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THE MASSLESS LIMIT
OF BARGMANN–WIGNER EQUATIONS
FOR A MASSIVE GRAVITON

Information about the discovery of gravity waves attract attention to the graviton’s mass prob-
lem. The massive graviton is a spin-2 particle with a non-zero mass. In this work, relativistic
wave equations for a massive graviton have been studied in the limiting case of zero particle
mass. The equations for the non-zero-mass graviton are based on the Bargmann–Wigner equa-
tions in the five-dimensional space-time with the (++++−) signature. In the massless limit of
massive graviton, all states with possible helicity values – 0 (LL-graviton), ±1 (TL-graviton),
and ±2 (TT-graviton) – are preserved.

K e yw o r d s: Bargmann–Wigner equation, massive graviton, wave equations.

1. Introduction

Observations of gravity waves in 2015–2017 attracted
attention to the old issue about graviton’s mass,
i.e. to the problem of a massive graviton [1, 2]. The
massive graviton is a hypothetical particle with a spin
of 2, whose mass𝑚 is evaluated to be less than 10−22–
10−32 eV. The aim of this study is to consider the
massive graviton as a massless particle in the five-
dimensional space-time and to demonstrate that all
five states of its helicity polarization survive in the
massless limit in the Minkowski space-time. This re-
sult contradicts the conventional viewpoint [3].

2. The Landau–Peierls
Wave Equations for Light Quanta
and the Bronshtein Equations
for Gravitational Quanta

In 1930, L. Landau and R. Peierls were the first who
considered the issue about the wave function of a
light quantum. At the beginning of their work [4],
L. Landau and R. Peierls reasonably assumed that
the light quantum had to be described by Maxwell’s
equations in vacuum (hereafter, we adopt that 𝑐 =
~ = 1)

Ė = rotH, divE = 0, (1)
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Ḣ = −rotE, divH = 0. (2)

According to Landau and Peierls, the vectors E and
H in Eqs. (1) and (2) are complex-valued quantities.

Landau and Peierls imposed additional restrictions
on E and H, which excluded the solutions of Eqs. (1)
and (2) with negative energies. Denoting the photon
“wave function” as F ≡ E (or F ≡ H), the cited au-
thors wrote the following “wave equations” for the
“wave function” F:

Ḟ = −
√
ΔF, (3)

divF = 0, (4)

where
√
Δ is the integro-differential operator

√
ΔE(x) =

1

2𝜋2𝑖
Δ

∫︁
E(y)

|x− y|2
𝑑3𝑦. (5)

Equations (3) and (4) has a plane-wave solution

F = 𝑒𝑖(kx−𝜔𝑡)f , (6)

in which

𝜔 = |k|, (7)
(kf) = 0. (8)

Equation (7) differs from the consequences of
Maxwell’s equations (1) and (2). Namely,

𝜔 = ±|k|. (9)
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In due course, it became clear that it is Maxwell’s
equations (1) and (2) with the complex E and H that
are the wave equations for light quanta (photons).

In order to elucidate the physical quantum-
mechanical content of Maxwell’s equations as the
wave equations for photons, it is expedient to in-
troduce six complex-valued quantities, the Riemann–
Silberstein vectors 𝜓+ and 𝜓 [5–7], instead of six
complex-valued quantities E and H:

𝜓± = E± 𝑖H. (10)

Then Maxwell’s equations (1) and (2) read

𝑖
𝜕

𝜕𝑡
𝜓± = ±rot𝜓±, (11)

div𝜓± = 0. (12)

The change from the vectors E and H to the vectors
𝜓+ and 𝜓 has the following advantages.

1. Maxwell’s equations are transformed into two in-
dependent pairs of equations for two functions, 𝜓+

and 𝜓−.
2. When subjected to the transformations of the

proper Lorentz group, the functions 𝜓+ and 𝜓−
are transformed quite simply and independently of
each other. For instance, when changing to a refer-
ence frame that moves relatively to another reference
frame with a velocity v, the new functions look like

𝜓′
± =

𝜓± ± 𝑖[v,𝜓±]√
1− v2

. (13)

3. Equation (11) has the form of Schrödinger’s
equation

𝑖
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓 (14)

with the Hamiltonian 𝐻 = ± rot.
4. The physical meaning of the Hamiltonian 𝐻 =

= ± rot is as follows: 𝐻 = ±(sp), where s is the
photon spin operator, (𝑠𝑖)𝑘𝑙 = −𝑖𝜀𝑖𝑘𝑙; p is the pho-
ton momentum operator, 𝑝𝑖 = −𝑖 𝜕

𝜕𝑥𝑖
; and 𝜀𝑖𝑘𝑙 is the

completely antisymmetric Levi–Civita unit symbol,
𝜀123 = 1.

Thus, if photons have certain energies and mo-
menta, Eqs. (11) describe photons with the right (𝑅
or +) and left (𝐿 or −) helicities.

As was elucidated in work [8], the Weyl equations
[9] for a massless neutrino (𝑠 = 1

2 ), Maxwell’s wave

equations for a photon (𝑠 = 1), and the Bronshtein
wave equations [10] for a graviton (𝑠 = 2) have the
same group-theoretic nature, and the corresponding
Hamiltonians look like 𝐻 = ± 1

𝑠 (sp) (for more details,
see works [11–15]).

In the work by M.P. Bronshtein [10], the equations
for weak gravitational waves were presented in a form
that made obvious their relation to Maxwell ones. In
particular, Maxwell’s equations (1), (2) can be writ-
ten as follows:

𝜕

𝜕𝑡
𝐸𝑖 = 𝜀𝑖𝑘𝑙

𝜕

𝜕𝑥𝑘
𝐻𝑙,

𝜕

𝜕𝑥𝑖
𝐸𝑖 = 0,

𝜕

𝜕𝑡
𝐻𝑖 = −𝜀𝑖𝑘𝑙

𝜕

𝜕𝑥𝑘
𝐸𝑙,

𝜕

𝜕𝑥𝑖
𝐻𝑖 = 0.

(15)

Einstein’s equations for weak gravitational waves in
the Bronshtein form look like

𝜕

𝜕𝑡
𝐸𝑖𝑗 = 𝜀𝑖𝑘𝑙

𝜕

𝜕𝑥𝑘
𝐻𝑙𝑗 ,

𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗 = 0,

𝜕

𝜕𝑡
𝐻𝑖𝑗 = −𝜀𝑖𝑘𝑙

𝜕

𝜕𝑥𝑘
𝐸𝑙𝑗 ,

𝜕

𝜕𝑥𝑖
𝐻𝑖𝑗 = 0,

(16)

where 𝐸𝑖𝑗 and 𝐻𝑖𝑗 are symmetric traceless tensors 1

𝐸𝑖𝑗 = 𝑅4𝑗4𝑖 =
1

4
𝜀𝑖𝑘𝑙𝜀𝑗𝑚𝑛𝑅𝑘𝑙𝑚𝑛,

𝐻𝑖𝑗 =
𝑖

2
𝜀𝑖𝑚𝑛𝑅4𝑗𝑚𝑛 =

𝑖

2
𝜀𝑖𝑚𝑛𝑅𝑚𝑛4𝑗 ,

(17)

and 𝑅𝜇𝜈𝜌𝜎 is the Einstein curvature tensor.
In his work [10], M.P. Bronshtein did not introduce

the notions “graviton” and “wave function of a gravita-
tional quantum”. He considered the complex tensors
𝐸𝑖𝑗 and 𝐻𝑖𝑗 as solutions of Eqs. (16). Those solutions
are nothing else but the wave functions of gravitons,
and Eqs. (16) are the corresponding wave equations.

3. Wave Equations for Photons
and Gravitons in the Spinor Form

In 1929, on P. Ehrenfest’s request, B.L. van der
Waerden developed the spinor analysis [16]. In 1931,
O. Laporte and G.E. Uhlenbeck for the first time

1 To verify the symmetry of the right-hand side of Eqs. (16)
with respect to the subscripts 𝑖 and 𝑗, let us consider the dif-
ference 𝜀𝑖𝑘𝑙

𝜕
𝜕𝑥𝑘

𝐻𝑙𝑗 − 𝜀𝑗𝑘𝑙
𝜕

𝜕𝑥𝑘
𝐻𝑙𝑖. Using property (17) and

the relation 𝜀𝑖𝑘𝑙𝜀𝑚𝑛𝑙 = 𝛿𝑖𝑚𝛿𝑘𝑛 − 𝛿𝑖𝑛𝛿𝑘𝑚, one can demon-
strate that this difference equals zero. Therefore, the tensor
is symmetric with respect to the permutation 𝑖 ↔ 𝑗. The
symmetry of the other tensor is proved analogously.
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considered Maxwell’s equations in the spinor form
[17]. They recalled about the Riemann–Silberstein
vector and used it in their work (both Riemann
and Silberstein used only one vector, H − 𝑖E). Using
the Riemann–Silberstein vectors (10), we can write
Eqs. (11) and (12) in the form(︂
𝜕

𝜕𝑡
𝐼 ± 𝜎

𝜕

𝜕x

)︂
𝜓(±) = 0, (18)

where 𝜓(±) is the 2 × 2-matrix (𝜓(±))
𝛽
𝛼 = (𝜓±𝜎)

𝛽
𝛼,

and (𝜎)𝛽𝛼 are the standard Pauli matrices. Equations
(11) and (12) can be obtained from Eqs. (18) and the
following formula for the product of Pauli matrices:

𝜎𝑖𝜎𝑘 = 𝛿𝑖𝑘𝐼 + 𝑖𝜀𝑖𝑘𝑙𝜎𝑙. (19)

Instead of 10 complex variables 𝐸𝑖𝑗 and 𝐻𝑖𝑗 , let
us introduce 10 complex variables (analogs of the
Riemann–Silberstein vectors)

𝜓(±)𝑖𝑗
= 𝐸𝑖𝑗 ± 𝑖𝐻𝑖𝑗 , (20)

and define the spin tensor

𝜓(±)𝛼𝛽𝛾𝛿
= 𝜓(±)𝑖𝑗

(𝜎𝑖)𝛼𝛽(𝜎𝑗)𝛾𝛿, (21)

where (𝜎𝑖)𝛼𝛽 = (𝜎𝑖)
𝛾
𝛼𝜀𝛾𝛽 are symmetric matrices,

i.e. (𝜎𝑖)𝛼𝛽 = (𝜎𝑖)𝛽𝛼, and 𝜀𝛾𝛽 is the completely an-
tisymmetric Levi–Civita unit symbol, 𝜀12 = 1. It can
be shown that the spin tensor (21) is completely sym-
metric.

In the spinor form, the Weyl equations look like(︂
𝜕

𝜕𝑡
𝐼 ± 𝜎

𝜕

𝜕x

)︂𝜂

𝛼

𝜓(±)𝜂
= 0, (22)

Maxwell’s equations like(︂
𝜕

𝜕𝑡
𝐼 ± 𝜎

𝜕

𝜕x

)︂𝜂

𝛼

𝜓(±)𝜂𝛽
= 0, (23)

and the Bronshtein equations like(︂
𝜕

𝜕𝑡
𝐼 ± 𝜎

𝜕

𝜕x

)︂𝜂

𝛼

𝜓(±)𝜂𝛽𝛾𝛿
= 0. (24)

The spinor forms of those equations convincingly
demonstrate that the latter are related to one an-
other.

Formulas (22) to (24) are relativistic wave equa-
tions in the non-relativistic notation. Their relativis-
tic invariance is not evident, and this is their short-
coming. In the notation introduced by van der Waer-
den (ordinary and dotted spinor indices), they acquire
the following forms:

∙ Eqs. (22):

(𝜎𝜇)
�̇�𝛼 𝜕

𝜕𝑥𝜇
𝜓(−)𝛼(𝑥) = 0,

(𝜎𝜇)𝛼�̇�
𝜕

𝜕𝑥𝜇
𝜓�̇�
(+)(𝑥) = 0,

(25)

∙ Eqs. (23):

(𝜎𝜇)
�̇�𝛼 𝜕

𝜕𝑥𝜇
𝜓(−)𝛼𝛽(𝑥) = 0,

(𝜎𝜇)𝛼�̇�
𝜕

𝜕𝑥𝜇
𝜓�̇��̇�
(+)(𝑥) = 0,

(26)

∙ and Eqs. (24):

(𝜎𝜇)
�̇�𝛼 𝜕

𝜕𝑥𝜇
𝜓(−)𝛼𝛽𝛾𝛿(𝑥) = 0,

(𝜎𝜇)𝛼�̇�
𝜕

𝜕𝑥𝜇
𝜓�̇��̇��̇��̇�
(+) (𝑥) = 0,

(27)

where the matrices (𝜎𝜇)
�̇�𝛼 and (𝜎𝜇)𝛼�̇� are defined as

follows:

(𝜎𝜇)
�̇�𝛼 = (𝜎, 𝑖𝐼), (𝜎𝜇)𝛼�̇� = (𝜎.− 𝑖𝐼). (28)

Equations (25) to (27) can be written in a more
compact form, if we change from two-component
spinors to four-component Dirac bispinors. In this
case, when considering, e.g., a photon, it is expe-
dient to return back from the Riemann–Silberstein
vectors to the complex-valued Landau–Peierls vectors
E ≡ E and H ≡ H, as well as to the four-dimensional
antisymmetric complex electromagnetic field tensor
𝐹𝜇𝜈(𝑥) = −𝐹𝜈𝜇(𝑥) = (E(𝑥),H(𝑥)), and to consider
the latter as the wave function of a photon. In the
spinor notation, the both pairs of Maxwell’s equa-
tions

𝐹𝜇𝜈,𝜈 = 0, 𝐹𝜇𝜈,𝜌 + 𝐹𝜈𝜌,𝜇 + 𝐹𝜌𝜇,𝜈 = 0 (29)

read

(𝛾𝜇)
𝛽
𝛼𝐹𝜌𝜎,𝜇(𝛾𝜌𝛾𝜎)

𝛿
𝛽 = 0, i.e. 𝛾𝜇𝐹𝜌𝜎,𝜇𝛾𝜌𝛾𝜎 = 0, (30)
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where 𝛾𝜇 are the Dirac matrices. At the same time,
for a massless notoph [18] 𝐹𝜇(𝑥) = (F(𝑥), 𝑖𝐹0(𝑥)), the
wave equations

𝐹𝜇,𝜇 = 0, 𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 0, (31)

acquire the form 2

(𝛾𝜇)
𝛽
𝛼𝐹𝜌,𝜇(𝛾𝜌)

𝛿
𝛽 = 0, i.e. 𝛾𝜇𝐹𝜌,𝜇𝛾𝜌 = 0. (32)

4. Three Variants of Proca
Equations. Photon and Notoph

The relativistic wave equations for a massive spin-1
particle (the Proca equations) can be written in three
(at 𝑚 ̸= 0) forms [22]:

𝐹𝜇𝜈,𝜈 = 𝑚2𝐹𝜇, (33)

𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 𝐹𝜇𝜈 , (34)

𝑊 = |E|2 + |H|2 +𝑚2(|F|2 + |𝐹0|2), (35)

where 𝑊 is the energy density. Proca considered his
equations to be more suitable than the Dirac equa-
tions for the description of an electron.

The Proca equations and the positive energy den-
sity can also be written in the form [23]

𝐹𝜇𝜈,𝜈 = 𝐹𝜇, (36)

𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 𝑚2𝐹𝜇𝜈 . (37)

𝑊 = 𝑚2(|E|2 + |H|2) + |F|2 + |𝐹0|2. (38)

In a certain sense, Eqs. (33)–(35) are symmetric to
Eqs. (36)–(38): in the massless limit, we lose the
notoph in the former case, and the photon in the
latter. If Eqs. (33)–(35) describe a “massive photon”,
then Eqs. (36)–(38) describe a “massive notoph”. In
work [23], the both indicated variants of Proca equa-
tions were analyzed in detail, by using the Bargmann–
Wigner equations [24].

The third variant of the Proca equations was used
in the work by Bass and Schrödinger [25]. In the
massless limit of those equations, both a photon and
a notoph “survive”:

𝐹𝜇𝜈,𝜈 = 𝑚𝐹𝜇, (39)

𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 𝑚𝐹𝜇𝜈 . (40)

2 For more about the spinor analysis and the application of
spinors to the theory of relativistic wave equations and to
the general theory of relativity, see works [19–21].

𝑊 = |E|2 + |H|2 + |F|2 + |𝐹0|2. (41)

In Eqs. (39)–(41), 𝐹𝜇𝜈 and 𝐹𝜇 have the same dimen-
sion, because they both are equitable components of
the same multicomponent wave function. The third
variant of the Proca equations can be simply general-
ized to the case of five-dimensional space-time, which
will be used in this work. It should be noted that the
five-dimensional description of photons and gravitons
was used for the first time by J.K. Lubański in 1942 in
the theory of relativistic equations for particles with
an arbitrary spin [26]. The fifth additional space-like
coordinate is quite equitable with three other space-
like coordinates. This five-dimensionality is much
simpler, and it is not related to the five-dimensional
theories by T. Kaluza [27] and O. Klein [28].

5. Bargmann–Wigner Equations
for a Massive Graviton

Let us firstly consider an ordinary massive non-
relativistic particle of spin 2. Hence, we assume that
the wave function of a massive graviton is a com-
pletely symmetric spin-tensor of rank 4,

𝜙𝑎𝑏𝑐𝑑 = 𝜙𝑎𝑏𝑐𝑑(x, 𝑡). (42)

As was proved by E. Majorana in 1928 [29], an ar-
bitrary wave function (42) can always be represented
in the form

𝜙𝑎𝑏𝑐𝑑 = 𝐴{𝜙(1)
𝑎 𝜙

(2)
𝑏 𝜙(3)

𝑐 𝜙
(4)
𝑑 }, (43)

where 𝐴 is a constant, the notation {...} means a
complete symmetrization over all indices, and 𝜙(𝑖)

𝑎 are
certain two-component spinors 3. When changing to
the relativistic theory, if the spin equals 1

2 , the non-
relativistic spinor 𝜙𝑎(𝑎 = 1, 2) has to be substituted
by the 4-component Dirac bispinor 𝜓𝛼 (𝛼 = 1, 2, 3, 4),
which satisfies the Dirac equations(︂
𝛾𝜇

𝜕

𝜕𝑥𝜇
+𝑚

)︂𝛽

𝛼

𝜓𝛽(𝑥) = 0, (44)

where 𝑥𝜇 = (x, 𝑖𝑡) is the space-time coordinate of
the particle, and 𝑚 the particle mass. It is quite rea-
sonable to replace all four non-relativistic spinors in

3 The Majorana theorem was rediscovered by R. Penrose in
1960 [30] and used to analyze the algebraic properties of
the curvature tensor in the general theory of relativity,
when classifying the types of gravitational fields according
to Petrov [31].
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Eq. (43) by the Dirac bispinors and to assume that
the wave function of a massive graviton looks like

𝜓𝛼𝛽𝛾𝛿(𝑥) = 𝐴{𝜓(1)
𝛼 𝜓

(2)
𝛽 𝜓(3)

𝛾 𝜓
(4)
𝛿 }. (45)

The wave function (45) evidently satisfies the
Bargmann–Wigner equations [24](︂
𝛾𝜇

𝜕

𝜕𝑥𝜇
+𝑚

)︂𝜆

𝛼

𝜓𝜆𝛽𝛾𝛿(𝑥) = 0. (46)

Since the spin tensor 𝜓𝛼𝛽𝛾𝛿 is completely symmet-
ric, there is no difference, on which of the indices the
matrix

(︁
𝛾𝜇

𝜕
𝜕𝑥𝜇

+𝑚
)︁

acts.

6. Five-Dimensional Bargmann–Wigner
Equations for a Massive Graviton

The Dirac equations (44) can be expressed in the
five-dimensional form. First, Eqs. (44) are multiplied
by 𝑖𝛾5,(︂
𝑖𝛾5𝛾𝜇

𝜕

𝜕𝑥𝜇
+ 𝑖𝑚𝛾5

)︂
𝜓 = 0. (47)

Then a fifth coordinate 𝑋5, a new wave function

Ψ(𝑥,𝑋5) = 𝑒𝑖𝑚𝑋5𝜓(𝑥), (48)

and new matrices Γ𝐴 (𝐴 = 1, 2, 3, 4, 5), namely,

Γ𝜇 = 𝑖𝛾5𝛾𝜇,Γ5 = 𝛾5, (49)

are introduced.
Five coordinates (𝑋𝜇 = 𝑥𝜇, 𝑋5) will be denoted by

the capital letter 𝑋. Then the Dirac equation for the
wave function (48) can be written as

Γ𝐴
𝜕

𝜕𝑋𝐴
Ψ(𝑋) = 0. (50)

By performing an analogous procedure with Eq. (46),
the latter can be rewritten in the form
𝜕

𝜕𝑋𝐴
(Γ𝐴)

𝜆
𝛼Ψ𝜆𝛽𝛾𝛿(𝑋) = 0. (51)

7. Five-Dimensional Bargmann–Wigner
Equations for a Massive Graviton
in the Tensor Form

Let us first consider the case of massive photon. Ana-
logously to Eq. (45), we assume that the wave func-
tion of a massive photon is a completely symmetric
tensor of rank 2

𝜓𝛼𝛽(𝑥) = 𝐴{𝜓(1)
𝛼 𝜓

(2)
𝛽 }, (52)

where 𝐴 is a constant. It is evident that this wave
function satisfies the Bargmann–Wigner equation(︂
𝛾𝜇

𝜕

𝜕𝑥𝜇
+𝑚

)︂𝜆

𝛼

𝜓𝜆𝛽(𝑥) = 0. (53)

In the five-dimensional space 𝑋𝐴 = (𝑋𝜇 = 𝑥𝜇, 𝑋5),
the wave function

Ψ𝛼𝛽(𝑋) = 𝑒𝑖𝑚𝑋5𝜓𝛼𝛽(𝑥) (54)

satisfies the following equation, which is similar to
Eq. (51):

𝜕

𝜕𝑋𝐴
(Γ𝐴)

𝜆
𝛼Ψ𝜆𝛽(𝑋) = 0. (55)

Let us introduce the infinitesimal operators (𝑆𝐴𝐵)
𝛽
𝛼 of

the generalized Lorentz group 𝑆𝑂(4, 1). They act on
the Dirac bispinors in the five-dimensional space with
five coordinates 𝑋𝐴 and the invariant form 𝑋𝐴𝑋𝐴:

𝑆𝐴𝐵 =
Γ𝐴Γ𝐵 − Γ𝐵Γ𝐴

4𝑖
. (56)

Let us consider new matrices

(𝑆𝐴𝐵)
𝛼𝛽 = (𝐶−1)𝛼𝛾(𝑆𝐴𝐵)

𝛽
𝛾 , (57)

where 𝐶 is the antisymmetric matrix of the charge
conjugation, 𝐶𝛼𝛽 = −𝐶𝛽𝛼. Ten matrices (𝑆𝐴𝐵)

𝛼𝛽 are
characterized by the following important symmetry
properties:

(𝑆𝐴𝐵)
𝛼𝛽 = −(𝑆𝐵𝐴)

𝛼𝛽 = (𝑆𝐴𝐵)
𝛽𝛼. (58)

Let us introduce the tensor wave function of a massive
photon,

Φ𝐴𝐵(𝑋) = −Φ𝐵𝐴(𝑋) = (𝑆𝐴𝐵)
𝛼𝛽Ψ𝛼𝛽(𝑋). (59)

It is easy to be convinced that the wave function (59)
satisfies the equations

Φ𝐴𝐵,𝐵 = 0, (60)

Φ𝐴𝐵,𝐶 +Φ𝐵𝐶,𝐴 +Φ𝐶𝐴,𝐵 = 0, (61)

where the comma means a partial derivative,
i.e. Φ,𝐴 ≡ 𝜕

𝜕𝑋𝐴
Φ.

Let us introduce a wave function in the Minkowski
space 𝐹𝐴𝐵(𝑥),

Φ𝐴𝐵(𝑋) = 𝑒𝑖𝑚𝑋5𝐹𝐴𝐵(𝑥), (62)
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and the notation

𝐹𝜇5(𝑥) = 𝑖𝐹𝜇(𝑥). (63)

For the functions 𝐹𝜇𝜈 and 𝐹𝜇, Eqs. (60) and (61) are
transformed into the Proca equations (39) and (40),
respectively, for a massive particle with spin 1,

𝐹𝜇𝜈,𝜈 = 𝑚𝐹𝜇, (64)

𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 𝑚𝐹𝜇𝜈 . (65)

In notations (62)–(64), Eq. (61) takes the form

𝐹𝜇𝜈,𝜌 + 𝐹𝜈𝜌,𝜇 + 𝐹𝜌𝜇,𝜈 = 0, (66)

and Eq. (60) becomes

𝐹𝜇,𝜇 = 0. (67)

The massless limit of the Proca equations (64) and
(65) was first analyzed by Bass and Schrödinger in
1955 [25]. If 𝑚 = 0, Eqs. (64)–(67) give rise to the
following expressions:

𝐹𝜇𝜈,𝜈 = 0, 𝐹𝜇𝜈,𝜌 + 𝐹𝜈𝜌,𝜇 + 𝐹𝜌𝜇,𝜈 = 0, (68)

𝐹𝜇,𝜇 = 0, 𝐹𝜇,𝜈 − 𝐹𝜈,𝜇 = 0. (69)

Equations (68) are ordinary Maxwell’s equations
for the complex fields 𝐹𝜇𝜈(𝑥), i.e. the wave equa-
tions for photons (𝑇 -photons, according to work
[25]). Equations (69) correspond to particles that
were called 𝐿-photons in work [25] and, later, “no-
tophs” in work [18]. From Eq. (69), it follows that

𝐹𝜇 =
𝜕𝜑

𝜕𝑥𝜇
, �𝜑 = 0, (70)

i.e. the 𝐿-photon (or the notoph) is an ordinary mass-
less scalar particle. Thus, one can see that, in the case
of massive photon, which has three polarization de-
grees, all three states survive at 𝑚 → 0, in contrast
to the fault conclusion made by Wigner [3] 4.

Analogously to Eq. (59), the tensor wave function
of a massive graviton looks like

𝐺𝐴𝐵𝐶𝐷(𝑋) = 𝑆𝛼𝛽
𝐴𝐵𝑆

𝛾𝛿
𝐶𝐷Ψ𝛼𝛽𝛾𝛿(𝑋). (71)

4 Namely, according to Wigner, only maximum spin projec-
tions on the particle motion direction survive in the mass-
less limit 𝑚 → 0. In the general case of spin 𝑆, these are the
projections 𝑆 and −𝑆.

It is clear that

𝐺𝐴𝐵𝐶𝐷(𝑋) = −𝐺𝐵𝐴𝐶𝐷(𝑋) = −𝐺𝐴𝐵𝐷𝐶(𝑋) =

= 𝐺𝐶𝐷𝐴𝐵(𝑋). (72)

From the generalized Pauli–Fierz relations [32], it fol-
lows that

𝐺𝐴𝐵𝐶𝐵(𝑋) = 0, (73)

𝜀𝐴𝐵𝐶𝐷𝐸𝐺𝐴𝐵𝐶𝐷(𝑋) = 0. (74)

At the same time, it follows from the Bargmann–
Wigner equations (51) that the new wave function
satisfies the equations

𝐺𝐴𝐵𝐶𝐷,𝐷(𝑋) = 0, (75)
𝐺𝐴𝐵𝐶𝐷,𝐸 +𝐺𝐴𝐵𝐷𝐸,𝐶 +𝐺𝐴𝐵𝐸𝐶,𝐷 = 0. (76)

Those equations are not independent: the former can
be obtained from the latter by applying the contrac-
tion operation over two indices. Let us verify that
the symmetry properties of the tensor 𝐺𝐴𝐵𝐶𝐷 re-
strict the number of its components to the same value
as the symmetry properties of the wave function in
the Bargmann–Wigner form Ψ𝛼𝛽𝛾𝛿 do, which is a
completely symmetric 4-rank spin-tensor in the 4-
dimensional spinor space. The number of components
of a completely symmetric 𝑛-th rank tensor in an 𝑚-
dimensional space can be found by the formula

𝑁 =
(𝑛+𝑚− 1)!

𝑛! (𝑚− 1)!
, (77)

which gives 𝑁 = 35 in our case. At the same time, re-
lations (72) restrict the number of the tensor 𝐺𝐴𝐵𝐶𝐷

components to 10 × (10 + 1)/2 = 55. But 15 equa-
tions (73) and 5 equations (74) reduce their total
number to 𝑁 = 55 − 15 − 5 = 35. Thus, the num-
ber of components in the wave functions Ψ𝛼𝛽𝛾𝛿 and
𝐺𝐴𝐵𝐶𝐷 coincide.

One can see that the symmetric properties of the
graviton wave function (71) as a tensor are identical
to the property of the linearized Weyl tensor [33] in
the 5-dimensional space.

8. Generalized Proca
Equations for a Massive Graviton

Using Eq. (73), the tensor function of a massive gravi-
ton can be presented in the four-dimensional form:

𝐺𝜇𝜈𝜌𝜎 = 𝑅𝜇𝜈𝜌𝜎, (78)
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𝐺5𝜈𝜌𝜎 = 𝑖𝐻𝜌𝜎𝜈 , (79)

𝐺5𝜇5𝜈 = 𝐻𝜇𝜈 = −𝑅𝜇𝜈 , (80)

𝑅𝜇𝜇 = 𝑅 = 0. (81)

Substituting these properties into Eqs. (73)–(76), we
obtain the following expressions:

𝑅𝜇𝜈𝜌𝜎,𝜆 +𝑅𝜇𝜈𝜎𝜆,𝜌 +𝑅𝜇𝜈𝜆𝜌,𝜎 = 0, (82)

𝐻𝜈𝜎,𝜆 −𝐻𝜈𝜆,𝜎 = 𝑚𝐻𝜎𝜆𝜈 . (83)

From Eqs. (75), it follows that

𝑅𝜇𝜈𝜌𝜎,𝜎 = −𝑚𝐻𝜇𝜈𝜌. (84)

Equation

𝐻𝜇𝜈𝜌,𝜎 −𝐻𝜇𝜈𝜎,𝜌 = −𝑚𝑅𝜇𝜈𝜌𝜎 (85)

gives rise to the equality

𝐻𝜌𝜎𝜈,𝜎 = −𝑚𝐻𝜈𝜌. (86)

From Eq. (76), it also follows that

𝐻𝜌𝜎𝜈,𝜆 +𝐻𝜎𝜆𝜈,𝜌 +𝐻𝜆𝜌𝜈,𝜎 = 0. (87)

In the four-dimensional notation, the following im-
portant relation can be obtained from Eq. (75):

𝐻𝜇𝜈,𝜈 = 0. (88)

Let us consider Eqs. (78)–(88) for a massive gravi-
ton in the massless limit. At 𝑚 = 0, Eqs. (83) become

𝐻𝜈𝜎,𝜆 −𝐻𝜈𝜆,𝜎 = 0. (89)

Hence, the tensor 𝐻𝜈𝜎 turns out a second-order
derivative of a scalar function:

𝐻𝜈𝜎 =
𝜕2𝜑

𝜕𝑥𝜈𝜕𝑥𝜎
. (90)

Following the work by Bass and Schrödinger, let us
call the particles that correspond to those equations
as LL-gravitons. Let us write the previous expressions
in the zero-mass case. Equations (82), (87), and (88)
remain unchanged. Equations (84), (85), and (86) are
transformed into the equations

𝑅𝜇𝜈𝜌𝜎,𝜎 = 0, (91)

𝐻𝜇𝜈𝜌,𝜎 −𝐻𝜇𝜈𝜎,𝜌 = 0, (92)

𝐻𝜌𝜎𝜈,𝜎 = 0, (93)

Three symmetry relations remain:

𝐻𝜌𝜎𝜎 = 0, (94)

𝐻𝜇𝜈𝜌 +𝐻𝜈𝜌𝜇 +𝐻𝜌𝜇𝜈 = 0, (95)

𝑅𝜇𝜈𝜌𝜎 +𝑅𝜇𝜌𝜎𝜈 +𝑅𝜇𝜎𝜈𝜌 = 0. (96)

By considering Eqs. (92), (94), and (95) in more de-
tails, the following expressions can be obtained:

𝐻𝜇𝜈𝜌 =
𝜕𝑓𝜇𝜈
𝜕𝑥𝜌

, (97)

𝜕𝑓𝜇𝜈
𝜕𝑥𝜈

= 0, (98)

𝜕𝑓𝜇𝜈
𝜕𝑥𝜌

+
𝜕𝑓𝜈𝜌
𝜕𝑥𝜇

+
𝜕𝑓𝜌𝜇
𝜕𝑥𝜈

= 0. (99)

Again following work [25], the particle that satisfies
those equations will be called as TL-graviton.

Equations (81), (91), and (86) bring us to the
Bronshtein equations [10], which describe particles
with a helicity of ±2, i.e. TT-gravitons. It should
be noted that the helicity of a superposition of the
left and right gravitons can be an arbitrary real
number within an interval of [−2,+2], including
zero. The zero case is an analog of the linear pho-
ton polarization. The gravitational waves that were
registered in 2015–2017 were composed of gravitons
of this type. This remark is also applicable to TL-
gravitons. Note also that, in the case of Einstein’s
equations, the components of the tensor 𝑅𝜇𝜈𝜌𝜎 are
real-valued numbers. But, in the case of Bronshtein
equations, they are complex numbers, because the
tensor 𝑅𝜇𝜈𝜌𝜎 is the wave function of a graviton.

9. Conclusions

By reducing the Bargmann–Wigner equations for
a massless graviton in the 5-dimensional space, we
have obtained a system of wave equations, which de-
scribes the dynamics of a massive graviton in the
4-dimensional space. In the zero-mass limit, those
equations transform into the Klein–Gordon equations
for the wave function of a massless scalar particle,
Maxwell’s equations for particles with helicities +1
and −1 in vacuum , and the Bronshtein equation
for gravitons with helicities +2 and −2. The obtained
equations generalize the Proca equations in the Bass
and Schrödinger formulation onto the spin-2 case and
prove the possibility of preserving all 5 helicity po-
larization states of a massive particle with spin 2 in
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the massless limit. By analogy with the work by Bass
and Schrödinger, particles with those states are called
LL-gravitons (helicity 0), TL-gravitons (helicity ±1),
and TT-gravitons (helicity ±2). It was TT-gravitons
that were described by M. Bronshtein for the first
time [10].
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БЕЗМАСОВА ГРАНИЦЯ РIВНЯНЬ
БАРГМАНА–ВIГНЕРА ДЛЯ МАСИВНОГО ГРАВIТОНА

Р е з ю м е

Данi про вiдкриття гравiтацiйних хвиль привернули увагу
до питання iснування маси у гравiтонiв, тобто до питання
масивного гравiтона. Масивний гравiтон – це частинка зi
спiном 2 та ненульовою масою. Метою роботи є дослiдже-
ння границi релятивiстських хвильових рiвнянь масивно-
го гравiтона для випадку нульової маси частинки. Рiвнян-
ня для гравiтона ненульової маси базуються на рiвняннях
Баргмана–Вiгнера у п’ятивимiрному просторi-часi iз сигна-
турою (++++−). Безмасова границя масивного гравiтона
зберiгає усi можливi стани поляризацiї. Цi стани вiдповiд-
ають LL-гравiтону (спiральнiсть 0), TL-гравiтону (спiраль-
нiсть ±1) та TT-гравiтону (спiральнiсть ±2).
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