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STUDIED USING THE NIKIFOROV-UVAROV METHOD
FOR STRONGLY COUPLED QUARK-GLUON

PLASMA AT FINITE TEMPERATURE

The N-dimensional radial Schréodinger equation with generalized two-body potential is solved,
and the energy eigen values are calculated using the Nikiforov—Uvarov (NU) method in the
N-dimensional space. The results are applied for the mass spectra of charmonium and bot-
tomonium at finite temperature. The effect of dimensionality number on quarkonium mass is
investigated. The dissociation temperature of different states of charmonium and bottomonium

are calculated.
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1. Introduction

At the critical temperature (T.), there occurs a
phase transition from the confined hadronic phase
to a deconfined partonic phase. This phase of decon-
fined quarks and gluons is called quark-gluon plas-
ma (QGP) [1]. At a temperature near 7., QGP can
be considered as strongly coupled and termed as
strongly coupled quark-gluon plasma (SCQGP) [2].
The bound state properties in quark-gluon plasma
can be studied using two different approaches. The
first one is a direct calculation using QCD [3] and the
another one is the use of a potential model [4, 5, 6].
The nonrelativistic interaction potential model can
reproduce the experimentally observed mass spec-
trum of bound states [7, 8]. This approach uses the
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potential as a function of the relative separation be-
tween the particles, and the binding energy can be
calculated mathematically by solving the Schrédin-
ger equation. The radial Schrodinger equation and
its solution play an important role in many fields
of physics such as the high-energy physics, nuclear
physics, particle physics, etc. The N-dimensional non-
relativistic radial Schrodinger equation (SE) has been
solved for the interaction potential for different bound
states in SCQGP. For solving the SE, the interaction
potential should be known. A confining potential is
a mathematical representation of a force that gov-
erns the dynamics of the particles in a particular sys-
tem. Depending on the nature of interaction among
the particles, a large number of confining potential
has been used. Some of them are Harmonic [9], Cor-
nell [10], Coulomb [11], Coulomb perturbed [12], ring-
shaped [13], double-ring shaped [14], Gaussian, mod-
ified Gaussian [15], Energy-dependent harmonic [16],
etc. Heavy quarkonia are considered as hard probes of
QGP [17]. The dissociation of heavy quarkonia at fi-
nite temperatures could explain the observed quarko-
nia suppression in heavy ion collisions [18]. There are
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many literature works for solving the Schrodinger
equation at finite temperature [19, 20|. In [21], the
SE was solved using the modified internal potential to
study QGP. In [19], the SE was solved using Funke—
Hecke theorem. In [18], the authors solved the SE and
studied heavy quarkonium properties using an ana-
lytical exact iteration method (AEIM). The aim of
the present work is to solve the N-dimensional radial
SE with generalized two-body potential at a finite
temperature to obtain the energy eigen values using
the Nikiforov—Uvarov (NU) method [22]. We try to
find out the mass spectra and dissociation temper-
atures of heavy quarkonium states. In addition, the
influence of the dimensionality number has been in-
vestigated for the binding energy and mass spectra of
heavy quarkonium at finite temperatures.

1.1. A brief description of NU method

Consider a second-order differential equation of the
form (s) 5 (s)
T (s) + 2y’ 7 G(s)=0 1
(5) 4 S5 ¥(5) 4 a5 () =0 (1)
where o(s) and &(s) are polynomials of maximum
second degree and 7(s) is a polynomial of maximum
first degree with an appropriate s = s(r) coordinate
transformation.

If

U(s) = 0(s)x(s) (2)

substituting Eq. (2) in Eq. (1)

20'(s)X'(s) + @(s)X"(s) + 2" (s)x(s) +
7(s) )

o(s

a(s

+ oty POXE) + 2 (Ox) + 575

D(s)x(s) =0.

~

Rearranging the terms, we get

D)X () + (20(s) + T 20 ()) ' (5) +

o)+ 28@'(8) + 5 2(9) x(s) = 0.

Dividing throgh out by ®(s)

The coefficient of x'(s) is taken in the form
7(s)/o(s), where 7(s) is a polynomial of degree at-
most one. Then

20'(s)  7(s)  T(s)
o(s) T o(s)  ols)

This happens only if
®'(s) _ m(s)

&(s) ~ o(s) @

Therefore,

2m(s)  T(s)
o(s) + B
That is,

3)

27(s) + 7(s) = 7(s).

and
7(s) = 7(s) + 2m(s); 7'(s) <O. (5)

The term ®”(s)/®(s) in the coefficient of x(s) can be
written as

(s) _ @'(s)'+ o' (s)\
®(s) ®(s) P(s) )

Using Eq. (4),

' 2
"(s) _ [m(s) 7(s)
B(s) <U(s) o ) (©6)
Now, the coefficient of x(s) is transformed into a more

suitable form,

o'(s)  7(s) ®(s)
(s)  o(S) O(s)

a(s) _ @

()

+

Therefore,

7 (s) = 6(s) + 2(s) + 7(s) (%(s) - a(s)) +7'(8)o(s).
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Substituting the right-hand sides of Eq. (3),
Eq. (6), and Eq. (7), Eq. (1) reduces to an equation
of the hypergeometric type as

() 6+ 20 () = 0, ®)

T SN O )
with

(5) = 7(5) . )

As a consequence of the algebraic transformations
above, the functional form of Eq. (1) is protected in
a systematic way. If the polynomial 7(s) in Eq. (8) is
divisible by o(s), we can write

a(s) = Aa(s),

where A is a constant. Then Eq. (8) is reduced to
o(s)x"(s) + 7(s)X'(s) + Ax(s) = 0. (10)
To determine the polynomial 7(s),

7(s) = a(s) +7%(s) +

+7(s)(7(s) — a(s)) + 7' (s)o(s) = Ao(s).

That is,

5(s) + 72(5) + 7(5)(7(s) — or(s)) — Ko(s) =0,
with

K =X—7'(s). (11)
The solution of this quadratic equation for TI(s) gives

m(s) = Mi

(LT ot 4 it

where 7(s) is a polynomial of the first degree. The
values of K in the square root of Eq. (12) can be cal-
culated if the expressions under the square root are
square of expressions. This is possible if its discrimi-
nant is zero. x(s) = xn(s) is a polynomial of the n'!
degree which satisfies the hypergeometric equation, in
order to obtain an eigen value solution through the
NU method, a relation between A and A, must be set
up which is given by

(12)

A=\, =—n7'(s) — Ma”(s),

=0,1,2....
2 n [

(13)

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 9

Xn(8) is a hypergeometric-type function whose poly-
nomial solutions are given by the Rodrigue’s relation

= B A9 p(s)),

- 14
o 57 (14)

Xn($)
where B,, is a normalization constant and p(s) is the
weight function that satisfies the equation

d 7(8)

£w(s) = @w(s); w(s)

1.2. Solution of the N-dimensional
Schrédinger equation at finite temperature

=a(s)p(s). (15)

The SE for two-particles interacting via a spherically
symmetric potential ¢(r) in the N- dimensional space
is given by

d N-1d I(I+N-2) N

dr? rodr r2
+ 2u(Ep — ®(r)) | ¥(r) = 0, (16)
where ¢(r) is given by [23]
P(r) = % <cos (kir) + % sin (kir)) e ko (17)

Now, the N-dimensional SE can be written as

% +2u [E— % [(cos (kﬂ’)-i—% sin (kﬂ’)) e*k’”} -

(1 N —92) 4 N?-4N+3

2

30 (18)

2 /3 2
+(_k§+k¢k3_k?kr_ k?)ﬂ_
6 2v3 2 6v/3

I(14 N —2) 4 N=aN43
2ur? )

R(r) = 0.

Putting r = %7 the equation becomes

@ 2wd 2 ki
+x+M<E—i{x+(—kr+)+

dz?
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L AT
2 V3 2 ) x
k2 kK2 K2k KD\ 1
+-=+ - - |-
6 2v3 2 6V3)=z
2_
l(l+N72)+%m2
2p

U+ N -2+ Nz—j‘j\’*?)xz}

Q[ K ki Kk, @)

D=-—">(-"L+ — — .

4mr ( 6 2v3 2 63
Now, expand % and % in a power series around the
characteristic radius rg of the meson up to the second-
order, Setting y = z — §, where § = % Now, we

expand % and m% in a power series around y = 0
[19] as

C 3 3z 22

m:CQ‘y+$> 22)
and

D 6 8r  3z?

Substituting Eq. (22) and (23) in Eq. (21), we get
2v d -|-2#[E—Ax—B—

d2
a2 T2 ds T2t

3 3z a2 6 8r 322
_ S VD= 222
C<5 52+53) <52 53+54)

1+ N —92) 4 N?~4N+3

R(z)=0

— x

2
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or we can write

>
dz? = x?dx
2p 2
where sc 6D
Di=—|F—-B— — — —
1 |: 6 62 :|7
3C 8D
Dy =-A+ 2 + 5
b _C 3D I(14 N —2) 4 N2=aAN43
M ER 24 '
Comparing Eq. (1) and Eq. (25), we get
7(s) =2z, o(s)=2>,
5(s) = 2 (— Dy + Dyx — Dsa?).
By following NU method,
T =/2a — 2bx + (K + 2¢1)a2, (26)
where
a = 2[LD1, b= 2‘LLD2, CcC1 = 2,UD3

The constant K is chosen such as the discriminant
of the function under the square root is zero i.e.,

A = 4b* — 8a(K + 2¢1) = 0,
b? = 2a(K + 2¢y),

2
K=" g0, (27)
2a
2a — bx
™= .
V2a
Thus,
2(2a —
r o og 4 220 —b2) (28)
V2a

We choose the positive sign in the above equation for
bound state solutions.

20

=2 "= 29
on (29)
By using Eq. (11), we obtain
b? b
A= — — 2 — —— (30)
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An = -1 (2 - 21’) —n(n—1). (31)

V2a
From Eq. (13),

A=Ay,
b? b 2b
——2c——==—"n|2-—=| —n(n—-1),
a ! V2a ( \/2a> ( )
Efi(14r2n) —n? —n+2
2 \/% 1,

b (2n+1)>2 1

—— ] = — + 2¢y,

(m 2 PR

b 2n+1 1
2 =1/~ + 21,
\/2a 4 !
b 2n+1 1
+ 2¢;,
V3a Ty ta

2
biz ((Qn—i—):t 1+201>7

2a 2 4
b2
a = 3
2(@n g /14201
2uD3
Dy = ) -
((Qn +1)£1+ 8uD3>
3C 6D
_EF4+ B4+ —— 4+
+B+—+

- ( ( A+ ?:50+%))>/<((2n+1)i
\/1+8 <503 3§D+l(l+N—2)2: N2—3N+3)>‘2>

The energy eigen values at finite temperature in the
N-dimensional space can be written as
3C 6D

5 T

_< ( A+350+i?>2>/<<(2n+1)i

E =B+ —

2
8uC  24uD N2—4N+3
i\/l—l— =t g1 4<l(l—|—N—2)+ 1 .

(32)

Equation (32) gives the expression for the binding
energy of the bound state of quarks.
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2. Binding Energy of Quarkonium
Using Eq. (32),

3C 6D 30 8DV
4mC 12mD
64
/ (nt+1)+ +4(Z(I+N—2) N2-4N+3)

(33)

Equation (33) gives the expressions for binding the
energy of quarkonium.

3. Variation of Binding Energy of
Quarkonium with Temperature

By considering the temperature dependence of «;
from the literature [23], we have

61
(1) = @3 =20y (7/80)

( ~ 3(153—19n;) In (2In (T/AT))>

(33—2n;)2  In(T/A7)

The binding energy of quarkonia such as char-
monium and bottomonium, is calculated in the N-
dimensional space for any state at finite temperature
using Eq. (33). Here, m = M, for charmonium and
m = M, for bottomonium mesons. The variation of
binding energy with temperature for different states
of quarkonia is shown in Fig. 3.

4. Mass Spectra of Quarkonia

For calculating the mass of heavy quarkonium, the
following relation is used [22].

M =2M, + EN.

Substituting Eq. (33) into Eq. (34), the mass spec-
tra for different states of heavy quarkonia as a func-
tion of the temperature is given by

3C 6D 3¢ 8DV
om0 8042 8 )

Jewens1 2

The mass spectra of different states of heavy
quarkonia as functions of the temperature are plot-
ted in Fig. 6.

(34)

4mC 12mD
o4 + 2
(l(l—|—N—2)+ N ZLN+3)>.
(35)
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5. Dissociation Temperature of Heavy
Quarkonium in the N-Dimensional Space

When the binding energy of a quarkonium falls below
a certain temperature, that state is weakly bound,

®
-—--®

Fig. 1. Variation of J/ binding energy on temperature T'(a)
and variation of x. binding energy on temperature 7' (NU
Method) (b)
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Fig. 2. Variation of T binding energy on temperature T (a)
and Variation of x; binding energy on temperature 7' (NU
method) (b)
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Fig. 3. Variation of quarkonium binding energy on tempera-
ture T for different values of N (NU method)
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Fig. 4. The mass spectra of charmonium and bottomonium as
a function of temperature T for 1S and 1P states (NU method)

and it can be destroyed by thermal fluctuations by
transferring energy. The dissociation temperature is
defined as the smallest temperature where no reso-
nance structure can be observed in reality. The value
of binding energy needs not to be reached zero for
the dissociation of quarkonia. There are a lot of pre-
vious works which have determined the dissociation
temperatures for different states of quarkonia. In [24],
the dissociation temperatures were calculated from
the thermal width. In [4], the upper bound for the
dissociation temperature of quarkonium states was
found by using the condition I'(T') > 2Fyi(T). In
[12], the upper bound and lower bound for the dis-
sociation temperatures have been calculated by the
conditions Fy;, = T and Ey;, = 37, respectively. In
[10, 25], the condition of vanishing binding energy
have used for calculating the dissociation tempera-
ture for different states of heavy quarkonium. In this
paper, we use the condition Fy;y, = T to find out the
dissociation temperatures for the different states of
quarkonium. We have obtained the dissociation tem-
peratures for different states of quarkonium using the
NU method and are summarized in Table 1, Table 2,
and Table 3.

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 9



The Properties of Heavy Quarkonium Studied Using the Nikiforov—Uvarov Method

6. Results and Discussions

Figures 1 and 2 show the variation of the bind-
ing energy of heavy quarkonia with the temper-
ature for 1S and 1P states, respectively, where
binding energy is calculated using the Nikiforov—
Uvarov method. It has been observed that the bind-
ing energy becomes weaker with increasing the tem-
perature. This result agrees with the literature [4,
10]. Figure 3 shows the dependence of the binding
energy on the dimensionality number (N). It is clear
from the figure that the binding energy increases with
the dimensionality number. This result also agrees
with [10].

Figure 4 shows the mass spectra of heavy quarkonia
with the temperature for 1S and 1P states. It is clear
from the figure that the mass spectra decrease with
increasing temperature for 1S and 1P states. The val-
ues of the 1P state are larger than the values of the
1S state. This also agrees with [10].

Figure 5 shows the behavior of the mass spectra
of J/¢ state and Y state with the temperature for
two different values of constituent quark mass. The
increase of constituent quark mass leads to increas-
ing mass spectra of charmonium for 1S state. Thus,
the mass spectra of heavy quarkonia increase with

Table 1. The dissociation temperature (Tp)
with T, = 175 MeV for the quarkonium states
using M. = 1710 MeV and M} = 5050 MeV at N = 3

State | J/v Xe P’ T Xb T’

Tp 1.72T. | 1.81T, | 1.84T, | 1.04T¢ | 1.06T. | 1.07T,

Table 2. The dissociation temperature (Tp)
with T. = 175 MeV for the quarkonium states
using M. = 1710 MeV and M} = 5050 MeV at N = 4

State | J/v Xe P’ T Xb T’

Tp 1.77T. | 1.82T¢ | 1.86T1¢ | 1.07T¢ | 1.08T¢ | 1.097¢

Table 3. The dissociation temperature (Tp)
with Te. = 175 MeV for the quarkonium states
using M. = 1710 MeV and M = 5050 MeV at N = 5

State | J/1 Xe W’ T Xb p

Tp 1.8T. | 1.85T, | 1.87T¢ | 1.087. | 1.09T¢ | 1.1T¢

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 9
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Fig. 5. The mass spectra of charmonium as a function of
the temperature T for 1P state for different charm quark mass
(a) and the mass spectra of bottomonium as a function of the
temperature T for 1P state for different bottom quark mass
(NU method) (b)
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increasing quark mass. This also agrees with the pre-
vious findings [11]. Figure 6 shows the variation of
mass spectra with dimensionality number. The in-
crease in dimensionality number increases the mass
spectra as in [10]. The values of the binding energy
and mass spectra of different quarkonium states agree
with the previous reports for the lower dimension. As
the dimensionality number increases, these values
also increase.

In Table 1, we have summarized the dissociation
temperatures for different states of ¢ and bb at N = 3.
It is observed that the dissociation temperature be-
comes slightly higher when calculated through NU
method. The dissociation temperature of J/1) state
agrees with [26]. The dissociation temperature of y
agrees with [3]. In Table 2 and Table 3, we have
summarized the dissociation temperatures for differ-
ent states of ¢¢ and bb at N = 4 and N = 5. The
above three tables display the effect of dimensionality
number on the dissociation temperature of different
quarkonium states. It is clear from the tables that the
increasing dimensionality number leads to increas-
ing dissociation temperature for different quarkonium
states.
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K.T. Pemixa

JTOCJILI?KEHHS BJIACTUBOCTEN BAYKKOI'O
KBAPKOHIIO METO/IOM HIKI®OPOBA-YBAPOBA
JIJ1 CUJIBHOB3AEMO/IIFOYO]
KBAPK-I'JIKOOHHOI ITIJIA3BMU

TPV CKIHYEHHII TEMIIEPATYPI

Orpumano po3B’s3ku N-BHMIpHOTO paaiaIbHOTO pPiBHAHHS
IIIprosinrepa 3 y3araJbHEHUM JBOYACTUHKOBHMM IOTEHI1AJIOM
Ta PO3pPaxXOBAHO BJIaCHI 3HadeHHs eHepril meromom Hikidopo-

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 9

Ba—YBaposa B N-BumipHoMy npocropi. Pesynbraru 3acrocoBa-
HO JIJIsI OIIIHOK CIEKTPIiB Mac 4YapMOHiI0 Ta GOTTOMOHIIO TpU
ckimueHHUX Temieparypax. Jocmimxkeno BiuB BUMipHOCTI Ha
Macy KBapKOHi0. Po3paxoBaHO TeMmeparypu JIUCOIHAIl IJist
pi3HUX CTaHiB YapMOHIIO Ta GOTTOMOHIIO.

Katwvwo861i ca06a: 9apMOHii, DOTTOMOHI, CHIBHOB3aEMO/Ti-
j0Ya KBapK-IVIIOOHHA ILJIa3Ma, KBapKOHI.
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