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DEPENDENCE OF SOFT PHONON SPECTRA
ON FLEXOELECTRIC COUPLING IN FERROELECTRICS1

Analytical expressions describing the frequency dispersion of the soft transverse acoustic (TA)
and optic (TO) phonon modes in uniaxial ferroelectrics, as well as their dependence on the
flexoelectric coupling constant 𝑓 , have been analyzed in the framework of the Landau–Ginzburg–
Devonshire theory. A critical behavior of the TA mode with respect to the 𝑓 magnitude is
revealed.
K e yw o r d s: Landau–Ginzburg–Devonshire theory, flexoelectric coupling, soft phonon
modes.

1. Introduction

Unique physical properties of nanosized ferroics at-
tract a permanent attention of researchers [1]. In this
work, we would like to focus attention on the most
striking and interesting phenomena induced by the
flexoelectric effect in both fundamental and applied
physics. This effect was first predicted theoretically
by Mashkevich and Tolpygo in 1957 [2]. It is inher-
ent in any material, which makes it universal [3–
6]. Kvasov and Tagantsev [7] predicted the existence
of a cross-term in the kinetic energy and coined its
dynamic flexoelectric effect (see reviews [4,5] and ref-
erences therein). The influence of flexoelectricity is
very important in nanoscaled objects, in which strong
strain gradients are inevitably present near the sur-
faces, in thin films [8–10], at domain walls, and at
ferroelectric interfaces [8, 11–13].

Dynamic characteristics of phase transitions in fer-
roics have attracted a keen attention of scientists for

c○ A.N. MOROZOVSKA, C.M. SCHERBAKOV,
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many years, being a source of the valuable infor-
mation for fundamental physical researches and ad-
vanced applications [14]. Any phase transition leads
to the instability of a certain soft phonon vibra-
tion mode, and static displacements of atoms tak-
ing place at the phase transition correspond to frozen
displacements of this mode [15]. In particular, for fer-
roelectrics, the frequency 𝜔TO of the transverse op-
tic soft mode depends on the temperature 𝑇 , with
𝜔TO (𝑇C) = 0 at the transition temperature 𝑇 = 𝑇C.
The main experimental methods that allow one to ob-
tain information about the soft modes and the spa-
tial modulation of the order parameter in ferroics in-
clude dielectric measurements [16], inelastic neutron
scattering [15,17–21], X-ray [22–24], Raman [25], and
Brillouin [21, 22, 26–29] scattering, as well as the ul-
trasonic pulse-echo method [25, 27] providing hyper-
sound spectroscopic information.

1 The paper was presented at VIII Conference of Young Sci-
entists, Problems of Theoretical Physics, December 12–14,
2017.
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The influence of the static and dynamic flexoelec-
tric couplings on soft phonon spectra in ferroics has
not been studied till now [30, 31]. In the cited re-
search, we used the Landau–Ginzburg–Devonshire
(LGD) approach to consider the influence of the flex-
ocoupling on the appearance of spatially modulated
phases (SMPs) and on the properties of optic and
acoustic phonons in various ferroelectric and para-
electric phases. Flexocoupling-induced soft acoustic
modes and a SMP in ferroelectrics were revealed in
work [32].

In this work, in the framework of the LGD the-
ory, we will analyze expressions for the frequency dis-
persion 𝜔 (𝑘) of soft transverse acoustic (TA) and
optic (TO) phonon modes, as well as their depen-
dence on the flexoelectric coupling constant 𝑓 in fer-
roelectrics. Using the one-component approximation,
which is valid for a number of uniaxial ferroelectrics,
we revealed a critical behavior of the TA mode with
respect to the magnitude of this parameter, which
agrees with the results of work [32].

2. Analytical Description

In the simplest one-dimensional (1D) and one-
component case, which is considered below, the La-
grange function 𝐿 consists of the free energy 𝐹 and
the kinetic energy 𝐾 [4, 5]:

𝐿 =

∫︁
𝑡

𝑑𝑡 (𝐹 −𝐾). (1)

The bulk part of the free energy 𝐹 depends on the
polarization component 𝑃 , strain component 𝑢, and
their gradients. It looks like [32]
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According to the Landau theory [33, 34], the coef-
ficient 𝛼 for proper ferroelectrics linearly depends
on the temperature 𝑇 : 𝛼(𝑇 ) = 𝛼𝑇 (𝑇 − 𝑇C),
where 𝑇C is the Curie temperature. All other coef-
ficients in Eq. (1) are supposed to be temperature-
independent. The coefficient 𝛽 > 0 for ferroics with

the second-order phase transition, and 𝛽 < 0 for
ferroics with the first-order one. The nonlinear stiff-
ness 𝛾 should be non-negative, 𝛾 ≥ 0, for the sta-
bility of functional (1) at all 𝑃. The gradient coeffi-
cients 𝑔 > 0 and 𝑣 < 0 determine the gradient en-
ergy. The polarization 𝑃 interacts with the external
electric field 𝐸. We also assume that the depolariza-
tion field is absent. The considered case corresponds
to the transverse variation of polarization compo-
nents and strains. The electrostriction coefficient 𝑞
can be either positive or negative. The elastic stiff-
ness 𝑐 and the strain gradient coefficient 𝜈 have to
be always positive to provide the functional stabil-
ity. The coefficient 𝑓 is the component of the static
flexocoupling tensor, and its sign is not fixed.

The kinetic energy

𝐾 =

∫︁
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includes the dynamic flexocoupling [7] with magni-
tude 𝑀 , 𝜌 is the material density, and 𝜇 a kinetic
coefficient. The elastic displacement component 𝑈 is
related to the strain 𝑢 as 𝑢 = 𝜕𝑈/𝜕𝑥.

The dependence of the frequency 𝜔 of a soft phonon
on its wave vector 𝑘, i.e. the dispersion law 𝜔 (𝑘),
can be calculated from the time-dependent dynamic
equations of state for the polarization, 𝑃 , and elastic
displacement, 𝑈 , components [30–32]. The dynamic
equations of state are obtained by varying the La-
grange function (2) with respect to 𝑃 and 𝑈 . The
solution of those equations was found in the linear ap-
proxinmation, in vicinities of the spontaneous values
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The solution looks like [31, 32]
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where the function
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were introduced. The temperature-dependent coeffi-
cient 𝛼𝑆 = 𝛼𝑆 (𝑇 ) equals

𝛼𝑆 (𝑇 ) = 𝛼 (𝑇 ) +
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The dispersion relation (4) describes one optical
(O) and one acoustic (A) phonon modes, for which
the sign “+” or “−”, respectively, before the radical
should be taken.

3. Dispersion Dependence on Parameters

In order to make a general analysis of dependence
(4) in a material-independent form, let us introduce
the following dimensionless parameters [31]: the fre-
quency 𝜔* =

√
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where 𝑎 is the lattice constant. Then the dispersion
law (4) in terms of the dimensionless variables (6)
reads [31, 32]
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The dimensionless critical value of flexocoupling
constant, at which the frequency of the acoustic mode
is zeroed, equals

𝐹 *
cr(𝛼

*
𝑣) = 1 + 𝛼*
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The corresponding critical value for the dimensionless
wave vector is

𝑘*cr = 𝑎*
√︀
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𝑣).

At 𝐹 * > 𝐹 *
cr, there are two wave-vector values corre-

sponding to the zero frequency of the A-mode,
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The mode frequency differs from zero in the intervals
0 < 𝑘 < 𝑘*cr1 and 𝑘 > 𝑘*cr2 . We may expect that a
spatially modulated phase can appear in the “gap”
𝑘*cr1 ≤ 𝑘 ≤ 𝑘*cr2 [32].

Figure 1, 𝑎 illustrates the influence of the flex-
ocoupling constant 𝐹 * on the behavior of the O-
and A-modes. The O-mode frequency decreases very
slightly, as 𝐹 * increases from 0 to 10 (see dotted and
solid O-curves). The A-mode frequency decreases no-
ticeably, and there appears a bend in the 𝜔*(𝑘*) de-
pendence, as 𝐹 * increases from 0 to 3. The critical
value 𝐹 *

cr(𝛼
*
𝑣) = 3.414 for the chosen parameters,

and the corresponding curve for the A-mode touches
the 𝑘-axis at the point 𝑘*cr = 0.12. For 𝐹 * = 5, the
“softening” of the A-mode takes place at the points
𝑘*cr1 = 0.06 and 𝑘*cr2 ≈ 0.2. A spatially modulated
phase exists in the gap 𝑘*cr1 ≤ 𝑘 ≤ 𝑘*cr2 . For the O-
mode, solid curves depict dispersion relations for var-
ious values of flexoconstant 𝐹 * (from 1 to 10 with
a step of 1), and the dotted curve illustrates the
dispersion relation at 𝐹 * = 0. For the A-mode, the
flexoconstant 𝐹 * acquires values from the set {1.25,
1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.414, 5.0} (solid
curves) and 0 (dotted curve). In the case of O-mode,
the growth of the flexoconstant from 0 to 10 leads to a
significant tightening of spectral lines in a vicinity of
the flexoconstant 𝐹 * = 10. In the case of A-mode, the
situation is inverse: it is the decrease of the flexocon-
stant that leads to the tightening of spectral lines. At
a certain critical flexoconstant value, the spectral line
has a break point at 𝑘cr, and a further growth of
the flexoconstant generates a gap in the dispersion
relation.

The dependences of the dimensionless frequency
𝜔* on the dimensionless flexoconstant 𝐹 * for various
wave vectors 𝑘*’s are shown in Fig. 1, 𝑏 for the O-
mode and in Fig. 1, 𝑐 for the A-mode. At small 𝑘*’s,
the frequency of the O-mode depends very weakly on
𝐹 *, but the dependence becomes a bit stronger for
larger values of the wave vector. On the contrary, in
the case of A-mode, the phonon frequency strongly
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Fig. 1. Dimensionless dependences of the phonon frequency 𝜔* on the wave vector 𝑘* = 𝑎𝑘
𝜋

for various flexoconstant values
𝐹 * = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (solid curves), and 𝐹 * = 0 (dotted curve) for the O-mode; and 𝐹 * = 1.25, 1.5, 1.75, 2.0, 2.25,
2.5, 2.75, 3.0, 3.414, 5.0 (solid curves), and 𝐹 * = 0 (dotted curve) for the A-mode (a). Dependences of the frequency 𝜔* on
the flexoconstant 𝐹 * in the O- (𝑏) and A-modes (𝑐) for various 𝑘* = 0.05, 0.1, 0.15, and 0.2 (indicated near the plots). The
calculation parameters are 𝛼*

𝑣 = 1, 𝑄* = 0.5, 𝑀* = 0.05, 𝑎* = 0.1, and 𝜇* = 1 (𝑏, 𝑐)

and nontrivially depends on the wave vector 𝑘*, in-
cluding all aforementioned critical points. The strong
growth of the frequency together with the wave vector
is responsible for a specific behavior of spectral lines
in the O-mode. From this figure, it is evident that,
for the O-mode, the frequency weakly depends on the
flexoconstant, especially in the region of small wave
vectors, where the frequency has an almost constant
value. In the A-mode, the frequency 𝜔* also weakly
depends on the flexoconstant 𝐹 * in the region of small
wave vectors, but, as the wave vector values grow, this
dependence becomes stronger. In all cases, there is an
upper limit for the flexoconstant 𝐹 * that determines
the condition for a spatially modulated phase to ap-

pear. For the parameter values indicated in the figure
caption, this critical constant ranges within the limits
from about 3 to about 6.

The contour plots in Fig. 2 illustrate the frequency
dependences of the wave vector 𝑘* and the flexo-
constant 𝐹 * in the A- and O-modes. One can ob-
serve a weak monotonic dependence on 𝐹 * for the
O-mode (Fig. 2, 𝑏) and a nontrivial dependence with
a shifted maximum for the A-mode (Fig. 2, 𝑎). In
general, the frequency increases with the wave vector
in both panels. In panel 𝑏, the contours are almost
perpendicular to the 𝐹 *-axis in vicinities of small
wave vectors, which means a strong dependence of
the angular frequency on the flexoconstant 𝐹 * and,
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Fig. 2. Contour plots of the dimensionless phonon frequency 𝜔* on the dimensionless wave vector
𝑘* and flexoconstant 𝐹 * for the A- (𝑎) and O-modes (𝑏). The calculation parameters are the same
as in Fig. 1

simultaneously, a weak dependence on the wave vec-
tor 𝑘*. This behavior correlates well with the optic
dispersion relation presented in Fig. 1, 𝑎, where the
frequency is almost independent of the wave vector
at small 𝑘*-values. The 𝜔*(𝐹 *) dependence of a cer-
tain kind can be observed for the O-mode at rela-
tively large values of wave vector (Fig. 2, 𝑏): it sig-
nificantly softens at large wave vectors. For the A-
mode, a strong dependence of the frequency on the
wave vector takes place, but the frequency weakly de-
pends on the flexoconstant in the region of small wave
vectors.

4. Discussion and Conclusions

Using the one-component approximation, which is
valid for some ferroelectrics, the analytical expres-
sions for the frequency dispersion law 𝜔 (𝑘) and
their dependence on the flexoelectric coupling con-
stant 𝑓 have been analyzed for the soft TA and TO
phonon modes in uniaxial ferroelectrics. For the O-
mode, the growth of the flexoconstant leads to a
significant tightening of spectral lines in a vicinity
of the flexoconstant. The frequency of the O-mode
weakly depends on the flexoconstant in the region
of small wave vectors. A critical dependence of the
TA mode on the flexocoupling constant has been re-
vealed. Unlike the O-mode, it is a reduction of the
flexoconstant that leads to the tightening of spec-
tral lines in the A-mode. At a certain critical flex-
oconstant value, the spectral line has a break point

at 𝑘cr, and the further growth of the flexoconstant
leads to the appearance of a gap in the dispersion
relation.
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ЗАЛЕЖНIСТЬ СПЕКТРIВ М’ЯКИХ
ФОНОНIВ ВIД ФЛЕКСОЕЛЕКТРИЧНОГО
ЗВ’ЯЗКУ В СЕГНЕТОЕЛЕКТРИКАХ

Р е з ю м е

В межах теорiї Ландау–Гiнзбург–Девоншира (LGD) ми ана-
лiзуємо аналiтичнi вирази для частотної дисперсiї м’яких
поперечних акустичних (ТА) та оптичних (ТО) фононних
мод залежно вiд величини константи флексоелектричного
зв’язку у одновiсних сегнетоелектриках та виявили крити-
чну поведiнку ТА моди в залежностi вiд константи флексо-
електричного зв’язку.
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