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A CHANGE IN THE CHEMICAL
POTENTIAL IN LIQUIDS UNDER THE ACTION
OF RADIATION AND AN EXTERNAL FIELD

The influence of the spatial confinement and radiation on the thermodynamic behavior of
the equilibrium properties of liquid systems has been studied. The theory of spatially confined
inhomogeneous liquids has been generalized in order to take the correlation effects in such
systems into account. The obtained results allow the spatial distribution of the density in binary
liquid systems subjected to the action of radiation and external fields to be calculated in a wide
range of thermodynamic parameters.
K e yw o r d s: phase transition, critical phenomena, chemical potential, spatially confined sys-
tem, equilibrium thermodynamics.

1. Introduction

An important result of the statistical physics devel-
opment in recent years was the possibility of a quan-
titative description of homogeneous liquid systems
[1]. However, numerous studies testify that any real
liquid system is always inhomogeneous: due to both
the presence of surfaces (walls) that confine the sys-
tem and the action of external factors such as radia-
tion [2] and external fields [3,4]. When calculating the
thermodynamic properties of real systems, the inho-
mogeneity caused by the availability of walls is consid-
ered to be completely localized in a vicinity of those
walls, with the dimension order of this region being of
the range of action of near-surface forces [5, 6]. This
supposition serves as a basis for neglecting the bound-
ary inhomogeneity when calculating the bulk proper-
ties of sufficiently large systems. The inhomogeneity
induced by radiation or the gravitational field is, in
most cases, quite small at the molecular distances,
which makes it possible to consider the liquid as con-
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sisting of homogeneous subsystems with different in-
tensive parameters. Both approximations allow the
properties of thermodynamic systems to be calculated
with an accuracy that, in many cases, is sufficient to
describe real systems.

However, there are many research results someti-
mes – for example, in an external field that varies
strongly in space, or in a vicinity of the critical
point – demonstrating that those approximations do
not bring about satisfactory descriptions of experi-
mental results [7, 8]. Therefore, to describe the prop-
erties of a real system, it is necessary to make al-
lowance for the heterogeneity of the latter. In the gen-
eral case, one has to take into account that the free
energy 𝐹 of an inhomogeneous system is no more a
function of the temperature 𝑇 and the density 𝑛. In-
stead, it is a functional 𝐹 = 𝑁 𝐹 (𝑇 (r), 𝑛(r)) depend-
ing on the functions 𝑇 (r) and 𝑛(r) of the spatial co-
ordinate r.

In this case, the calculation of the spatial depen-
dences of physical quantities using the statistical op-
erator is an extremely difficult task [9,10]. Therefore,
as a rule, the behavior of the system is considered
in the framework of local approximation. In this ap-
proximation, it is adopted that the system consists of
“physically small” cells, which are spatial regions that
are so small that they can be considered as homoge-
neous, i.e., the thermodynamics of homogeneous sys-
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tems can be applied to each of them. Then, in order
to calculate the behavior of the system in an external
field, the density of the corresponding potential, for
example, the free energy density 𝑓(r), is introduced
so that [11]

𝐹 =

∫︁
𝑉

𝑑r𝑓(r),

where the integration is performed over the system
volume 𝑉 . In this case, the free energy remains to
be a function of 𝑇 and 𝑛, but those quantities,
in turn, become functions of the coordinate r, i.e.,
𝐹 = 𝑁𝑓(𝑇 (r), 𝑛(r)). In the framework of this ap-
proximation, the relationship between the chemical
potential in an inhomogeneous liquid system 𝜇(r) and
the external field 𝑢(r) is described by the well-known
expression
𝜇0 − 𝜇(r) = 𝑢(r), (1)

where 𝜇0 is the chemical potential in the system in
the field absence. Thus, in the case where the dy-
namic variables change little at distances of the order
of the correlation radius of the corresponding param-
eters, the main term of the statistical operator ap-
plied to calculate the corresponding average values
takes the form of expression (1). In other words, in
the formulas for calculating the equilibrium averages,
it is necessary to substitute the equilibrium param-
eter values by their dependences on the coordinate
r. This obtained relationship can also be proved by
selecting and summing up the corresponding terms
in the perturbation theory series.

However, as was marked in work [12], this approach
was developed only for the ranges of thermodynamic
parameter change far from the points of continuous
phase transformations. Therefore, finding a relation-
ship between the chemical potential and the external
field potential in an inhomogeneous liquid that is in
a state in a immediate vicinity of its critical point
requires a separate consideration. In particular, that
is why the further development of the theoretical ap-
proach was associated with the construction of a con-
sistent theory of the liquid density distribution 𝑛(r)
as a functional of the 𝜇(r) distribution.

In this paper, a theoretical method is proposed to
study the general characteristics of the behavior of
an inhomogeneous system in a vicinity of its critical
point, which would make it possible to calculate the
density of this system.

2. General Equation for the Chemical
Potential in an Inhomogeneous System

As the radius of an inhomogeneous system with
correlations increases, the classical relationship (1)
does not allow one to obtain real liquid density pro-
files. Moreover, the introduction of corrections (see,
e.g., works [13, 14]) does not propose a way how the
theory could be developed further in order to improve
the accuracy of calculations. Therefore, there arises a
necessity to develop a consistent theory based on fun-
damental statistical-mechanical and thermodynamic
principles, which would describe the behavior of the
chemical potential in an inhomogeneous system.

For this purpose, let us expand the potential of the
external field 𝑢(r) into a functional Taylor series in
the deviation Δ𝑛(r) of the liquid density 𝑛(r) from
its value for a homogeneous liquid,

𝛽𝑢 (r) =

∫︁
𝑉

𝛿𝛽𝑢 (r)

𝛿𝑛 (r1)

⃒⃒⃒⃒
𝛽𝑢=0

Δ𝑛 (r1) 𝑑r1 + ...+

+
1

2!

∫︁
𝑉

∫︁
𝑉

𝛿2𝛽u (r)

𝛿𝑛 (r1) 𝛿𝑛 (r2)

⃒⃒⃒⃒
𝛽𝑢=0

×

×Δ𝑛 (r1)Δ𝑛 (r2) 𝑑r1𝑑r2 + ..., (2)

where 𝛽 = (𝑘𝑇 )−1, and 𝑘 is the Boltzmann con-
stant. Series (2) converges due to the finiteness of the
integral

∫︀
𝑉
(Δ𝑛(r)) 𝑑r. Taking into account that

𝛿𝑠−1𝛽𝑢 (r1)

𝛿𝑛 (r2) ... 𝛿𝑛 (r𝑠)

⃒⃒⃒⃒
⃒
𝛽𝑢=0

+

+(−1)𝑠
(𝑠− 2)!

𝑛 (r1)
𝑠−1 𝛿 (r1, r2) ... 𝛿 (r1, r𝑠) =

= 𝑐*𝑠 (r1, r2, ..., r𝑠), (3)

where 𝑐*𝑠(r1, r2, ..., r𝑠) is either the direct correlation
function of the 𝑠th order of the confined system or
the direct correlation function of the homogeneous
infinite system, and 𝛿(r1−r𝑠) is the three-dimensional
Dirac 𝛿-function, we obtain

𝛽𝑢 (r) =

∫︁
𝑉

𝑐*2 (r, r1)Δ𝑛 (r1) 𝑑r1 −
Δ𝑛 (r)

𝑛
+

+
1

2!

∫︁
𝑉

∫︁
𝑉

𝑐*3 (r, r1, r2)Δ𝑛 (r1)Δ𝑛 (r2) 𝑑r1𝑑r2 +

+
1

2!

(Δ𝑛 (r))
2

𝑛2
+ ...+
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+
1

𝑘!

∫︁
𝑉

∫︁
𝑉

...

∫︁
𝑉

𝑐*𝑘+1 (r, r1, ..., r𝑘)

𝑘∏︁
𝑖=1

Δ𝑛 (r𝑖) 𝑑r𝑖 +

+(−1)𝑘
(𝑘 − 1)!

𝑘!

(︂
Δ𝑛 (r)

𝑛

)︂𝑘

+ ... . (4)

If the system is confined, then its direct correlation
function can be expanded into a functional Taylor
series near the point of the constant liquid density 𝑛0

for the infinite system [15]:

𝑐*2 (r1, r2) = 𝑐2 (r1, r2) +

∫︁
𝑉

𝛿𝑐*2 (r1, r2)

𝛿𝑛 (r3)

⃒⃒⃒⃒
𝑛(r)=𝑛

×

× [𝑛 (r3)− 𝑛0] 𝑑r3 +
1

2!

∫︁
𝑉

∫︁
𝑉

𝛿2𝑐*2 (r1, r2)

𝛿𝑛 (r3) 𝛿𝑛 (r4)

⃒⃒⃒⃒
𝑛(r)=𝑛

×

× [𝑛 (r3)− 𝑛0] [𝑛 (r4)− 𝑛0] 𝑑r3𝑑r4 + ...+

+
1

𝑘!

∫︁
𝑉

∫︁
𝑉

...

∫︁
𝑉

𝛿𝑘𝑐*2 (r1, r2)

𝛿𝑛 (r3) ... 𝛿𝑛 (r𝑘+2)

⃒⃒⃒⃒
𝑛(r)=𝑛

×

×
𝑘+2∏︁
𝑖=3

[𝑛 (r𝑖)− 𝑛0] 𝑑r𝑖 + ..., (5)

where 𝑐2(r1, r2) is the direct pair correlation function
for a homogeneous unconfined system. Thus, in the
zero approximation, it can be assumed that the direct
correlation functions of the confined system coincide
with the direct correlation functions of the infinite
homogeneous system. By writing down the following
formal expression for the density deviations:

Δ𝑛 (r1) = Δ𝑛 (r) + [Δ𝑛 (r1)−Δ𝑛 (r)],

we obtain

𝛽𝑢 (r) = Δ𝑛 (r)

∫︁
𝑉

𝑐2 (r, r1) 𝑑r1 +

+

∫︁
𝑉

𝑐2 (r, r1) [Δ𝑛 (r1)−Δ𝑛 (r)] 𝑑r1 −
Δ𝑛 (r)

𝑛
+

+
(Δ𝑛 (r))

2

2!

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) 𝑑r1𝑑r2 +

+Δ𝑛 (r)

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2)×

× [Δ𝑛 (r1)−Δ𝑛 (r)] 𝑑r1𝑑r2 +

+
1

2!

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) [Δ𝑛 (r1)−Δ𝑛 (r)]×

× [Δ𝑛 (r2)−Δ𝑛 (r)] 𝑑r1𝑑r2++
1

2!

(Δ𝑛 (r))
2

𝑛2
+..., (6)

where the symmetry of the direct correlation func-
tions of the homogeneous system with respect to
the permutations of their arguments was taken into
account.

Performing the partial summation in series (6) and
considering only the non-integral terms and the terms
containing the zero moments of direct correlation
functions

∫︀
𝑉

∫︀
𝑉
...

∫︀
𝑉
𝑑r1 ... 𝑑r𝑠𝑐𝑠+1(r, r1, ..., r𝑠) (the

local approximation), we get

𝛽𝑢 (r) = −𝛽

{︂
1

𝑛

(︂
𝜕𝑝

𝜕𝑛

)︂
𝑇

Δ𝑛 (r)+

+
1

2!

𝜕

𝜕𝑛

(︂
1

𝑛

(︂
𝜕𝑝

𝜕𝑛

)︂
𝑇

)︂
(Δ𝑛 (r))

2
+ ...

}︂
=

= −𝛽

{︂(︂
𝜕𝜇

𝜕𝑛

)︂
𝑇

Δ𝑛 (r)+

+
1

2!

(︂
𝜕2𝜇

𝜕𝑛2

)︂
𝑇

(Δ𝑛 (r))
2
+ ...

}︂
, (7)

where the relationship

𝜕𝑐 (r1, r2, ..., r𝑠)

𝜕𝑛
=

∫︁
𝑉

𝑐 (r1, r2, ..., r𝑠+1) 𝑑r𝑠+1

between the derivative of the 𝑠th-order direct corre-
lation function and the integral of the (𝑠+1)th-order
direct correlation function, as well as the relationship∫︁
𝑉

𝑐 (r, r1) 𝑑r1 =
1

𝑛

[︂
1− 𝛽

(︂
𝜕𝑝

𝜕𝑛

)︂
𝑇

]︂
,

was taken into account.
It is easy to see that the classical formula (1) corre-

sponds to the local approximation when calculating
the average value in the framework of the locally equi-
librium ensemble approach. To obtain corrections to
expression (1), the remaining terms in series (6) have
to be taken into account,

𝑢 (r) = 𝜇0 − 𝜇 (r) + Δ𝜇cor (r), (8)

where Δ𝜇corr is the contribution from correlation ef-
fects to the chemical potential difference,

𝛽Δ𝜇cor (r) =

∫︁
𝑉

𝑐2 (r, r1) [Δ𝑛 (r1)−Δ𝑛 (r)] 𝑑r1 +
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+Δ𝑛 (r)

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2)×

× [Δ𝑛 (r1)−Δ𝑛 (r)] 𝑑r1𝑑r2 +

+
1

2!

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) [Δ𝑛 (r1)−Δ𝑛 (r)]×

× [Δ𝑛 (r2)−Δ𝑛 (r)] 𝑑r1𝑑r2 + ... . (9)

In the case of a smooth spatial change in the den-
sity Δ𝑛(r) at distances of the order of the radius
of intermolecular force action, when the difference
Δ𝑛(r1) −Δ𝑛(r) can be expanded in a Taylor series,
it is possible to obtain an approximate expression
for Δ𝜇corr(r) with any accuracy. Far from the crit-
ical point, the spatial derivatives of the density are
small, which ensures the smallness of the Δ𝜇corr(r)
values.

The well-known results of Lebowitz and Percus can
be easily obtained, if only the expansion terms up to
the second order including are taken into account in
the summand with the direct correlation function of
the second order and the resulting infinite system is
considered. In this case, we arrive at the relationship

𝛽𝑢 (r) ≈ 𝛽 {𝜇0 − 𝜇 (r)}+

+
1

2
∇2Δ𝑛 (r)

∫︁
𝑉

𝑐2 (r1 − r) (r1 − r)
2
𝑑r1 +

+∇Δ𝑛 (r)

∫︁
𝑉

𝑐2 (r1 − r) (r1 − r) 𝑑r1. (10)

Then, in the Lebowitz–Perkus approximation for
Δ𝜇corr(r), we obtain

𝛽Δ𝜇corr = 𝑎∇2𝑛 (r), (11)

where

𝑎 =
1

2

∫︁
𝑉

𝑑r1𝑐2 (r1 − r) (r1 − r)
2
. (12)

Thus, the Lebowitz–Percus approximation leads to
the following second-order partial differential equa-
tion for the liquid density 𝑛(r), and this equation does
not contain the first derivative of the density [17]:

𝑎∇2𝑛 (r) = 𝛽𝑢 (r)− 𝛽 (𝜇0 − 𝜇 (r)). (13)

Furthermore, it is easy to see that the coefficient 𝑎
in front of the second derivative of the density is pro-
portional to 𝜉2. Therefore, in most cases, the internal
solution of the differential equation (13) is used. Such
an internal solution can be considered as an approx-
imation to the exact solution of Eq. (13) only in the
case of small values of the correlation radius, i.e., far
from the critical point. However, when approaching
the latter, the role played by the differential term
becomes decisive, and this approximation leads to a
substantial error for the calculated liquid density.

The refinement of formula (11) for the infinite sys-
tem follows in a natural way from the successive con-
sideration of further terms in the expansions of all
summands in series (10). In particular, by account-
ing for linear terms in the summand associated with
the direct correlation function of the third order, we
obtain the expression

𝛽𝑢 (r) ≈ 𝛽 {𝜇0 − 𝜇 (r)}+

+
1

2
∇2Δ𝑛 (r)

∫︁
𝑉

𝑐2 (r1 − r) (r1 − r)
2
𝑑r1 +

+
1

2
(∇Δ𝑛 (r))

2 ×

×
∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) (r1 − r) (r2 − r) 𝑑r1𝑑r2 +

+∇Δ𝑛 (r)

{︃∫︁
𝑉

𝑐2 (r1 − r) (r1 − r) 𝑑r1 +

+Δ𝑛 (r)

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) (r1 − r) 𝑑r1𝑑r2

}︃
. (14)

Then the improved Lebowitz–Perkcus approximation
can be written in the form [8]

𝛽Δ𝜇cor = 𝑎∇2𝑛(r) + 𝑏 (∇𝑛(r))
2
, (15)

where

𝑎 =
1

2

∫︁
𝑉

𝑐2 (r1 − r) (r1 − r)
2
𝑑r1, (16)

𝑏 =
1

6

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) (r1 − r) (r2 − r) 𝑑r1𝑑r2. (17)

An analysis of the obtained results testifies that the
term proportional to ∇𝑛(r) differs from zero only in
a confined system and equals

𝛽Δ𝜇cor = 𝑎∇2𝑛(r) + 𝑏 (∇𝑛(r))
2
+ c ·∇𝑛(r), (18)
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where

c =

∫︁
𝑉

𝑐2 (r1 − r) (r1 − r) 𝑑r1 +

+Δ𝑛(r)

∫︁
𝑉

∫︁
𝑉

𝑐3 (r, r1, r2) (r1 − r) 𝑑r1𝑑r2. (19)

Thus, a conclusion can be drawn that the
Lebowitz–Percus approximation is valid only in the
cases of infinite systems or confined systems for which
the contribution by the term c can be neglected (this
is true only for systems with confining surfaces of cer-
tain 𝑛 symmetry types).

The situation occurring near the critical point in
the presence of an external field (for example, a gra-
vitational field) requires a special approach. As is
known, at the critical point itself, the derivatives of
∇𝑛(r) become singular on the critical isotherm at
𝑛(0) = 𝑛𝑐, where 𝑛𝑐 is the density at the critical
point. Then, in the obtained approximation (19), the
summands with gradient terms play the main role.
However, if we take into account that the equation
of state on the critical isotherm can be presented in
the form (𝜇− 𝜇𝑐) ∼ (𝑛− 𝑛𝑐)

𝛿, where 𝜇𝑐 is the chem-
ical potential of the system at the critical point, and
𝛿 is the critical index (in a three-dimensional sys-
tem, 𝛿 ≈ 4.6), then the derivatives 𝑑𝑘𝜇/𝑑𝑛𝑘 with
𝑘 ≥ 5 go to infinity, when approaching the criti-
cal point. This fact means that the direct correlation
functions 𝑐𝑘(r1, ..., r𝑘) at 𝑘 ≥ 6 become long-range
at the critical point, and the contribution from the
terms containing those functions under the integral
can become decisive when calculating the chemical
potential in the presence of an external field. In addi-
tion, it is natural to conclude that if the zero moments
of the direct correlation functions diverge at the criti-
cal point, then the moments of higher orders will also
diverge.

The obtained results testify that Eq. (1) can be
used far from the critical point. However, when ap-
proaching the critical point, the role of correlation
terms Δ𝜇corr(r) increases, and it is necessary to use
expression (18) and take more and more correction
terms into consideration. At the very critical point,
the application of Eq. (1), and, even more so, Eq. (1),
is doubtful [17]. In addition, when calculating the
density distribution 𝑛(r) near the critical point in
a confined system, instead of the differential equa-

tion (13), we have to use the equation

𝛽𝑢(r) = 𝛽(𝜇0 − 𝜇(r)) + 𝑎∇2𝑛(r)+

+ 𝑏(∇𝑛(r))2 + c ·∇𝑛(r), (20)

which contains a term linear in ∇𝑛(r). This fact is
important for satisfying the conditions of Tikhonov’s
theorem when constructing a general asymptotic ex-
pansion of the solution to the singularly perturbed
equation.

3. Conclusions

A method has been proposed for calculating the
chemical potential and the density in inhomogeneous
liquids subjecting to the action of radiation and ex-
ternal fields in vicinities of their critical points by
successively taking correlation terms into account. It
is shown that, in a vicinity of the critical point, the
account for correlation effects leads to a change in the
density profile in the liquid volume that is determined
by the correlation radius in the corresponding homo-
geneous system rather than the radius of action of
the forces in the near-surface region of the wall that
confines the system.

The work was sponsored by the Ministry of Edu-
cation and Science of Ukraine in the framework of
the project “Diffusion distribution of radioactive sub-
stances that entered ecosystems as a result of nu-
clear weapon application or man-made accidents” (reg
No. 0124U001655).
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Д.А. Гаврюшенко

ЗМIНА ХIМIЧНОГО ПОТЕНЦIАЛУ
ФЛЮЇДУ ПIД ДIЄЮ РАДIАЦIЙНОГО
ОПРОМIНЕННЯ ТА ЗОВНIШНЬОГО ПОЛЯ

Дослiджено вплив просторової обмеженостi та радiацiйно-
го опромiнення на термодинамiчну поведiнку рiвноважних
властивостей рiдинних систем. Побудовано узагальнення
теорiї обмежених неоднорiдних рiдин, яке дозволяє враху-
вати кореляцiйнi властивостi таких систем. Отриманi ре-
зультати дозволяють проводити обчислення просторового
розподiлу концентрацiї рiдинної системи в широкому iнтер-
валi змiни термодинамiчних параметрiв у випадку дiї радi-
ацiйного опромiнення та зовнiшнього поля.

Ключ о в i с л о в а: фазовий перехiд, критичнi явища, хi-
мiчний потенцiал, обмежена система, рiвноважна термоди-
намiка.
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