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DIPOLE-MONOPOLE CROSSOVER

AND CHARGELESS HALF-MODE IN AN INTEGRABLE
EXCITON-PHONON NONLINEAR DYNAMICAL
SYSTEM ON A REGULAR ONE-DIMENSIONAL LATTICE

A new form of the integrable nonlinear exciton—phonon dynamical system characterized by
two physically independent parameters is suggested. The system is settled along an infinite
one-dimensional regular lattice, and it admits the semi-discrete Lax representation in terms of
8 X & auxiliary spectral and evolution matrices. The explicit analytic four-component solution
to the system’s dynamical equations found by means of the Darboux—Bdcklund dressing tech-
nique turns out to be of broken PT -symmetry. Each component of the solution consists of two
nonlinearly superposed traveling waves that inspires the dipole—monopole crossover for the equal
values of two physically distinct spatial scaling parameters of the nonlinear wave packet. The
phenomenon of the dipole—monopole alternative for the spatial distribution of pseudoexcitons is
shown to initiate the partial splitting between the pseudoexcitonic and vibrational subsystems at
the threshold point manifested by the complete elimination of one pseudoexcitonic component
and the conversion of another pseudoexcitonic component into the pseudoexcitonic chargeless
half-mode.

Keywords: nonlinear exciton—phonon system, Lax integrability, dipole-monopole crossover,

threshold point, chargeless half-mode.

1. Introduction

The study of nonlinear excited states in the cou-
pled electron—phonon or exciton—phonon systems has
a long and celebrated history [1-13]. From the phys-
ical standpoint, such systems are important as the
generants of soliton-like nonlinear waves [6-8, 11, 12]
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responsible for the robust charge and energy trans-
port in the low-dimensional macromolecular objects
of distinct physical origins. In this respect, they in-
spire a huge number of interesting and very sophisti-
cated physico-mathematical problems.

Here, we will pay attention to some recent as-
pects of the exciton—phonon modeling based upon
the development and investigation of integrable non-
linear exciton—phonon dynamical systems on one-
dimensional lattices mimicking the long macro-
molecules. In particular, we will consider and analyze
the peculiarities of symmetry broken solutions to the
PT-symmetrical exciton—phonon system

g+(n) =Jgr(n+1)explg(n+1) —q(n)] — J g+(n),
(1.1)
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p(n)=[Q*—J g4 (n+1)g_(n)] exp [q(n+1) — q(n)
— [ = J g4 (n)g-(n—1)] exp[g(n) — q(n—1)], (
q(n) = p(n) (1.

distinguished by two explicit physical parameters in
contrast with the recently proposed one-parameter
predecessor [14, 15]. Here, the two sets gi(n) =
= g.(nlr), g-(n) = g_(nlr) and p(n) = p(nlr),
q(n) = q(n|7) of field functions are related to the sub-
system of pseudoexcitons and to the Toda vibrational
subsystem, respectively. The over-dot stands for the
differentiation with respect to the dimensionless time
7. The spatial position of a lattice site is marked by
the integer n running from minus infinity to plus in-
finity. The real-valued constant parameters J and )

J

A+p(n) + g+ (n)g-(n)

L(n|\) = g4 (n)Q/vV—=T -Q*/J
—Qexp [—q(n)] 0
0 0
A(n|)) = 0 —J

Qexp[—g(n —1)]

and the spectral parameter A\ being time-independent.

Due to its complete integrability, the nonlinear
semidiscrete system (1.1)—(1.4) possesses an infinite
number of conserved quantities. Here, we list only
the most important of them

oo o0

H= Z p*(m)/2— Z [QQ_Jng(m)g,(m)]—&-

m=—0oQ m=—0oo

+ > [0 = Jgp(m)g-(m—1)] x

x exp [g(m) — g(m —1)], (2.4)
P= > p(m), (2.5)
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are responsible for the intersite resonant coupling in
the subsystem of pseudoexcitons and for the inter-
site elasticity in the vibrational subsystem, respec-
tively. In addition, the parameter J is seen to deter-
mine the coupling strength between the subsystems.

2. Basic Properties of the Nonlinear
Exciton—Phonon System under Study

The semidiscrete (differential-difference) nonlinear
system of interest (1.1)—(1.4) is proved to be inte-
grable in the Lax sense, inasmuch as it admits the
zero-curvature representation

L(n|A) = A(n + 1|\ L(n|A) — L(n|N)A(n|N),  (2.1)

with the spectral and evolution matrices L(n|A) and
A(n|)) specified by the formulas

g-(n)Q/V=T  Qexp[+q(n)]

0 : (2.2)

0

—Qexp [+¢(n)]

g+(n) exp [+q(n)] v=J (2.3)

—g_(n—1)exp[—q(n —1)]vV/—=J A

(

serving for the system’s Hamiltonian function H, for
the total momentum of a vibrational subsystem P,
and for the total charge of a pseudoexcitonic subsys-
tem C, respectively.

In general, the local density p(n) = g4+(n)g—(n)
is not obliged to be a positively or negatively deter-
mined quantity. Namely for this reason, we treat it as
the charge density of pseudoexcitons.

3. Analysis of Four-Component
Symmetry Broken Solution Relying
upon the Property of Dipole-Monopole
Alternative

The simplest nontrivial four-component solution to
the coupled semidiscrete nonlinear dynamical system
(1.1)-(1.4) found in the framework of the Darboux—
Bécklund dressing technique is given by the following
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analytic expressions:

2 g4+|9| [cosh(v) — cosh(u)] exp [v(n —

y(r) +1/2)]

g+(n) = , 3.1
) = 0T cosh uln —207) + 172)] + lgz—|exp o(n — y(r) +1/2) )
Q| cosh [p(n — z(7) +1/2)] + explv(n —y(r)+1/2
o-(r) = - {1 sy (2L (o) 120 -l exp o —otr) 1/2)]) 652)
1€ cosh [p(n — (1) = 1/2)] + |g1g-[exp [v(n — y(7) — 1/2)]

o) — o] [2Leosh [u(n = () — 1/2) + locg| exp vn — y(r) ~ 1/2)]

| cosh [u(n — (1) +1/2)] + |91 9-exp [v(n —y(r) + 1/2)]
ojgy [2leoshn(n = o(r) = 8/2) + g | explv(n — y(r) ~ 3/2) 53

€2 cosh [p(n — x(7) = 1/2)] + |g19-| exp [v(n — y(7) — 1/2)]’
Q h +1/2 1/2
o) =+ 1o { L0 t0) £ 1/2) - |t o)+ 172 5
€2 cosh [u(n — (1) = 1/2)] + |g49-| exp [v(n — (T) —1/2)]
[

Here, the real-valued parameter v is related to the | formulas
physical parameters J and € by the formula exp(v) = .
= |Q/J|, while the sign parameter o is determined as pa(r) = o 7|Q sinh(u) + pa(0), (3:5)
o = —J/|J|. The producfc g+g— of the rea}—valued vy(1) = o7|Q [cosh(p) — exp(—v)] + vy(0). (3.6)
parameters g4 and ¢g_ is assumed to satisfy the
condition gyg- = —ol|g+g—|. The free localization In order to observe the phenomenon of dipole—
parameter g must be the real-valued one. At last, | monopole alternative in the above-written four-
the running position coordinates z(7) and y(7) of | component solution (3.1)—(3.4), it is reasonable to
nonlinearly superposed waves are specified by the | consider the expression

J

g+(n)g_(n) = 4g,g_ Q*[cosh(u) — cosh(v)] cosh(p/2) cosh(r/2) x

exp [v(n — y(7))] cosh [u(n — z(7))]

" 10 cosh [u(n — 2(7) + 1/2)] + |g+9-| exp [v(n —

yn+1/2)] "

(n—

)

tanh(u/2) tanh [u(n — z(7))] — tanh(v/2)
* 0 cosh [u(n — #(r) — 1/2)] + 919 exp [v(n —

for the product g (n)g_(n) of two pseudoexcitonic
field components g4 (n) and g_(n).

Having analyzed formula (3.7), we are able to re-
veal two principally distinct regimes of pseudoexci-
tonic dynamics separated by the threshold condition
|¢| = |v|. In particular, for |u| > |v|, the charge den-
sity of pseudoexcitons (3.7) strictly manifests itself
as a sort of traveling dipole, inasmuch as the charge
density changes its sign only in a single traveling spa-
tial position, while the total charge of pseudoexcitons
(2.6) is equal to zero. In contrast, for |u| < |v|, the
sign of the charge density (3.7) is preserved on the
whole infinite spatial interval, while the total charge
(2.6) is of essentially nonzero value. As a result, for
the critical relationship |u| = |v| between the param-
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y(r) —1/2)]

(3.7)

(

eters u and v, the whole four-component symmetry
broken solution (3.1)—(3.4) undergoes the crossover
between the dipole and monopole scenarios of the
charge density distribution.

In the very threshold point |u| = |v|, the g4 (n)-
component (3.1) of the pseudoexcitonic subsystem is
vanished, and the pseudoexcitonic mode is shrinked
to a single g_(n)-component (3.2). This survived
component ¢g_(n) can be referred to as the pseu-
doexcitonic chargeless half-mode, since it is unable
to maintain a nonzero value of the charge den-
sity (3.7).

Moreover, the running position coordinates z(7)
and y(7) calculated in the threshold point |u| = |v|
according to formulas (3.5) and (3.6) are character-
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ized by the same velocity v = o (|Q2|/v) sinh(v). As a
consequence, the simple manipulations with the ex-
pressions (3.3) and (3.4) for the components p(n) and
q(n) of the vibrational subsystem renormalize them
into the two-component solution typical of the stan-
dard Toda model [16, 17]. In other words, the evo-
lution of the vibrational subsystem up to the mere
renormalizing spatial shift turns out to be indepen-
dent of the pseudoexcitonic chargeless half-mode, al-
though the evolution of the pseudoxcitonic chargeless
half-mode is still essentially dictated by the vibra-
tional subsystem. This conclusion is also confirmed
by the inspection of the basic semidiscrete nonlinear
system (1.1)—(1.4) with the component g (n) being
compulsory eliminated.

4. Conclusion

The phenomenon of dipole-monopole alternative ac-
companied by the critical effect of the pseudoex-
citonic chargeless half-mode exhibited by the sug-
gested four-component analytic solution (3.1)—(3.4)
is resulted from the specifically broken P7 -symmetry
of this solution. Meanwhile, the dynamical equations
of the basic nonlinear system (1.1)—(1.4) are the
PT-symmetric ones implying that the transformed
field variables g, (n) = g, (n|7), g_(n) = g_(n|7),
p = p(n|7), a(n) = q(n|r) defined by the equali-
ties g (n]r) = g_(~n| - 7), g_(nlr) = g1 (—n| — ),
p(nlr) = +p(—n| — ), a(nlr) = —g(—n| — 1) are
checked to be governed by the same set of equa-
tions as the original nonlinear dynamical system
(1.1)—(1.4).

In view of a generic PT-symmetry of the non-
linear system under study (1.1)—(1.4), the already
presented symmetry broken four-component solu-
tion (3.1)—(3.4) should inevitably induce its PT-
symmetry-broken partner solution. Evidently, such a
PT-symmetry-broken partner must demonstrate all
physical features motivated by the phenomenon of
dipole—monopole alternative.
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0.0. Baxnenxo

JINTIOJIBHO-MOHOIIOJIbHUN IIEPEXI/],

TA BE33APSAJIOBA HAIIIBMO/JA B IHTEI POBHIN
EKCUTOH-®OHOHHIN HEJIIHINHIN JVMHAMIYHIN
CHUCTEMI HA PETVYJIAPHIN OJHOBUMIPHIN I'PATIII

3amnpornoHOBaHO HOBY (OpPMY IHTEIDOBHOI €KCUTOH-(DOHOHHOL
HeJIHIAHOT JMHAMIYHOI cucTeMu 3 ABOMa (DI3MYHO HE3aJIeXKHU-
mu napamerpamu. Cucrema 3aceiisic 6e3MeKHY OIHOBUMIDHY
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peryasipHy r'paTKy i JIOIyCKae HAIBIVCKPETHE IIPEeJCTaBJICH-
Hea Jlakca B TepMiHaxX CHEKTPAJILHOI Ta €BOJIIOIIIHOI JIOITOMi-
JKHUX MaTpunb po3mipy 3 X 3. fBHuil aHamiTHIHUN YOTHPU-
KOMIIOHEHTHUN PO3B’A30K JUHAMIYHUX DIBHSHb CHCTEMH, 3HaA-
iieHunit 3a gomnoMoru TexHiku omsranusi lapOy—Beknynna, €
po3B’sizkOM 3 mopyiueHow P7T-cumerpiero. Koxxna 3 komio-
HEHT PO3B’sI3Ky € IIEBHOIO HEJIIHIWHOIO CYIIEPIIO3HIIEI0 IBOX
MaHJIPIBHUX XBUJIb, [I[0 3YMOBJIIO€ JIMIIOIbHO-MOHOIIOJIBHUIA T1e-
pexisi B cucTeMi 3a OJIHAKOBUX 3HAYEHb JBOX (DISUYHO BiIMiH-
HHUX IPOCTOPOBHX MAaCHITaOHUX MTapaMeTpiB HesiHIHHOro XBU-
apoBoro nakery. IlokazaHo, 110 sIBUIIE IUIIOJIBEHO-MOHOIIOJIBHOT
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aJIBTEPHATUBHU B IIPOCTOPOBOMY PO3IIO/IiJIi IICEB/IOEKCUTOHIB iHi-
[{IO€ YaCTKOBE PO3IIENJIEHHS MiK IICEBJIOEKCUTOHHOIO i KOJIUB-
HOIO I ICUCTEMAaMU 338 KDUTUYIHOI'O 3HAYEHHSI [TapaMeTpa JIOKa-
smizanii. e posiensienss 1noJisira€ B IOBHOMY BHJIyY€HHI OJTHIET
3 IICEBJIOEKCUTOHHUX KOMIIOHEHT Ta II€PETBOPEHHI IHIIIOI IICEB-
JOEKCUTOHHOI KOMIIOHEHTU Y IICEBIIOEKCUTOHHY 0€e33apsiioBy
HaIiBMOZY.
Katowoei caoea: HesiHIMHA €KCUTOH-(POHOHHA CHCTEMA,
JlakcoBa IHTErPOBHICTb, JUIIOJILHO—MOHOIIOJIBHUII KPOCOBED,
KPUTHYHA TO4YKa, 6e33apsijoBa HaIliBMOJA.
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