https://doi.org/10.15407/ujpe63.4.285

A.I. IVANISIK

Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems (4g, Academician Glushkov Ave., Kyiv 03127, Ukraine; e-mail: aivan@univ.kiev.ua)

SCATTERING OF GINZBURG–FRANK AND CHERENKOV TYPES UNDER SELF-FOCUSING OF NANOSECOND LASER PULSES IN LIQUIDS¹

We study the dynamics of nonlinear optical processes such as self-focusing, self-phase modulation, and stimulated Raman scattering in Kerr-liquids under the nanosecond laser pulse excitation. The results prove the existence of the transition Ginzburg-Frank-type effect, which promotes the appearance of new spectral components of the laser radiation at the medium boundary. The generation of extended anti-Stokes frequency-angular bands of stimulated Raman scattering is explained. When the velocity of a self-focusing focal spot matches the phase velocity of the non-linear polarization at the anti-Stokes Raman frequency and the phase velocity of the scattered axial radiation, the most intense frequency-angular bands appear. They are described by the equations typical of the Cherenkov radiation.

K e y w o r d s: self-focusing, self-phase modulation, stimulated Raman scattering.

1. Introduction

The self-focusing (SF) of laser pulses in the nanosecond range in a Kerr medium leads to the movement of a focal spot [1]. The focal spot speed $v_{\rm fp}$ is defined by the laser pulse envelope. At the front and back of a pulse, $v_{\rm fp}$ takes positive and negative values and is not limited by the speed of light in vacuum [2].

In the practical aspect, SF creates a new situation – the dynamics of nonlinear optical processes such as the self-phase modulation (SPM) and the stimulated Raman scattering (SRS), which cannot be achieved within other technical methods.

Previously, we identified the stop point location of a focal spot [3], possibility of Cherenkov-type radiation of SRS under SF [4], effect of SF on angular spectra of SRS [5], angle-selective inverted SRS [6], frequency dependence of anti-Stokes SRS on the focal spot speed in the approach of "ideal thin lens" [7], transition effect of SPM [8], and physical mechanism of anti-Stokes SRS of the Cherenkov type under SPM [9].

Now, it is possible to state the principles of the Ginzburg–Frank transition and the Cherenkov (or Vavilov–Cherenkov) superluminal scattering [10] under SF of nanosecond laser pulses in Kerr liquids.

2. Consideration and Analysis

A simplified scheme for describing the processes is presented in Fig. 1. The focal spot has velocity [2] $v_{\rm fp} = v_{\rm fd}v_{\rm gL}/(v_{\rm fd} + v_{\rm gL})$, which can exceed the light speed c in vacuum ($v_{\rm fd}$ – velocity of focal $z_{\rm f}$ distance change, $v_{\rm gL}$ – group speed of laser radiation).

The laser spot has velocity $v_{\rm fp} = v_{\rm fd} = 0$ for the top of a laser pulse. At this stop-point of a laser spot, classical SRS can be observed, which has asymmetric

[©] A.I. IVANISIK, 2018

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 4

¹ The paper was presented at the XXIII Galyna Puchkovska International School-Seminar "Spectroscopy of Molecules and Crystals".

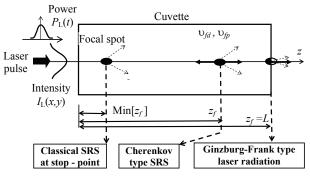
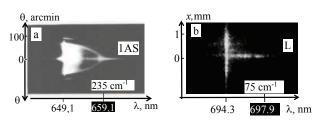



Fig. 1. Simplified scheme for describing the processes

Fig. 2. Experimental frequency-angular spectrum of the Cherenkov-type scattering (a) in the coordinates angel (θ) – wavelength (λ) and frequency-spatial spectrum of the transition-type scattering (b) in the coordinates: lateral coordinate (x) – wavelength (λ) for a ruby laser at 20 ns, 0.5 J pulse in toluen

indicatrix for the parametric scattering. However, the indicatrix asymmetry is another question.

When the focal spot is closer to the exit of a cuvette, the Cherenkov-type superluminal scattering can be observed for parametric SRS. The experimental frequency-angular spectrum of the Cherenkovtype scattering is presented in Fig. 2, a for the first anti-Stokes (1AS) SRS in toluene under the excitation by a ruby laser in the coordinates: scattering angle (θ) – wavelength (λ) . As the focal spot crosses the exit boundary of a cuvette, Ginzburg–Frank transition-type scattering is observed for the laser radiation. An experimental frequency-spatial spectrum of the transition-type scattering is presented in Fig. 2, b for the ruby laser radiation (L) in the coordinates: lateral coordinate (x) – wavelength (λ) . The maximum Stokes frequency shifts in reverse centimeters (cm^{-1}) are indicated in Fig. 2.

A general qualitative similarity for the axial scattering is observed. This is a result of the mutual SPMeffect of the laser radiation. The maximum Stokes frequency shift $\Delta \nu_{1AS}$ for the first anti-Stokes SRS is about 3 times more than the laser shift $\Delta \nu_L$, because $\nu_{1AS} = 2\nu_L - \nu_S$ and $\Delta\nu_{1AS} = 2\Delta\nu_L + \Delta\nu_S = 3\Delta\nu_L$ (here ν_S is the Stokes component frequency). The maximum Stokes frequency shift $\Delta\nu_{2AS}$ for the second anti-Stokes SRS is about 7 times more than $\Delta\nu_L$, seeing $\nu_{2AS} = 2\nu_{1AS} - \nu_L$, $\Delta\nu_{2AS} = 2\Delta\nu_{1AS} + \Delta\nu_L =$ $= 7\Delta\nu_L$.

For the maximal value $\Delta \nu_L$ of the frequency Stokes-shift caused by the transition effect for the laser radiation, it is possible to derive the analytical expression:

$$\Delta \nu_L \approx \nu_L \Delta n_{\rm f} \left\{ z = L \right\} \frac{v_{\rm fd} \left\{ z = L \right\}}{c}$$

where z is a longitudinal coordinate, $\Delta n_{\rm f} \{z = L\}$ is an increment of the refractive index at the focal point at the distance z = L (at the medium boundary), $v_{\rm fd} \{z = L\}$ – a velocity of the focal point at the medium boundary (without considering the difference between times, which are necessary for the pulse fragments to reach the focal point), and c – the speed of light.

The maximum energy density of axial ($\theta = 0$) 1AS radiation is located at the frequency determined by conditions, which are similar to those for the Cherenkov radiation: equality of the phase velocities of electromagnetic waves $v_{\rm ph} \{\omega\}$ at the frequency ω and the phase velocity $v_{\rm ap0}$ of a polarization at the anti-Stokes Raman frequency ω_a . The axial frequency shift in toluene is $(\omega \{\theta = 0\} - \omega_a)/2\pi c =$ $= -197 \text{ cm}^{-1}$.

For $\theta \neq 0$ and $v_{\rm fp} = v_{\rm ap0}$, the frequency-angular branches are related by the expression

$$\cos\theta \approx v_{\rm ph}(\omega)/v_{\rm ap0}$$

that gives a parabola for $\cos \theta \approx 1 - \theta^2/2$.

3. Conclusions

The Ginzburg–Frank (transition effect) – type and Cherenkov (superluminal effect) – type radiations are analyzed at the nanosecond laser pulse excitation in the spectra of a laser and SRS.

1. At the transition effect, the maximum frequency shift of the laser radiation appears, when the focal point of self-focusing intersects the exit boundary of the medium, and the phase delay of SFM before and after the focal point is uncompensated.

2. The SRS Cherenkov-type radiation appears at the coincidence of self-focusing focal point speed, the

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 4

286

phase velocity of a nonlinear polarization at the anti-Stokes Raman frequency and the phase velocity of scattered SRS-radiation. This is a result of the superluminal speed of the focal point and the velocity of a nonlinear polarization.

It will be if interest to analyze the mutual impact of the Ginzburg–Frank and Cherenkov effects on SRS.

- 1. Y.R. Shen. *The Principles of Nonlinear Optics* (Wileyinterscience, 2003).
- 2. A. Ivanisik, P. Korotkov, G. Ponezha. Temporal dynamics of focal point location under self-focusing of nanosecond laser pulses. *Ukr. J. Phys. Opt.* **15**, 1 (2014).
- A.I. Ivanisik, V.I. Malyi, G.V. Ponezha. The spatialangular structure of the anti-Stokes emission under the stimulated Raman scattering of light in a Kerr fluid. *Optika i Spektroskopiya* 80, 212 (1996).
- A.I. Ivanisik, V.I. Malyi, G.V. Ponezha. Cherenkov-type radiation under conditions of Raman light scattering in self-focusing liquids. *Optics and Spectroscopy* 82, 410 (1997).
- A.I. Ivanisik, V.I. Malyi, G.V. Ponezha. On the influence of a self-focusing on the angular spectra of SRS. *Opitka i Spektroskopiya* 85, 88 (1998); *Optics and Spectroscopy* 85, 78 (1998).
- A.I. Ivanisik, V.I. Malyi, G.V. Ponezha. The spectralangular manifestations of a competition of the Raman and parametric processes under SRS in self-focusing media. *Opitka i Spektroskopiya* 85, 512 (1998); *Optics and Spectroscopy* 85, 469 (1998).
- 7. A.I. Ivanisik, G.V. Ponezha. Spectrum of anti-Stokes stimulated Raman scattering from the moving focal regions of

self-focusing. Optika i Spektroskopiya **90**, 699 (2001); Optics and Spectroscopy **90**, 625 (2001).

- S.O. Dudka, A.I. Ivanisik, A.V. Konopatskiy, P.A. Korotkov. Transition effect at the medium vacuum interface under the self-phase modulation of a light pulse. *Ukr. J. Phys.* 51, 140 (2006).
- A.I. Ivanisik, O.Iu. Isaienko, P.A. Korotkov, G.V. Ponezha. Phase modulated parametric anti-Stokes stimulated Raman scattering of Cherenkov-type in self-focusing areas of exciting radiation. Ukr. J. Phys. 57, 1000 (2012).
- I.M. Frank. Vavilov-Cherenkov Radiation: Theoretical Aspects (Nauka, 1988). Received 26.11.17

А.І. Іванісік

РОЗСИЮВАННЯ ГІНЗБУРГА-ФРАНКА ТА ЧЕРЕНКОВСЬКОГО ТИПІВ ЗА САМОФОКУСУВАННЯ НАНОСЕКУНДНИХ ЛАЗЕРНИХ ІМПУЛЬСІВ У РІДИНАХ

Резюме

Досліджено динаміку нелінійно-оптичних процесів (самофокусування, фазова самомодуляція, вимушене комбінаційне розсіювання) у керівських рідинах за дії наносекундних лазерних імпульсів. Результати доводять наявність перехідного ефекту типу Гінзбурга–Франка, який породжує нові спектральні компоненти лазерного випромінювання на межі середовища. Пояснено генерацію протяжних частотно-кутових смуг вимушеного комбінаційного розсіювання. У випадку збігання швидкості фокальної точки з фазовою швидкістю нелінійної поляризації на антистоксовій комбінаційній частоті та фазовою швидкістю розсіяного аксіального випромінювання виникають найінтенсивніші смуги, які описуються рівняннями, характерними для черенковського випромінювання.