-
comes monotonically decreasing.

A more distinct apprehension about the changes
in the process of calcium redistribution is given by
Fig. 4. This figure demonstrates the time evolution
of the calcium concentration at the middlepoint (at
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Fig. 4. Dependence u(t,z = 0.5) for various e-values: 33.6
(1),11.2 (2), and 4.8 (3)

x = 0.5) for all three cases considered above. As was
marked above, the calcium concentration in the extra-
cellular space ultimately vanishes. However, a tem-
porary growth of this parameter in the extracellular
space may occur.

5. Conclusions

To summarize, the proposed model describes the
process of calcium redistribution in the extracellu-
lar space. The model makes allowance for the cal-
cium diffusion in the extracellular space and for the
nonlinear mechanism that stimulates calcium to tran-
sit from the intracellular space into the extracellu-
lar one. The most important result of our theoretical
analysis and numerical calculations is that an insignif-
icant sporadic release of calcium into the extracellular
space of the examined system can be enhanced. The
corresponding mode is realized, if the calcium con-
centration in the intracellular space exceeds a certain
threshold. This conclusion is in good agreement with
the results of other studies (see, e.g., work [4]). This
can be important for the explanation of processes as-
sociated with the formation of calcium clusters and
the generation of calcium waves.
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HEJITHIMHA MOJIEJIb
KAJIBIIEBUX 3BY/I>KEHb B BIOMEMBPAHAX

Pesmowme

IIpononyerbcss MOZENb, sIKAa OIKCYE IPOLEC IEPEPO3IOIIILY
KaJbIlil0 B Oio/IOriyHMX TKaHWHAX. B Mozesi BpaxoBaHO, IO
KaJIbIliil MOXK€ 3HAXO/IUTUCH B 30BHIIIHBOKJIITHHHOMY a00 BHY-
TPIIHBOKIITUHHOMY TIpocTopi. Ilepeposnonin Kambiito BigOy-
BA€ThCA 32 PaXyHOK MOro Iepexoidy i3 BHYTPIIIHBOKJIITHHHOI'O
IIPOCTOPY y 30BHINIHBOKJIITUHHUI, 1 HaBIIaku. TakoxK y mMozesii
BpaxoBaHO Audy3iio KaIbIiio y 30BHIITHBOKII THHHOMY IPOCTO-
pi. Ilokazano, 1o icHye JBa pexKuUMU (PYHKIIOHYBaHHS TaKOl
cucreMu. B meprmomy pexkumi modaTkoBe 30ypeHHsI KOHIIEH-
Tpaliil KaJbIil0 y 30BHIIIHBOKJIITUHHOMY IIPOCTOPi MOHOTOHHO
3 4aCoM 3MEHIILYEThCS 10 HyJIbOBOI'O 3HaY€HHs. B npyromy pe-
KUMI [I0YaTKOBE 30ypeHHs! KOHIIEHTPAIil KaJbI[IO IIiICHITIOE-
Thesd (OJHAK 3PEIITOI0 BCE OJHO IIOBEPTAETHCS JI0 HYJIBOBOI'O
3HadeHHs1). KpUTUYHOIO XapaKTePUCTUKOIO, sIKa BU3HAYAE Pe-
KUM (DYHKI[IOHyBaHHSI CHUCTEMH, € KOHIEHTDAIlis KaJbI[o Yy
BHYTPIIIHBOKJIITUHHOMY ITPOCTOPI.
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