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THE INFLUENCE OF A SPACE-SPACE
DEFORMATION ON HIGH- AND LOW-ENERGY
SPECTRA OF FERMIONIC PARTICLES AND SPECTRA
OF HEAVY QUARKONIA WITH IMPROVED
HULTHÉN AND HYPERBOLIC EXPONENTIAL
INVERSELY QUADRATIC POTENTIALS

In this work, the modified approximation to the centrifugal barrier term is applied to find approximate
bound-state solutions of the deformed Dirac equation for the spin and pseudospin symmetries in a
model with the improved hyperbolic Hulthén and hyperbolic exponential inversely quadratic potentials
(IHHEIQPs) using the parametric method of Bopp’s shift and the standard perturbation theory in the
extended relativistic quantum mechanics (ERQM). Our results indicate that the new energy eigen-
values are highly sensitive to the potential parameters (𝜈1, 𝐴) and to the values of quantum atomic
numbers (𝑗, 𝑘, 𝑙,𝑚,̃︀𝑙, ̃︀𝑚, 𝑠, ̃︀𝑠), range of the potential 𝜈, and noncommutativity parameters (Θ, 𝜎, 𝛽). We
found that the effect of a space-space deformation gives a correction in the energy spectrum, where
the main energy term remains due to the effect of the hyperbolic Hulthén and hyperbolic exponential
inversely quadratic potentials known in the literature. The new nonrelativistic energies are obtained
by applying the nonrelativistic limit to the relativistic spin-energy equation in the extended nonrela-
tivistic quantum mechanics (ENRQM). The proposed potential model reduces to the improved Hulthén
and exponential inversely quadratic potentials as special cases in ERQM. The present results are ap-
plied for calculating the new mass spectra 𝑀ℎ𝑖𝑞𝑝

𝑛𝑐−𝑛𝑙 of heavy mesons such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞,
𝑞 = (𝑢, 𝑑) in ENRQM. It turns out that the values of masses come from the contribution of the mass
spectra 𝑀ℎ𝑖𝑞𝑝

𝑛𝑙 in NRQM, while the effect of a space-space deformation 𝛿𝑀ℎ𝑖𝑞𝑝
𝑛𝑐−𝑛𝑙 is an infinitesimal

correction as compared with 𝑀ℎ𝑖𝑞𝑝
𝑛𝑙 . Our results seem to be significant and agree perfectly with the

ones in the literature.
Ke yw o r d s: noncommutative space-space, Dirac equation, Schrödinger equation, Hulthén
plus hyperbolic exponential inversely quadratic potential, Bopp’s shift method, heavy-light
mesons.
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1. Introduction

Although nearly a century has passed since the emer-
gence of the four fundamental equations aimed at
the understanding of physical phenomena at high
and low energies, they still attract more attention
from researchers in various fields of physics and
chemistry. Researchers investigate the low- and high-
energy regions by searching for bound states (energy
spectrum, wave functions, and two-spinor wave func-
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tions) and scattering state solutions, at the relativis-
tic and nonrelativistic levels, of the Klein–Gordon,
Dirac, and Duffin–Kemmer–Petiau (DKP) equations
or the Schrödinger wave equation for low-energy phys-
ical systems. Different potentials are used to describe
physical systems, and researchers use various meth-
ods to solve the equations, including the Nikiforov–
Uvarov (NU) approach, the supersymmetric quantum
mechanics method, and others. The exact solutions of
the various basic equations can only be obtained in
exceptional cases, such as a harmonic oscillator and
a hydrogen atom. For example, 𝑠-wave cases can be
considered in addition to the case of 𝑙 = 0, while, in
other general cases, which correspond to (l,k) ̸= (0,0),
it is not possible to obtain exact solutions due to the
complexities of the centrifugal terms. In this case, it
is necessary to apply some approximations, including
the standard Greene–Aldrich approximation. The ex-
ponential potentials like the Hulthén potential and
the exponential inversely quadratic one play an at-
tractive and extensive role in describing many vi-
tal areas such as the molecular and atomic levels
and elementary particles. Antia et al. found the KGE
bound-state solutions for a deformed Hulthén poten-
tial with unequal scalar and vector potentials for any
l -state and calculated explicitly the energy eigenval-
ues and the corresponding wave functions expressed
in terms of Jacobi polynomials [1]. Using both the
NU method and the approximation scheme to deal
with the centrifugal (pseudo) term, Ikhdair and Sever
found bound-state solutions of the Dirac equation
(DE) with the Hulthén potential for all angular mo-
menta under spin and pseudospin (p-spin) symme-
tries [2]. Hamzavi et al. used the NU method to ob-
tain the energy eigenvalue equation and the corre-
sponding eigenfunctions in a closed form for the in-
versely quadratic Yukawa potential, which included
a Coulomb-like tensor potential with arbitrary spin-
orbit coupling quantum number 𝑘 in the framework
of the spin and p-spin symmetries [3]. In addition to
the thermodynamic properties, Okon et al. obtained
solutions of DE for spin and pseudospin symmetries
in a model with the hyperbolic Hulthén plus hy-
perbolic exponential inversely quadratic potentials
(HHEIQP) using the parametric NU method and
the modified approximation to the centrifugal bar-
rier term [4]. The Hulthén potential was proposed
by Hulthén in 1942 [5] and is considered as a spe-
cial case of the Eckart potential[6]. It has received

a lot of attention for its effectiveness in describing
a variety of phenomena. It is widely applied in many
fields of physics, especially at the atomic level and for
quarks [7]. Recently, this potential has been studied
in many articles such as [8, 9]. Bhaghyesh et al. used
the Hulthén potential and a linear potential to study
𝑞𝑞 (𝑞 = 𝑏, 𝑐) and computed the spin-averaged masses
for 𝑐𝑐 and 𝑏𝑏 mesons [10]. The hyperbolic exponen-
tial inversely quadratic potential

(︁
−𝐴𝑞 exp(−𝜈𝑟)

𝑟2

)︁
is

considered to be worthy of attention because of its
important applications in nuclear and high-energy
physics [4]. Ikhdair presented an approximate ana-
lytic solution of the Klein–Gordon equation (KGE)
in the presence of equal scalar and vector general-
ized deformed hyperbolic potential functions using
a parametric generalization of the NU method and
calculated the rotational and vibrational energies of
diatomic molecules [11]. Through this new research,
we aim to restudy the relativistic and nonrelativis-
tic energy bands resulting from this combined poten-
tial within the framework of geometric symmetries re-
sulting from a space-space deformation. This space is
known as a noncommutative phase-space or extended
quantum mechanics in the context of Schrödinger and
Dirac theories. We call it the deformed Dirac the-
ory (DDT) and deformed Schrödinger theory (DST)
for the purpose of a more profound investigation for
new energy values and searching for the possibility
of discovering new applications. In addition to the
well-known axioms that establish quantum mechan-
ics (QM) known in the literature, we have two addi-
tional axioms. The first one was known as the non-
commutative (NC) phase-phase ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 * ̂︀𝑝(𝑠,ℎ,𝑖)𝜈 ̸=
̸= ̂︀𝑝(𝑠,ℎ,𝑖)𝜈 * ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 ; while the second corresponds tô︀𝑥(𝑠,ℎ,𝑖)
𝜇 * ̂︀𝑥(𝑠,ℎ,𝑖)

𝜈 ̸= ̂︀𝑥(𝑠,ℎ,𝑖)
𝜈 * ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , which is known
to specialized researchers as the NC space-space (the
symbol * denotes the Weyl–Moyal star product). Re-
searchers believe that the NC idea is the best solution
to many physical problems that have not found a con-
vincing solution within the framework of QM, such
as quantum gravity, string theory, and the divergence
problem in the standard model [12–22]. Furthermore,
the theory of noncommutativity is a very strong can-
didate to be the physical tool that unites QM with its
three interactions (nuclear strong, electromagnetic,
and nuclear weak) with the gravitational interac-
tions represented by Einstein’s general relativity and
the nonsymmetric gravitational theory of Moffat. The
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concept of extended quantum mechanics (EQM) is
not new; it was proposed by Snyder [23, 24] in 1947,
and its geometric analysis was introduced by Connes
in 1991 and 1994 [25, 26]. Seiberg and Witten ex-
tended earlier ideas about the appearance of a NC
geometry in the string theory with a nonzero B-field
and obtained a new version of gauge fields in noncom-
mutative gauge theory [27]. On the other hand, the
great mathematical progress during the past decades
has encouraged researchers to rely on EQM to de-
velop an understanding of atomic and nuclear physi-
cal phenomena and to study the interactions between
molecules as well. It should be noted that we have
had two new contributions to this framework. The
first related to a study of the deformed Klein–Gordon
equation (DKGE) with generalized modified screened
Coulomb plus generalized inversely quadratic Yukawa
potential in RNCQM symmetries [28]. The second
study concerns the model with a modified unequal
mixture of the scalar-vector Hulthén–Yukawa poten-
tials for the quark-antiquark interaction, as well as
for neutral atoms [29] and in other cases[30–35]. For
this reason, our main goal is to conduct a further
investigation in the field of elementary particles. Mo-
tivated by previous works in the literature, we will
concentrate on a new physical potential, which we
call the improved Hulthén plus hyperbolic exponen-
tial inversely quadratic potential (IHHEIQP, in short)
model (𝑉 𝑠

hiq (̂︀𝑟) /𝑉 𝑝
hiq (̂︀𝑟), 𝑆𝑠

hiq (̂︀𝑟) /𝑆𝑝
hiq (̂︀𝑟)):⎧⎪⎨⎪⎩

𝑉 𝑠
hiq (̂︀𝑟) = 𝑉hiq (𝑟)−

𝜕𝑉hiq (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

𝑆𝑠
hiq (̂︀𝑟) = 𝑆hiq (𝑟)−

𝜕𝑆hiq (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀ (1.1)

and⎧⎪⎪⎨⎪⎪⎩
𝑉 𝑝
hiq (̂︀𝑟) = 𝑉hiq (𝑟)−

𝜕𝑉hiq (𝑟)

𝜕𝑟

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

𝑆𝑝
hiq (̂︀𝑟) = 𝑆hiq (𝑟)−

𝜕𝑆hiq (𝑟)

𝜕𝑟

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

, (1.2)

where (𝑉hiq (𝑟) , 𝑆hiq (𝑟)) are the vector and scalar po-
tentials in the commutative quantum mechanics and
are known as [4]:⎧⎪⎪⎨⎪⎪⎩
𝑉hiq (𝑟) =

𝜈1𝑞 exp (−𝜈𝑟)

1− 𝑞 exp (−𝜈𝑟)
− 𝐴𝑞 exp (−𝜈𝑟)

𝑟2
,

𝑆hiq (𝑟) =
𝑠1𝑞 exp (−𝜈𝑟)

1− 𝑞 exp (−𝜈𝑟)
− 𝐴𝑠𝑞 exp (−𝜈𝑟)

𝑟2
,

(2)

where 𝜈1 (𝑠1) is the potential depth, 𝐴 (𝐴𝑠) is a real
constant parameter, 𝑞 = cosh (𝜔), 𝜔 is the optimizing
parameter 𝜈 = 1

𝑏 , while 𝑏 is the screening parame-
ter that represents the strength of the potential, (̂︀𝑟
and 𝑟) are the distances between the two particles
in a deformation of Dirac theory symmetries and QM
symmetries, respectively. The two couplings (LΘ and̃︀LΘ) are the scalar product of the usual components
of the angular momentum operators L(𝐿𝑥, 𝐿𝑦, 𝐿𝑧)/

/̃︀L(̃︀𝐿𝑥, ̃︀𝐿𝑦, ̃︀𝐿𝑧) and the modified noncommutativity
vector Θ(𝜃𝜖12, 𝜃𝜖23, 𝜃𝜖13)/2 which are related to the
noncommutativity elements. The modified algebraic
structure of covariant canonical commutation rela-
tions (MASCCCRs), canonical structure (CS), Lie
structure (LS), and quantum plane (QP) in the DDT
in the representations of Schrödinger, Heisenberg,
and interaction pictures are as follows (we have used
the natural units ~ = 𝑐 = 1) [36–44]:[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇
*,̂︀𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~eff𝛿𝜇𝜈 ,[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇
*,̂︀𝑥(𝑠,ℎ,𝑖)

𝜈

]︁
=

=

⎧⎪⎨⎪⎩
𝑖𝜖𝜇𝜈𝜃 with 𝜖𝜇𝜈 ∈ 𝐼𝐶, CS,

𝑖𝑓𝛼
𝜇𝜈̂︀𝑥(𝑠,ℎ,𝑖)

𝛼 with 𝑓𝛼
𝜇𝜈 ∈ 𝐼𝐶, LS,

𝑖𝐶𝛼𝛽
𝜇𝜈 ̂︀𝑥(𝑠,ℎ,𝑖)

𝛼 ̂︀𝑥(𝑠,ℎ,𝑖)
𝛽 with 𝐶𝛼𝛽

𝜇𝜈 ∈ 𝐼𝐶, QP.[︁̂︀𝑥(𝑠,ℎ,𝑖)
𝜇

*,𝜖𝜇𝜈𝜃
]︁
=0 ⇔

[︁̂︀𝑥(𝑠,ℎ,𝑖)
𝜇

*,
[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜈
*,̂︀𝑥(𝑠,ℎ,𝑖)

𝜉

]︁]︁
= 0.

(3)

These postulates within the framework of QM are
known in the literature in the following simplified
form:[︁
𝑥(𝑠,ℎ,𝑖)
𝜇 , 𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~𝛿𝜇𝜈 and

[︁
𝑥(𝑠,ℎ,𝑖)
𝜇 , 𝑥(𝑠,ℎ,𝑖)

𝜈

]︁
= 0.

(4)

The new NC generalized coordinates in the DDT
symmetries (̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 and ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 ) are equal ((̂︀𝑥𝑠
𝜇, ̂︀𝑥ℎ

𝜇,̂︀𝑥𝑖
𝑛𝑐𝜇) and (̂︀𝑝𝑠𝜇, ̂︀𝑝ℎ𝜇, ̂︀𝑝𝑖𝜇)), while the corresponding gen-

eralizing coordinates (𝑥(𝑠,ℎ,𝑖)
𝜇 and 𝑝

(𝑠,ℎ,𝑖)
𝜇 ) are equal

((𝑥𝑠
𝜇, 𝑥ℎ

𝜇, 𝑥𝑖
𝑛𝑐𝜇) and (𝑝𝑠𝜇, 𝑝ℎ𝜇, 𝑝𝑖𝜇)) in QM symme-

tries, respectively. The symbol 𝐼𝐶 denotes the com-
plex number field. In EQM symmetries, the above al-
gebraic structures allow us to reformulate the uncer-
tainty relations as⃒⃒⃒
Δ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 Δ̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

⃒⃒⃒
>

⎧⎨⎩
|𝜃𝜇𝜈 | /2 for CS,
𝑓𝜇𝜈/2 for LS,
𝐶𝜇𝜈/2 for QP.

(5.1)
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Here, 𝑓𝜇𝜈 and 𝐶𝜇𝜈 present the average values⃒⃒⃒⃒
⃒
⟨

3∑︁
𝛼

(︁
𝑓𝛼
𝜇𝜈̂︀𝑥(𝑠,ℎ,𝑖)

𝛼

)︁⟩⃒⃒⃒⃒⃒ and

⃒⃒⃒⃒
⃒⃒
⟨

3∑︁
𝛼,𝛽

(︁
𝐶𝛼𝛽

𝜇𝜈 ̂︀𝑥(𝑠,ℎ,𝑖)
𝛼 ̂︀𝑥(𝑠,ℎ,𝑖)

𝛽

)︁⟩⃒⃒⃒⃒⃒⃒,
respectively, in addition to the usual uncertainty re-
lation:⃒⃒⃒
Δ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 Δ̂︀𝑝(𝑠,ℎ,𝑖)𝜈

⃒⃒⃒
> ~eff𝛿𝜇𝜈/2 (5.2)

which is obtained by substituting ~ with new val-
ues ~eff . It is worth to note that Eqs. (3) and (4)
are covariant equations (the same behavior of ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 )
under the Lorentz group transformation 𝑆𝑂 (1, 3),
which includes boosts and/or rotations of the ob-
server’s inertial frame. We extended the modified
equal-time noncommutative canonical commutation
relations (METNCCCRs) to include the Heisenberg
and interaction pictures in DDT. Here, ~eff ∼= ~ is the
effective Planck constant, 𝜃𝜇𝜈 = 𝜖𝜇𝜈𝜃 (𝜃 is the NC
parameter, and 𝜖𝜇𝜈 is just an antisymmetric number
(𝜖𝜇𝜈 = −𝜖𝜈𝜇 = 1 with 𝜇 ̸= 𝜈) and 𝜖𝜖𝜖 = 0) which is
an infinitesimal parameter, if compared to the energy
values and elements of antisymmetric (3× 3) real ma-
trices, and 𝛿𝜇𝜈 is the Kronecker symbol. The new
deformed product can be expressed with the Weyl–
Moyal star product ℎ(𝑥) * 𝑓(𝑥) in the symmetries of
DDT symmetries as follows: [45–50]:

ℎ(𝑥) * 𝑓(𝑥) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︀
𝑖𝜖𝜇𝜈𝜃𝜕𝑥

𝜇𝜕
𝑥
𝜈

)︀
(ℎ𝑓) (𝑥),CS,

exp

(︂
𝑖

2
𝑥(𝑠,ℎ,𝑖)
𝑛𝑐𝜇 𝑔𝑘

(︀
𝑖𝜕𝑥

𝜇, 𝑖𝜕
𝑥
𝜈

)︀)︂
(ℎ𝑓) (𝑥),LS,

𝑖𝑞𝐺(𝑢,Λ,𝜕𝑢
𝜇 ,𝜕Λ

𝜈 )ℎ (𝑢,Λ) 𝑓 (𝑢′,Λ′)⌋Λ′→Λ
𝑢′→𝑢 ,QP.

(6)

with

𝑓𝛼(𝑢
′,Λ′) = −𝑢′

𝜇Λ
′
𝜈𝑓

𝜈𝜈
𝑘 +

1

6
𝑢′
𝜇Λ

′
𝜈(Λ

′
𝛼−𝑢′

𝛼)𝑓
𝜈𝜈
𝑙 𝑓 𝑙𝛼

𝑚 +... .

In the current paper, we apply the MASCCCRs to the
DDT, which allows us to rewrite it in the following
simple form in the first order of the noncommutativity
parameter 𝜖𝜇𝜈𝜃 as follows [49–51]:

(ℎ * 𝑓) (𝑥) = (ℎ𝑓) (𝑥)−

− 𝑖𝜖𝜇𝜈𝜃

2
𝜕𝑥
𝜇ℎ (𝑥) 𝜕

𝑥
𝜈 𝑓 (𝑥)⌋𝑥𝜇=𝑥𝜈 +𝑂

(︀
𝜃2
)︀
. (7)

The indices (𝜇, 𝜈 = 1, 2, 3) and 𝑂
(︀
𝜃2
)︀

stand for the
second and higher-order terms with the NC parame-
ter. Physically, the second term in the last equation
presents the effects of space-space noncommutativ-
ity, and, on the other hand, the fields have to be
considered as dependent not only on 𝑥𝜇, but also
on 𝜖𝜇𝜈𝜃. The present study aims at constructing the
IHHEIQP model for the application to heavy-light
mesons HLM, such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞,
𝑞 = (𝑢, 𝑑). The present paper is organized as fol-
lows: The first section includes the scope and pur-
pose of our investigation, while the remaining parts
of the paper are structured as follows. A review of the
DE with the Hulthén plus hyperbolic exponential in-
versely quadratic potential without tensor interaction
is presented in Sect. 2. Section 3 is devoted to study-
ing the deformed Dirac equation (DDE) by applying
the usual Bopp’s shift method and the Greene–Al-
drich approximation for the centrifugal terms to ob-
tain the effective potentials of the IHHEIQP model
in DDT symmetries. Furthermore, via standard per-
turbation theory, we find the expectation values of
some radial terms to calculate the corrected relativis-
tic energy generated by the effect of the perturbed
effective potentials of the IHHEIQP model. We will
derive the global corrected energy with the IHHEIQP
model in the DDT symmetries. We will also treat
some important special cases, including the study
of relativistic cases as an NR limit in the next sec-
tion. The present results are applied to calculate the
mass spectra of the previously mentioned HLM sys-
tems. In Sect. 6, a brief conclusion of the work is
presented.

2. Background and Preparation

2.1. An overview of DE
under the HHEIQP model

In this section, in order to achieve complete solutions
with the IHHEIQP model in the DDT symmetries,
we will mention the most important results of solu-
tions corresponding to this problem within the frame-
work of relativistic mechanics in the literature. A
relativistic physical system influenced by the hyper-
bolic Hulthén plus hyperbolic exponential inversely
quadratic potential (HHEIQP) n the context of the
following DE:

̂︀𝐻hiq
𝐷 Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙) = 𝐸𝑛𝑘Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙). (8)
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Here,̂︀𝐻hiq
𝐷 = ̂︀𝛼p+ ̂︀𝛽 (𝑀 + 𝑆hiq (𝑟))−𝑖̂︀𝛽̂︀r𝑈 (𝑟)+𝑉hiq (𝑟) (9)

denotes the Dirac Hamiltonian operator, 𝑀 is the
reduced rest mass, p = −i, ~∇ is the momentum,
and 𝑈 (𝑟) is the tensor interaction. The vector poten-
tial 𝑉hiq (𝑟) due to the four-vector linear momentum
operator 𝐴𝜇 (𝑉hiq (𝑟), A = 0), and the space-time
scalar potential 𝑆hiq (𝑟) due to the mass, 𝐸𝑛𝑘 repre-
sents the relativistic eigenvalues, (𝑛, 𝑘) represent the
principal and spin-orbit coupling terms, respectively,̂︀𝛼𝑖 = anti− diag(𝜎𝑖, 𝜎𝑖), ̂︀𝛽 = diag (𝐼2×2, −𝐼2×2) and
𝜎𝑖 are the usual Pauli matrices. Since the HHEIQP
model has spherical symmetry, this allows us to get
the solutions of the known form:

Ψ𝑛𝑘 =

(︂
Ψ1

𝑛𝑘
Ψ2

𝑛𝑘

)︂
,

with Ψ1
𝑛𝑘 and Ψ2

𝑛𝑘 are equal 𝐹𝑛𝑘(𝑟)
𝑟 𝑌 𝑙

𝑗𝑚 (𝜃, 𝜙) and
𝑖𝐺𝑛𝑘(𝑟)

𝑟 𝑌
̃︀𝑙
𝑗𝑚 (𝜃, 𝜙), respectively. The two expressions

𝐹𝑛𝑘 (𝑟) and 𝐺𝑛𝑘 (𝑟) represent the upper and lower
components of the Dirac spinors Ψ𝑛𝑘, while 𝑌 𝑙

𝑗𝑚 (𝜃, 𝜙)

and 𝑌
̃︀𝑙
𝑗 ̃︀𝑚 (𝜃, 𝜙) are the spin and pseudospin spherical

harmonics, and 𝑚 is the projection on the 𝑧-axis. The
upper and lower components satisfy the two uncou-
pled differential equations as follows:[︃
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1)

𝑟2
− (𝑀 + 𝐸𝑛𝑘 −Δhiq (𝑟))×

× (𝑀 − 𝐸𝑛𝑘 +Σhiq (𝑟))+

+

𝑑Δhiq(𝑟)
𝑑𝑟

(︀
𝑑
𝑑𝑟 + 𝑘

𝑟

)︀
𝑀 + 𝐸𝑛𝑘 −Δhiq (𝑟)

]︃
𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (10)

and[︃
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1)

𝑟2
− (𝑀 + 𝐸𝑛𝑘 −Δhiq (𝑟))×

× (𝑀 − 𝐸𝑛𝑘 +Σhiq (𝑟))+

+

𝑑Σhiq(𝑟)
𝑑𝑟

(︀
𝑑
𝑑𝑟 − 𝑘

𝑟

)︀
𝑀 + 𝐸𝑛𝑘 +Σhiq (𝑟)

]︃
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0, (11)

here Σhiq (𝑟) = 𝑉hiq (𝑟) + 𝑆hiq (𝑟) and Δhiq (𝑟) =
= 𝑉hiq (𝑟)− 𝑆hiq (𝑟) are determined by:⎧⎪⎨⎪⎩
Σhiq (𝑟) = 𝐴

exp (−2𝛼𝑟)

𝑟2
−𝐵

exp (−𝛼𝑟)

𝑟
,

𝑑Δhiq (𝑟)

𝑑𝑟
= 0 For spin 𝑠𝑦 limit

(12)

and⎧⎪⎨⎪⎩
Δhiq (𝑟) = 𝐴

exp (−2𝛼𝑟)

𝑟2
−𝐵

exp (−𝛼𝑟)

𝑟
,

𝑑Σhiq (𝑟)

𝑑𝑟
= 0 For p-spin 𝑠𝑦. limit

(13)

The upper and lower components of DE with equal
scalar and vector potentials without tensor interac-
tion are given as:(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1)

𝑟2
−

− 𝛾𝑠 (𝑀 − 𝐸𝑠
𝑛𝑘 +Σhiq (𝑟))

)︂
𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (14)

and(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1)

𝑟2
−

− 𝛾𝑝𝑠 (𝑀 + 𝐸𝑝𝑠
𝑛𝑘 −Δhiq (𝑟))

)︂
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0, (15)

with 𝑘 (𝑘 − 1) and 𝑘 (𝑘 + 1) to be equal to ̃︀𝑙(̃︀𝑙 − 1)
and 𝑙 (𝑙 + 1), respectively. The authors of Ref. [4]
used the NU method and Greene–Aldrich approx-
imation for the centrifugal term to obtain the ex-
pressions for the wave function as hypergeomet-

ric polynomials 𝑃
(︁√

−𝛽𝑠2𝑏2,2𝛽𝑠
𝑛𝑘

)︁
𝑛 (1− 2𝑠 cosh(𝜔)) and

𝑃

(︁√
−𝛽𝑝𝑠2𝑏2,2𝛽𝑝𝑠

𝑛𝑘

)︁
𝑛 (1− 2𝑠 cosh(𝜔)) in RQM symme-

tries as

𝐹𝑛𝑘 (𝑠) = 𝐵𝑠
𝑛𝑘 (𝑠 cosh(𝜔))

√
−𝛽𝑠2𝑏2

(1− 𝑠 cosh(𝜔))
𝜂𝑠𝑝
𝑛𝑘 ,

𝑃

(︁√
−𝛽𝑠2𝑏2,2𝛽𝑠

𝑛𝑘

)︁
𝑛 (1− 2𝑠 cosh(𝜔)) , (16)

𝐺𝑛𝑘 (𝑠) = 𝐵𝑝𝑠
𝑛𝑘 (𝑠 cosh(𝜔))

√
−𝛽𝑝𝑠2𝑏2

(1− 𝑠 cosh(𝜔))
𝜂𝑝𝑠
𝑛𝑘 ,

𝑃

(︁√
−𝛽𝑝𝑠2𝑏2,2𝛽𝑝𝑠

𝑛𝑘

)︁
𝑛 (1− 2𝑠 cosh(𝜔)) , (17)

with 𝑠 = exp (−𝜐𝑟) , while 𝛽𝑠
𝑛𝑘, 𝛽

𝑝𝑠
𝑛𝑘, 𝛾𝑠, 𝛾𝑝𝑠, 𝛽

𝑠, 𝛽𝑝𝑠,
𝜂𝑠𝑝𝑛𝑘 and 𝜂𝑝𝑠𝑛𝑘 are given by

𝛽𝑠
𝑛𝑘=cosh(𝜔)+

+

√︃
4𝑘 (𝑘 + 1) (cosh(𝜔))

2 −
−8𝐴𝛾𝑠 (cosh(𝜔))

2
+ (cosh(𝜔))

2 +

+2 cosh(𝜔)
√︀

−𝛽𝑠2𝑏2 − 2
√︀
−𝛽𝑠2𝑏2 − 2,

𝛽𝑝𝑠
𝑛𝑘 = cosh(𝜔) + 4𝑘 (𝑘 − 1) (cosh(𝜔))

2 −
− 8𝐴𝛾𝑝𝑠 (cosh(𝜔))

2
+ (cosh(𝜔))

2
+ 2 cosh(𝜔)×

×
√︀
−𝛽𝑝𝑠2𝑏2 − 2

√︀
−𝛽𝑝𝑠2𝑏2 − 2,

𝛾𝑠 = 𝑀 + 𝐸𝑠
𝑛𝑘 − 𝐶𝑠, 𝛾𝑝𝑠 = 𝑀 − 𝐸𝑝𝑠

𝑛𝑘 + 𝐶𝑝𝑠,
𝛽𝑠2 = 𝐸𝑠2

𝑛𝑘 −𝑀2 , 𝛽𝑝𝑠2 = 𝐸𝑝𝑠2
𝑛𝑘 −𝑀2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and

𝜂𝑠𝑝𝑛𝑘 = −
√︀
−𝛽𝑠2𝑏2 − 2 cosh(𝜔)

√︀
−𝛽𝑠2𝑏2 −

−

[︃
2 cosh(𝜔) + 2

√︃
4𝑘(𝑘 + 1)(cosh(𝜔))2−
− 8𝐴𝛾𝑠(cosh(𝜔))

2+ (cosh(𝜔))2

]︃
,

𝜂𝑝𝑠𝑛𝑘 = −
√︀

−𝛽𝑝𝑠2𝑏2 − 2 cosh(𝜔)
√︀
−𝛽𝑝𝑠2𝑏2−

−

[︃
2 cosh(𝜔) + 2

√︃
4𝑘(𝑘 − 1)(cosh(𝜔))2−
− 8𝐴𝛾𝑝𝑠(cosh(𝜔))

2+(cosh(𝜔))2

]︃
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
while 𝐵𝑠

𝑛𝑘 and 𝐵𝑝𝑠
𝑛𝑘 are the normalization con-

stants. For the spin symmetry and the p-spin sym-
metry, the equations of energy are given by:

(𝐸𝑠
𝑛𝑘 −𝑀) (𝐸𝑠

𝑛𝑘 +𝑀) =

= − 1

𝑏2

(︃
𝑞𝑘 (𝑘 + 1)− 2𝑞 (𝐸𝑠

𝑛𝑘 +𝑀) 𝜈1𝑏
2

(2𝑛+ 1)
2
+ 𝑞
√︁
(2𝑘 + 1)

2 − 8𝐴 (𝐸𝑠
𝑛𝑘 +𝑀)

+

+

(︀
𝑛2 + 𝑛+ 1

2

)︀
𝑞 + 𝑞 (2𝑛+ 1)×

×
√︁
(2𝑘 + 1)

2 − 8𝐴 (𝐸𝑠
𝑛𝑘 +𝑀)

(2𝑛+ 1)
2
+ 𝑞
√︁

(2𝑘 + 1)
2 − 8𝐴 (𝐸𝑠

𝑛𝑘 +𝑀)

)︃2
(18)

and

(𝑀 + 𝐸𝑝𝑠
𝑛𝑘) (𝑀 − 𝐸𝑝𝑠

𝑛𝑘) = − 1

𝑏2
×

×

(︃
𝑞𝑘 (𝑘 − 1)− 2𝑞 (𝐸𝑝𝑠

𝑛𝑘 −𝑀) 𝜈1𝑏
2

(2𝑛+ 1)
2
+ 𝑞
√︁
(2𝑘 − 1)

2 − 8𝐴 (𝐸𝑝𝑠
𝑛𝑘 −𝑀)

+

+

(︀
𝑛2 + 𝑛+ 1

2

)︀
𝑞 + 𝑞 (2𝑛+ 1)

√︃
(2𝑘 − 1)

2 −
− 8𝐴 (𝐸𝑝𝑠

𝑛𝑘 −𝑀)

(2𝑛+ 1)
2
+ 𝑞
√︁

(2𝑘 − 1)
2 − 8𝐴 (𝐸𝑝𝑠

𝑛𝑘 −𝑀)

)︃2
.

(19)
From the definition of Jacobi polynomials, we have

𝑃 (𝑐𝑛,𝑑𝑛)
𝑛 (1− 2𝑠) =

Γ (𝑛+ 𝑐𝑛 + 1)

𝑛!Γ (𝑐𝑛 + 1)
,

2𝐹1 (−𝑛, 𝑛+ 𝑐𝑛 + 𝑑𝑛 + 1; 1 + 𝑐𝑛, 𝑠). (20)

We obtain that 𝐹 𝑠
𝑛𝑘 (𝑟) and 𝐺𝑝𝑠

𝑛𝑘 (𝑟) represent the
upper and lower components of the Dirac spinors
Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙) in terms of the wave function as hy-
pergeometric polynomials 2𝐹1 (−𝑛,𝐷𝑠𝑝

𝑛𝑘;𝐾
𝑠, 𝑞𝑠) and

2𝐹1 (−𝑛,𝐷𝑝𝑠
𝑛𝑘;𝐾

𝑝𝑠, 𝑞𝑠) as follows:

𝐹 𝑠
𝑛𝑘 (𝑠) = 𝐵𝑠𝑛

𝑛𝑘 (𝑞𝑠)
√

−𝛽𝑠2𝑏2
(1− 𝑞𝑠)

𝜂𝑠𝑝
𝑛𝑘 ,

2𝐹1 (−𝑛,𝐷𝑠𝑝
𝑛𝑘;𝐾

𝑠, 𝑞𝑠) (21.1)

and

𝐺𝑝𝑠
𝑛𝑘 (𝑠) = 𝐵𝑝𝑠𝑛

𝑛𝑘 (𝑞𝑠)
√

−𝛽𝑝𝑠2𝑏2
(1− 𝑞𝑠)

𝜂𝑝𝑠
𝑛𝑘 ,

2𝐹1 (−𝑛,𝐷𝑝𝑠
𝑛𝑘;𝐾

𝑝𝑠, 𝑞𝑠) , (21.2)

with

𝐷
(𝑠,𝑝𝑠)
𝑛𝑘 = 𝑛+

√︀
−𝛽(𝑠,𝑝𝑠)2𝑏2 + 2𝛽

(𝑠,𝑝𝑠)
𝑛𝑘 + 1,

𝐾(𝑠,𝑝𝑠) = 1 +
√︀
−𝛽(𝑠,𝑝𝑠)2𝑏2,

𝐵𝑝𝑠𝑛
𝑛𝑘 =

Γ
(︁
𝑛+

√︀
−𝛽𝑝𝑠2𝑏2 + 1

)︁
𝑛!Γ

(︁√︀
−𝛽𝑝𝑠2𝑏2 + 1

)︁ 𝐵𝑝𝑠
𝑛𝑘.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The lower component 𝐺𝑠𝑝

𝑛𝑘 (𝑠) of spin symmetry and
the upper component 𝐹 𝑝𝑠

𝑛𝑘 (𝑠) of p-spin symmetry are
obtained as
𝐺𝑠𝑝

𝑛𝑘 (𝑠) =
1

𝑀 + 𝐸𝑠
𝑛𝑘 − 𝐶𝑠

(︂
𝑑

𝑑𝑟
+

𝑘

𝑟

)︂
𝐹 𝑠
𝑛𝑘 (𝑠) (22)

and
𝐹 𝑝𝑠
𝑛𝑘 (𝑠) =

1

𝑀 − 𝐸𝑝𝑠
𝑛𝑘 + 𝐶𝑝

(︂
𝑑

𝑑𝑟
− 𝑘

𝑟

)︂
𝐺𝑝𝑠

𝑛𝑘 (𝑠) . (23)

3. New Solutions of DDE
under the IHHEIQP in DDT symmetries

3.1. Review of Bopp’s shift method

In this subsection, we are going to solve the DDE with
the IHHEIQP model by using the BS method. We
can find the DDE expression using the concepts of
the Weyl–Moyal star product mentioned in the in-
troduction. These data allow us to rewrite the upper
and lower components 𝐹 𝑠

𝑛𝑘 (𝑟) and 𝐺𝑝𝑠
𝑛𝑘 (𝑟) without

tensor interaction in Eqs. (14) and (15) in the DDT
symmetries as follows:⎛⎝ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1)

𝑟2
−

− 𝛾𝑠 (𝑀 − 𝐸𝑠
𝑛𝑘 +Σℎ𝑖𝑞 (𝑟))

⎞⎠ * 𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (24)

and⎛⎝ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1)

𝑟2
−

− 𝛾𝑝𝑠 (𝑀 + 𝐸𝑝𝑠
𝑛𝑘 −Δℎ𝑖𝑞 (𝑟))

⎞⎠ *𝐺𝑝𝑠
𝑛𝑘 (𝑟) = 0. (25)

Among the possible paths to find solutions of
Eqs. (24) and (25), we indicate, according to the ap-
plication of the Connes method [25, 26], the Seiberg–
Witten map [27]. The star product construction that
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we saw in the above two equations can be con-
verted to the normal product process using what is
known as Bopp’s shift (BS) method. F. Bopp was
the first who considered pseudo-differential operators
obtained from a symbol by the quantization rules
(𝑥, 𝑝𝑥) → (̂︀𝑥 = 𝑥 − 𝑖

2
𝜕

𝜕𝑝𝑥
, ̂︀𝑝𝑥 = 𝑝𝑥 + 𝑖

2
𝜕
𝜕𝑥 ) instead

of the ordinary correspondence (𝑥, 𝑝𝑥) → (̂︀𝑥 = 𝑥,̂︀𝑝𝑥 = 𝑝𝑥+
𝑖
2

𝜕
𝜕𝑥 ), respectively. This procedure is known

as the BS method for the researchers, and this quan-
tization procedure is known as Bopp quantization
[52–55]. This method has achieved a considerable suc-
cess in recent years. In the search for solutions of the
NR deformed Schrödinger equation DSE under the
influence of several different potentials [56–64]. The
success of this method was not limited to the DSE,
but was extended to the study of various relativistic
physics problems, for example, for the DKGE [65–71],
for the DDE [72–80] and the deformed DKP equa-
tion [81, 82]. Thus, the BS method allows us to sim-
plify second-order linear differential equations of the
DSE, DKG, DDE, and DDKPE with the Weyl–Moyal
star product to the second-order linear differential
SE, KGE, DE, and DKP equations with the ordinary
product with simultaneous translation in the space-
space. Therefore, the two differential equations (24)
and (25) will take the following form:⎡⎣ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1) ̂︀𝑟−2 −

− 𝛾𝑠 (𝑀 − 𝐸𝑠
𝑛𝑘 +Σℎ𝑖𝑞 (̂︀𝑟))

⎤⎦𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (26)

and⎡⎣ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) ̂︀𝑟−2 −

− (𝑀 + 𝐸𝑝𝑠
𝑛𝑘 −Δℎ𝑖𝑞 (̂︀𝑟)) 𝛾𝑝𝑠

⎤⎦𝐺𝑝𝑠
𝑛𝑘 (𝑟) = 0. (27)

In Eqs. (3), the METNCCCRs with the notion of a
Weyl–Moyal star product become new METNCCCRs
with ordinary products in the literature, as follows:
(see, e.g.,[52–55]):⎧⎪⎨⎪⎩
[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , ̂︀𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~eff𝛿𝜇𝜈 ,[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , ̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

]︁
= 𝑖𝜃𝜇𝜈 .

(28)

The BS method enables us to express the general-
ized Hermitian operators (̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 and ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 ) in the
deformation Dirac theory symmetries on the corre-
sponding parameters (𝑥(𝑠,ℎ,𝑖)

𝜇 and 𝑝
(𝑠,ℎ,𝑖)
𝜇 ) in ordinary

QM as [52–55]:⎧⎪⎨⎪⎩̂︀𝑥
(𝑠,ℎ,𝑖)
𝜇 = 𝑥(𝑠,ℎ,𝑖)

𝜇 − 𝜃

3∑︁
𝜈=1

𝑖𝜖𝜇𝜈
2

𝑝(𝑠,ℎ,𝑖)𝜈 ,

̂︀𝑝(𝑠,ℎ,𝑖)𝜇 = 𝑝
(𝑠,ℎ,𝑖)
𝜇 .

(29)

This allows us to find ̂︀𝑟2 equal
(︀
𝑟2 − LΘ

)︀
and (𝑟2 −

− ̃︀LΘ) for the spin and p-spin symmetries, respec-
tively [72–80] which we will use in the next subsection.

3.2. Constructing the IHHEIQP
Model in DDT symmetries

In this subsection, we aim to find the expressions of
Σhiq (̂︀𝑟) and Δhiq (̂︀𝑟) in the DDT symmetries, which
will allow us to find the values of new energies in the
framework of extended symmetries, and, accordingly,
this allows us to compare them with their known
counterparts in the relativistic framework, which, of
course, results from the effects of both Σhiq (𝑟) and
Δhiq (𝑟). To achieve this goal, we begin to search for
the new operators 𝑉hiq (̂︀𝑟), 𝑉 𝑝𝑠

hiq (̂︀𝑟), 𝑘 (𝑘 + 1) ̂︀𝑟−2 and
𝑘 (𝑘 − 1) ̂︀𝑟−2 which we can obtain through the follow-
ing operations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉 𝑠
hiq (̂︀𝑟) = 𝑉hiq (𝑟)−

𝜕𝑉hiq (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

𝑉 𝑝𝑠
hiq (̂︀𝑟) = 𝑉hiq (𝑟)−

𝜕𝑉hiq (𝑟)

𝜕𝑟

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

𝑘 (𝑘 + 1) ̂︀𝑟−2 = 𝑘 (𝑘 + 1) 𝑟−2 +

+ 𝑘 (𝑘 + 1) 𝑟−4LΘ+𝑂
(︀
Θ2
)︀
,

𝑘 (𝑘 − 1) ̂︀𝑟−2 = 𝑘 (𝑘 − 1) 𝑟−2 +

+ 𝑘 (𝑘 − 1) 𝑟−4̃︀LΘ+𝑂
(︀
Θ2
)︀
.

(30)

Substituting Eqs. (30) into Eqs. (26) and (27), we ob-
tain the following two Schrödinger-like equations:⎡⎣ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1)

𝑟2
− Σpert

hiq (𝑟)−

− 𝛾𝑠 (𝑀 − 𝐸𝑠
𝑛𝑘 +Σhiq (𝑟))

⎤⎦𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (31)

and⎡⎣ 𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1)

𝑟2
−Δpert

hiq (𝑟)−

− (𝑀 + 𝐸𝑝𝑠
𝑛𝑘 −Δhiq (𝑟)) 𝛾𝑝𝑠

⎤⎦𝐺𝑝𝑠
𝑛𝑘 (𝑟) = 0, (32)

with

Σpert
hiq (𝑟) =

(︂
𝑘 (𝑘 + 1)

𝑟4
− 𝛾𝑠

2𝑟

𝜕𝑉hiq (𝑟)

𝜕𝑟

)︂
LΘ (33)
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and

Δpert
hiq (𝑟) =

(︂
𝑘 (𝑘 − 1)

𝑟4
− 𝛾𝑝𝑠

2𝑟

𝜕𝑉hiq (𝑟)

𝜕𝑟

)︂ ̃︀LΘ. (34)

By comparing Eqs. (14) and (15) with (Eqs. (31)
and (32)), we observe two additive potentials Σpert

hiq (𝑟)

and Δpert
hiq (𝑟). Moreover, these terms are propor-

tional to the infinitesimal noncommutativity vector
Θ. From the physical point of view, this means that
these two spontaneously generated terms Σpert

hiq (𝑟)

and Δpert
hiq (𝑟) , as a result of the topological proper-

ties of the space-space deformation, can be consid-
ered very small compared to the fundamental terms
Σhiq (𝑟) and Δhiq (𝑟), respectively. A direct calcula-
tion gives 𝜕𝑉hiq(𝑟)

𝜕𝑟 as follows:

𝜕𝑉hiq (𝑟)

𝜕𝑟
= − 𝜈𝜈1𝑞 exp (−𝜈𝑟)

(1− 𝑞 exp (−𝜈𝑟))
2 +

+
𝐴𝜈𝑞

𝑟2
exp (−𝜈𝑟) +

2𝐴𝑞

𝑟3
exp (−𝜈𝑟). (35)

Substituting Eq. (35) into Eqs. (33) and (34), we ob-
tain the spontaneously generated terms Σpert

hiq (𝑟) as
follows:

Σpert
hiq (𝑟) =

(︃
𝑘 (𝑘 + 1)

𝑟4
+

𝜈𝜈1𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟 (1− 𝑞 exp (−𝜈𝑟))
2 −

− 𝐴𝜈𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟3
− 𝐴𝑞𝛾𝑠 exp (−𝜈𝑟)

𝑟4

)︃
LΘ. (36)

Whereas, the generated potential Δpert
hiq (𝑟) can be ob-

tained by applying the two simultaneous transforma-
tions from Eq. (36):

Δpert
hiq (𝑟) = Σpert

hiq (𝑟)

[︂
𝛾𝑠 → 𝛾𝑝𝑠, L → ̃︀L
and 𝑘 (𝑘 + 1) → 𝑘 (𝑘 − 1)

]︂
. (37)

Furthermore, using the unit step function (also known
as the Heaviside step function 𝜃 (𝑥) or simply the
theta function), we can rewrite the globally induced
two potentials Σpert

𝑡_hiq (𝑟) and Δpert
𝑡−hiq (𝑟) for spin and

p-spin symmetries corresponding upper and lower
components (𝐹 𝑠

𝑛𝑘 (𝑠) and 𝐺𝑠𝑝
𝑛𝑘 (𝑠)) and (𝐹 𝑝𝑠

𝑛𝑘 (𝑠) and
𝐺𝑝𝑠

𝑛𝑘 (𝑠)), respectively as:

Σpert
𝑡_hiq (𝑟) = Σpert

hiq (𝑟) 𝜃
(︀
𝐸hiq−𝑠

𝑛𝑐

)︀
−

−Σpert
hiq (𝑟) 𝜃

(︀
−𝐸hiq−𝑠

𝑛𝑐

)︀
=

=

{︃
Σpert

hiq (𝑟) for upper component of spin 𝑠𝑦,

−Σpert
hiq (𝑟) for lower component of spin 𝑠𝑦.

(38.1)

and

Δpert
𝑡_hiq (𝑟) = Δpert

hiq (𝑟) 𝜃
(︀
𝐸hiq−𝑝

𝑛𝑐

)︀
−

−Δpert
hiq (𝑟) 𝜃

(︀
−𝐸hiq−𝑝

𝑛𝑐

)︀
=

=

{︃
Δpert

hiq (𝑟) for upper component of p-spin 𝑠𝑦,

−Δpert
hiq (𝑟) for lower component of p-spin sy.

(38.2)
Here, the step function 𝜃 (𝑥) is given by:

𝜃 (𝑥) =

{︂
1 for 𝑥 ≥ 0,

0 for 𝑥l 0.
(38.3)

For the spin symmetry, we first consider Eq. (31),
which contains the improved Hulthén plus hyperbolic
exponential inversely quadratic potential in the defor-
mation of Dirac theory symmetries. It can be solved
exactly only for 𝑘 = 0 and 𝑘 = −1 without tensor
interaction, since the two centrifugal terms (propor-
tional to 𝑘 (𝑘 + 1) 𝑟−2 and 𝑘 (𝑘 + 1) 𝑟−4) vanish. In
the case of arbitrary 𝑘, an appropriate approximation
needs to be employed on the centrifugal terms. We
apply the following improved approximation which
was applied by Greene and Aldrich [83–86, 90]:

1

𝑟2
≈ 𝜈2𝑞𝑒−𝜈𝑟

(1− 𝑞𝑒−𝜈𝑟)
2 =

𝜈2𝑞𝑠

(1− 𝑞𝑠)
2 ⇔

⇔ 1

𝑟
≈ 𝜈𝑞1/2𝑒−

𝜈
2 𝑟

1− 𝑞𝑒−𝜈𝑟
=

𝜈𝑞1/2𝑠
1
2

1− 𝑞𝑠
. (39)

For the p-spin symmetry, we now consider Eq. (32)
and will follow similar steps with the spin symme-
try case in the deformation of Dirac theory symme-
tries. As above, Eq. (31) cannot be solved exactly for
𝑘 = 0 and 𝑘 = 1 without tensor interaction, since the
two centrifugal terms (proportional to 𝑘 (𝑘 − 1) 𝑟−2

and 𝑘 (𝑘 − 1) 𝑟−4). Applying approximations (38) to
the centrifugal terms of Eqs. (36) and (37), the gen-
eral form of the additive potentials Σpert

hiq (𝑠) and
Δpert

hiq (𝑠) will be as follows:

Σpert
hiq (𝑠) =

(︃
𝛿1𝑠𝑛𝑘𝑠

2

(1− 𝑞𝑠)
4 +

𝛿2𝑠𝑛𝑘𝑠
3
2

(1− 𝑞𝑠)
3 +

+
𝛿3𝑠𝑛𝑘𝑠

5/2

(1− 𝑞𝑠)
3 +

𝛿4𝑠𝑛𝑘𝑠
3

(1− 𝑞𝑠)
4

)︃
LΘ (40.1)

and

Δpert
hiq (𝑠) =

(︃
𝛿1𝑝𝑠𝑛𝑘 𝑠2

(1− 𝑞𝑠)
4 +

𝛿2𝑝𝑠𝑛𝑘 𝑠
3
2

(1− 𝑞𝑠)
3 +
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+
𝛿3𝑝𝑠𝑛𝑘 𝑠5/2

(1− 𝑞𝑠)
3 +

𝛿4𝑝𝑠𝑛𝑘 𝑠3

(1− 𝑞𝑠)
4

)︃ ̃︀LΘ, (40.2)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿1𝑠𝑛𝑘 = 𝜈4𝑘 (𝑘 + 1) 𝑞2, 𝛿2𝑠𝑛𝑘 = 𝜈2𝜈1𝑞
3/2𝛾𝑠

2 ,

𝛿3𝑠𝑛𝑘 = −𝐴𝜈4𝑞3𝛾𝑠
2

, 𝛿4𝑠𝑛𝑘 = −𝐴𝑞3𝛾𝑠𝜈
4,

𝛿1𝑝𝑠𝑛𝑘 = 𝜈4𝑘 (𝑘 − 1) 𝑞2, 𝛿2𝑝𝑠𝑛𝑘 =
𝜈2𝜈1𝑞

3/2𝛾𝑝𝑠

2 ,

𝛿3𝑝𝑠𝑛𝑘 = −𝐴𝜈4𝑞3𝛾𝑝𝑠
2

, 𝛿4𝑝𝑠𝑛𝑘 = −𝐴𝑞3𝛾𝑝𝑠𝜈
4.

(41)

It is important to remember that the approxima-
tion used in our study is valid in the case 𝜈𝑟 ≪
1, which corresponds to the short-hand distance,
and it is very suitable for us. We have replaced the
terms (𝑘 (𝑘 + 1) 𝑟−4 and 𝑘 (𝑘 − 1) 𝑟−4) with the ap-
proximation in Eq. (38). The Hulthén plus hyper-
bolic exponential inversely quadratic potential under
spin(pseudo) symmetries without tensor interaction
is extended by including two new additive potentials
(Σpert

hiq (𝑟) and Δpert
hiq (𝑟)) expressed in terms propor-

tional to the radial terms:

𝑅(𝑠) =

{︃
𝑠2

(1− 𝑞𝑠)4
,

𝑠
3
2

(1− 𝑞𝑠)3
,

𝑠5/2

(1− 𝑞𝑠)3
,

𝑠3

(1− 𝑞𝑠)4

}︃

to become the improved Hulthén plus hyper-
bolic exponential inversely quadratic potential un-
der spin(pseudo) symmetries without tensor inter-
action in deformation Dirac theory symmetries. The
generated new two effective potentials Σpert

hiq (𝑠) and
Δpert

hiq (𝑠) are also proportional to the infinitesimal
vector Θ. This allows us to consider the new ad-
ditive parts of the effective potential Σpert

hiq (𝑠) and
Δpert

hiq (𝑠) as perturbation potentials compared with
the main potentials Σhiq (𝑠) and Δhiq (𝑠), the par-
ent potential operator in the symmetries of the
deformation Dirac theory, i.e., the two inequali-
ties

(︁
Σpert

hiq (𝑠),Δpert
hiq (𝑠)

)︁
≪ (Σhiq (𝑠),Δhiq (𝑠)) are

achieved to calculate the expectation values of the
previous radial terms. In other words, all physical
justifications for applying the time-independent per-
turbation theory become satisfied. This allows us to
give a complete prescription for determining the en-
ergy level of the generalized (𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th ex-
cited states.

3.3. The expectation values
under IHHEIQP in the DDT
for spin symmetry

For the purpose of finding the energetic correc-
tions resulting from the topological deformations of
space-space, we devote this subsection to calculat-
ing the expectation values. In the case of defor-
mation Dirac theory symmetries, we find 𝑅𝑠−hiq

1(𝑛𝑙𝑚𝑠),

𝑅𝑠−hiq
2(𝑛𝑙𝑚𝑠), 𝑅𝑠−hiq

3(𝑛𝑙𝑚𝑠) and 𝑅𝑠−hiq
4(𝑛𝑙𝑚𝑠) which are equal to⟨

𝑠2

(1−𝑞𝑠)4

⟩𝑠−hiq

(𝑛𝑙𝑚𝑠)
,
⟨

𝑠
3
2

(1−𝑞𝑠)3

⟩𝑠−hiq

(𝑛𝑙𝑚𝑠)

,
⟨

𝑠5/2

(1−𝑞𝑠)3

⟩𝑠−hiq

(𝑛𝑙𝑚𝑠)
and⟨

𝑠3

(1−𝑞𝑠)4

⟩𝑠−hiq

(𝑛𝑙𝑚𝑠)
, respectively, for the spin symmetry,

by applying the perturbative theory accounting for
the unperturbed wave function of the HHEIQP model
seen previously in Eq. (21.1). Thus, after straightfor-
ward calculations, we obtain the following results:

𝑅𝑠−hiq
1(𝑛𝑙𝑚𝑠) =

𝐵𝑠𝑛2
𝑛𝑘

𝑞2

+∞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+2(1−𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−4𝐷𝑑𝑟, (42.1)

𝑅𝑠−hiq
2(𝑛𝑙𝑚𝑠)=

𝐵𝑠𝑛2
𝑛𝑘

𝑞3/2

+∞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+3/2(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−3𝐷𝑑𝑟,

(42.2)

𝑅𝑠−hiq
3(𝑛𝑙𝑚𝑠)=

𝐵𝑠𝑛2
𝑛𝑘

𝑞5/2

+∞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+5/2(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−3𝐷𝑑𝑟,

(42.3)

𝑅𝑠−hiq
4(𝑛𝑙𝑚𝑠) =

𝐵𝑠𝑛2
𝑛𝑘

𝑞3

+∞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+3(1−𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−4𝐷𝑑𝑟, (42.4)

with 𝜌𝑠𝑝 = 2
√︀

−𝛽𝑠𝑏2 and 𝐷 = [2𝐹1(−𝑛,𝐷𝑠𝑝
𝑛𝑘;

𝐾𝑠, 𝑞𝑠)]2. We have used the useful abbreviations
⟨𝑅(𝑠)⟩𝑠−hiq

(𝑛𝑙𝑚𝑠) = ⟨𝑛, 𝑙,𝑚. |𝑅(𝑠)|. 𝑛, 𝑙,𝑚⟩ to avoid the
extra burden to write equations. Furthermore, we
have applied the property of the spherical harmon-
ics, which has the form:∫︁

𝑌 𝑚
𝑙 (𝜃′, 𝜙′)𝑌 𝑚′

𝑙′ (𝜃, 𝜙)𝑑Ω = 𝛿𝑙𝑙′𝛿𝑚𝑚′ , (43)

with 𝑑Ω = sin (𝜃) 𝑑𝜃𝑑𝜙. As we saw in the second
section, performing a change of variables via 𝑠 =
= exp (−𝜈𝑟) in Eqs. (42), we map the region 0 6
6 𝑟 l ∞ into 0 6 𝑞𝑠 ≤ 𝑞. This allows us to obtain
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𝑑𝑟 = − 𝑑𝑠
𝜈𝑠 . Now, we transform Eqs. (42, 𝑖 = 1, 4) into

the following form:

𝑅𝑠−hiq
1(𝑛𝑙𝑚𝑠) =

=
𝐵𝑠𝑛2

𝑛𝑘

𝜈𝑞2

+𝑞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+2−2(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−4𝐷𝑑(𝑞𝑠), (44.1)

𝑅𝑠−hiq
2(𝑛𝑙𝑚𝑠) =

=
𝐵𝑠𝑛2

𝑛𝑘

𝜈𝑞3/2

+𝑞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+3/2−1(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−3𝐷𝑑(𝑞𝑠), (44.2)

𝑅𝑠−hiq
3(𝑛𝑙𝑚𝑠) =

=
𝐵𝑠𝑛2

𝑛𝑘

𝜈𝑞5/2

+𝑞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+5/2−1(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−3𝐷𝑑(𝑞𝑠), (44.3)

𝑅𝑠−hiq
4(𝑛𝑙𝑚𝑠) =

=
𝐵𝑠𝑛2

𝑛𝑘

𝜈𝑞3

+𝑞∫︁
0

(𝑞𝑠)𝜌
𝑠𝑝+3−1(1− 𝑞𝑠)2𝜂

𝑠𝑝
𝑛𝑘−4𝐷𝑑(𝑞𝑠). (44.4)

For 𝑞 = 1, we can evaluate the above integrals either
in a recurrence way through the physical values of the
principal quantum number (𝑛 = = 0, 1, ...) and then
generalize the result to the general (𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th
excited state, or we use the method, which was pro-
posed by Dong et al. [89] and applied by Zhang [89],
to obtain the general excited state directly. We calcu-
late the integrals in Eqs. (44, 𝑖 = 1, 4) with the help
of the special integral formula:

+1∫︁
0

𝑠𝛼−1 (1− 𝑠)
𝛽−1

2𝐹1 (𝑐1, 𝑐2; 𝑐3; 𝑠) 𝑑𝑠 =

=
Γ (𝛼) Γ (𝛽)

Γ (𝛼+ 𝛽)
3𝐹2 (𝑐1, 𝑐2, 𝛽; 𝑐3, 𝛽 + 𝛼; 1). (45)

Here, 3𝐹2 (𝑐1, 𝑐2, 𝛽; 𝑐3, 𝛽 + 𝛼; 1) equal to∑︀+∞
𝑛=0

(𝑐1)𝑛(𝑐2)𝑛(𝜎)𝑛
(𝑐3)𝑛(𝜎+𝜉)𝑛! , (𝑐1)𝑛 is the rising factorial or

Pochhammer symbol, while Γ (𝛼) denotes the usual
Gamma function. By identifying Eq. (45) with the
integrals, we obtain the following results:

𝑅𝑠−hiq
1(𝑛𝑙𝑚𝑠) = 𝛾1𝑠

𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 2)
𝑞

(𝑞 + 𝜌𝑠𝑝 + 2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑠𝑝
𝑛𝑘 − 1)

×

× 3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑠𝑝 + 2, 𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 2,

𝜌𝑠𝑝 + 3; 𝑞 + 𝜆𝑠𝑝
𝑛𝑘 − 1; 1

)︂
(46.1)

𝑅𝑠−hiq
2(𝑛𝑙𝑚𝑠) = 𝛾2𝑠

𝑛𝑘 ×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 3/2)
𝑞

(𝑞 + 𝜌𝑠𝑝 + 3/2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑠𝑝
𝑛𝑘 − 1/2)

×

× 3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑠𝑝 + 3/2, 𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 3/2,

𝜌𝑠𝑝 + 5/2; 𝑞 + 𝜆𝑠𝑝
𝑛𝑘 − 1/2; 1

)︂
(46.2)

𝑅𝑠−hiq
3(𝑛𝑙𝑚𝑠) = 𝛾3𝑠

𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 1/2)
𝑞

(𝑞 + 𝜌𝑠𝑝 + 5/2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑠𝑝
𝑛𝑘 + 1/2)

×

× 3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑠𝑝 + 5/2, 𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 1/2,

𝜌𝑠𝑝 + 7/2; 𝑞 + 𝜆𝑠𝑝
𝑛𝑘 + 1/2; 1

)︂
(46.3)

𝑅𝑠−hiq
4(𝑛𝑙𝑚𝑠) = 𝛾4𝑠

𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 1)
𝑞

(𝑞 + 𝜌𝑠𝑝 + 3) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑠𝑝
𝑛𝑘)

×

3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑠𝑝 + 3, 𝑛+ 𝜆𝑠𝑝

𝑛𝑘 − 1,

𝜌𝑠𝑝 + 4; 𝑞 + 𝜆𝑠𝑝
𝑛𝑘; 1

)︂
, (46.4)

with

𝜆𝑠𝑝
𝑛𝑘 = 𝜌𝑠𝑝 + 2𝜂𝑠𝑝𝑛𝑘,

𝛾1𝑠
𝑛𝑘 =

𝐵𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑠𝑝 + 3)Γ (2𝜂𝑠𝑝𝑛𝑘 − 3),

𝛾2𝑠
𝑛𝑘 =

𝐵𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑠𝑝 + 5/2) Γ (2𝜂𝑠𝑝𝑛𝑘 − 2),

𝛾3𝑠
𝑛𝑘 =

𝐵𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑠𝑝 + 7/2) Γ (2𝜂𝑠𝑝𝑛𝑘 − 2),

𝛾4𝑠
𝑛𝑘 =

𝐵𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑠𝑝 + 4)Γ (2𝜂𝑠𝑝𝑛𝑘 − 3)

and

(𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 2)

𝑞
=

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 2 + 𝑞)

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 2)

,

(𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 3/2)

𝑞
=

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 3/2 + 𝑞)

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 3/2)

,

(𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1/2)

𝑞
=

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1/2 + 𝑞)

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1/2)

,

(𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1)

𝑞
=

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1 + 𝑞)

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1)

.
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3.4. The expectation values
under the IHHEIQP in the DDT
for the p-spin symmetry

Now, we apply the perturbative theory to find
the following expectation values: 𝑅𝑝𝑠−hiq

1(𝑛̃︀𝑙̃︀𝑚̃︀𝑠),
𝑅𝑝𝑠−hiq

2(𝑛𝑙𝑚𝑠), 𝑅
𝑝𝑠−hiq

3(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) and 𝑅𝑝𝑠−hiq

4(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) which are equal to⟨
𝑠2

(1−𝑞𝑠)4

⟩𝑝𝑠−hiq

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠),
⟨

𝑠
3
2

(1−𝑞𝑠)3

⟩𝑝𝑠−hiq

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠),
⟨

𝑠5/2

(1−𝑞𝑠)3

⟩𝑝𝑠−hiq

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) and⟨
𝑠3

(1−𝑞𝑠)4

⟩𝑝𝑠−hiq

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠), respectively, for the p-spin symmetry

under the IHHEIQP model in the DDT accounting
for the unperturbed wave function of the HHEIQP
model which we have seen previously in Eq. (21.2). It
will be used to determine the appropriate energetic
corrections resulting from the topological properties
of the space. By examining the two expressions of
the two unperturbed wave functions of the HHEIQP
model in Eqs. (21.1) and (21.2), we note that there is
a possibility of passing from the upper wave function
𝐹𝑛𝑘 (𝑟) to the lower wave function 𝐺𝑛𝑘 (𝑟) by making
the following substitutions:

𝐵𝑠𝑛
𝑛𝑘 ⇐⇒ 𝐵𝑝𝑠𝑛

𝑛𝑘 , 𝛽𝑠𝑝 ⇔ 𝛽𝑝𝑠and 𝜂𝑠𝑝𝑛𝑘 ⇔ 𝜂𝑝𝑠𝑛𝑘 , (47)

which allows us to obtain the expectation values for
the p-spin symmetry from Eqs. (46, 𝑖 = 1, 4) without
recalculation, as follows:

𝑅𝑝𝑠−hiq

1(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) = 𝛾1𝑠
𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 2)
𝑞

(𝑞 + 𝜌𝑝𝑠 + 2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑝𝑠
𝑛𝑘 − 1)

×

× 3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑝𝑠 + 2, 𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 2,

𝜌𝑝𝑠 + 3; 𝑞 + 𝜆𝑝𝑠
𝑛𝑘 − 1; 1

)︂
, (48.1)

𝑅𝑝𝑠−hiq

2(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) = 𝛾2𝑠
𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 3/2)
𝑞

(𝑞 + 𝜌𝑝𝑠 + 3/2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑝𝑠
𝑛𝑘 − 1/2)

×

× 3𝐹2

(︂
−𝑛, 𝑞 + 𝜌𝑝𝑠 + 3/2, 𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 3/2,

𝜌𝑝𝑠 + 5/2; 𝑞 + 𝜆𝑝𝑠
𝑛𝑘 − 1/2; 1

)︂
, (48.2)

𝑅𝑝𝑠−hiq

3(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) = 𝛾3𝑠
𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 1/2)
𝑞

(𝑞 + 𝜌𝑝𝑠 + 5/2) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑝𝑠
𝑛𝑘 + 1/2)

×

× 3𝐹2

(︃
−𝑛, 𝑞 + 𝜌𝑝𝑠 + 5/2, 𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 1/2,

𝜌𝑝𝑠 + 7/2; 𝑞 + 𝜆𝑝𝑠
𝑛𝑘 + 1/2; 1

)︃
, (48.3)

𝑅𝑝𝑠−hiq

4(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) = 𝛾4𝑠
𝑛𝑘 ×

×
𝑛∑︁

𝑞=0

(−1)
𝑞
(𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 1)
𝑞

(𝑞 + 𝜌𝑠𝑝 + 3) (𝑛− 𝑞)!𝑞!Γ (𝑞 + 𝜆𝑝𝑠
𝑛𝑘)

×

× 3𝐹2

(︃
−𝑛, 𝑞 + 𝜌𝑝𝑠 + 3, 𝑛+ 𝜆𝑝𝑠

𝑛𝑘 − 1,

𝜌𝑝𝑠 + 4; 𝑞 + 𝜆𝑝𝑠
𝑛𝑘; 1

)︃
, (48.4)

with

𝜆𝑝𝑠
𝑛𝑘 = 𝜌𝑝𝑠 + 2𝜂𝑝𝑠𝑛𝑘,

𝜌𝑝𝑠 = 2
√︀
−𝛽𝑝𝑠𝑏2,

𝛾1𝑠
𝑛𝑘 =

𝐵𝑝𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑝𝑠 + 3)Γ (2𝜂𝑝𝑠𝑛𝑘 − 3) ,

𝛾2𝑠
𝑛𝑘 =

𝐵𝑝𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑝𝑠 + 5/2) Γ (2𝜂𝑝𝑠𝑛𝑘 − 2) ,

𝛾3𝑠
𝑛𝑘 =

𝐵𝑝𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑝𝑠 + 7/2) Γ (2𝜂𝑝𝑠𝑛𝑘 − 2) ,

𝛾4𝑠
𝑛𝑘 =

𝐵𝑝𝑠𝑛2
𝑛𝑘

𝜈
𝑛!Γ (𝜌𝑝𝑠 + 4)Γ (2𝜂𝑝𝑠𝑛𝑘 − 3)

and

(𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 2)

𝑞
=

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 2 + 𝑞)

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 2)

,

(𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 3/2)

𝑞
=

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 3/2 + 𝑞)

Γ (𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 3/2)

,

(𝑛+ 𝜆𝑠𝑝
𝑛𝑘 − 1/2)

𝑞
=

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 1/2 + 𝑞)

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 1/2)

,

(𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 1)

𝑞
=

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 1 + 𝑞)

Γ (𝑛+ 𝜆𝑝𝑠
𝑛𝑘 − 1)

.

3.5. The corrected energy
for the IHHEIQP model in DDT
symmetries

In this subsection, we will focus on the physical im-
plications and will obtain the relative corrections re-
sulting from the topological properties of a physical
system that is affected by the IHHEIQP. The total
value of the relative energy resulting from the effect
of (Σhiq(̂︀𝑟), Δhiq(̂︀𝑟)) gives us the main contribution,
which we saw in Sect. 2 through Eqs. (18) and (19)
for the spin and p-spin symmetries, whereas the sec-
ondary contributions are caused by topological de-
fects of Σpert

hiq (𝑠) and Δpert
hiq (𝑠). These additional ef-

fects have an efficient action on the spontaneous gen-
eration of several intrinsic physical phenomena. The
first one is generated from the effect of the perturbed

338 ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 5



The Influence of a Space-Space Deformation

spin-orbit and pseudospin-orbit effective potentials
Σpert

hiq (𝑠) and Δpert
hiq (𝑠) and corresponds to the spin

and pseudospin symmetries. These perturbed effec-
tive potentials are obtained by replacing the cou-
pling of the angular momentums (L and ̃︀L) operators
and the NC vector 𝜂 with the new equivalent cou-
plings ΘLS and Θ̃︀L̃︀S for the spin and p-spin symme-
tries, respectively (with Θ2 = Θ2

12+Θ2
23+Θ2

13). This
degree of freedom comes considering that the in-
finitesimal NC vector Θ is arbitrary. We have ori-
ented the spins (S,̃︀S) of the fermionic particles to
be in parallel to the vector Θ which interact with
the improved Hulthén plus hyperbolic exponential in-
versely quadratic potential. Moreover, we replace the
new spin-orbit and pseudospin-orbit couplings 𝜂LS
and 𝜂̃︀L̃︀S with the corresponding new physical forms
(𝜂/2)G2 and (𝜂/2) ̃︀G2, with G2 = J2 − L2 − S2

and ̃︀G2 = J2 − ̃︀L2 − ̃︀S2 for a spin/(p-spin) symme-
try, respectively. Furthermore, in RQM, the opera-
tors ( ̂︀Hhiq

𝑟𝑛𝑐, J2, L2, S2 and J𝑧) form a complete set of
conserved physical quantities. The eigenvalues of the
operators G2 and ̃︀G2 are equal to the values:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ξ (𝑗, 𝑙, 𝑠) = [𝑗(𝑗 + 1)− 𝑘(𝑘 + 1)− 3/4)] /2

with |𝑙 − 1/2| ≤ 𝑗 ≤ |𝑙 + 1/2|,

Ξ(𝑗,̃︀𝑙, ̃︀𝑠) = [𝑗(𝑗 + 1)− 𝑘(𝑘 − 1)− 3/4)] /2

with
⃒⃒⃒̃︀𝑙 − 1/2

⃒⃒⃒
≤ 𝑗 ≤

⃒⃒⃒̃︀𝑙 + 1/2
⃒⃒⃒

for the spin and p-spin symmetries, respectively. As
a direct consequence, the partially corrected en-
ergies Δ𝐸𝑠𝑜−𝑠

hiq (𝑛, 𝜈, 𝜈1, 𝐴,Θ, 𝑗, 𝑙, 𝑠) ≡ Δ𝐸𝑠𝑜−𝑠
hiq and

Δ𝐸𝑠𝑜−𝑝𝑠
hiq (𝑛, 𝜈, 𝜈1, 𝐴,Θ, 𝑗,̃︀𝑙, ̃︀𝑠) ≡ Δ𝐸𝑠𝑜−𝑝𝑠

hiq due to the
perturbed effective potentials Σpert

hiq (𝑟) and Δpert
hiq (𝑟)

produced for the (𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th excited state, in
DDT symmetries are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐸𝑠𝑜−𝑠
hiq = Θ

(︂
𝑗(𝑗 + 1)− 𝑘(𝑘 + 1)− 3

4

)︂
,

⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴),

Δ𝐸𝑠𝑜−𝑝𝑠
hiq = Θ

(︂
𝑗(𝑗 + 1)− 𝑘(𝑘 − 1)− 3

4

)︂
,

⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛, 𝜈, 𝜈1, 𝐴).

(49)

The global two expectations values

⟨Λ⟩hiq(𝑛𝑙𝑚𝑠)(𝑛, 𝜈, 𝜈1, 𝐴) and ⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)(𝑛, 𝜈, 𝜈1, 𝐴)

for a spin(p-spin) -symmetry, respectively are deter-
mined from the following expressions:⎧⎪⎪⎨⎪⎪⎩
⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) =

𝜇=1∑︀
4

𝛿𝜇𝑠𝑛𝑘𝑅
𝑠−hiq
𝜇(𝑛𝑙𝑚𝑠),

⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) =

𝜇=1∑︀
4

𝛿𝜇𝑝𝑠𝑛𝑘 𝑅𝑝𝑠−hiq

𝜇(𝑛̃︀𝑙̃︀𝑚̃︀𝑠).
(50)

We get the coefficients 𝛿𝜇𝑠𝑛𝑘 and 𝛿𝜇𝑝𝑠𝑛𝑘 from Eq. (41),
while 𝑅𝑠−hiq

𝜇(𝑛𝑙𝑚𝑠) and 𝑅𝑝𝑠−hiq

𝜇(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) from Eqs. (46,i) and

Eqs. (48,i),
(︀
𝑖 = 1, 4

)︀
, respectively. The second main

part is obtained from the magnetic effect of the per-
turbative effective potentials Σpert

hiq (𝑟) and Δpert
hiq (𝑟)

under the IHHEIQP model in the deformed Dirac
theory symmetries. These effective potentials are
achieved, when we replace both (LΘ and ̃︀LΘ) by
(𝜎ℵ𝐿𝑧 and 𝜎ℵ̃︀𝐿𝑧), respectively, and Θ12 by 𝜎ℵ, here
(ℵ and 𝜎) are present the intensity of the magnetic
field induced by the effect of the space-space geome-
try deformation. So that the physical unit of the orig-
inal noncommutativity parameter Θ12(length)2 is the
same unit of 𝜎ℵ, we have also need to apply{︂⟨𝑛′, 𝑙′,𝑚′ 𝐿𝑧 𝑛, 𝑙,𝑚⟩ = 𝑚𝛿𝑚′𝑚𝛿𝑙′𝑙𝛿𝑛′𝑛

with − 𝑙 ≤ 𝑚 ≤ 𝑙

and{︃
⟨𝑛′, ̃︀𝑙′,̃︁𝑚′̃︀𝐿𝑧𝑛,̃︀𝑙, ̃︀𝑚⟩ = ̃︀𝑚𝛿̃︁𝑚′ ̃︀𝑚𝛿̃︀𝑙′̃︀𝑙𝛿𝑛′𝑛

with − ̃︀𝑙′ ≤ ̃︁𝑚′ ≤ ̃︀𝑙
for a spin (p-spin) symmetry, respectively. All of these
data allow the discovery of new energy shifts

Δ𝐸𝑚𝑔−𝑠
hiq (𝑛, 𝜈, 𝜈1, 𝐴, 𝜎,𝑚) and

Δ𝐸𝑚𝑔−𝑝𝑠
hiq (𝑛, 𝜈, 𝜈1, 𝐴, 𝜎, ̃︀𝑚)

due to the perturbed Zeeman effect created by the
influence of the IHHEIQP for the (𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th
excited state in the deformed Dirac theory symme-
tries as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐸𝑚𝑔−𝑠
hiq (𝑛, 𝜈, 𝜈1, 𝐴, 𝜎,𝑚)

𝜎ℵ
=

= ⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴)𝑚,

Δ𝐸𝑚𝑔−𝑝𝑠
hiq (𝑛, 𝜈, 𝜈1, 𝐴, 𝜎, ̃︀𝑚)

𝜎ℵ
=

= ⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) ̃︀𝑚.

(51)
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We will now refer to the generation of another phe-
nomenon as a result of the influence of topological
properties in the IHHEIQP model in DDT symme-
tries. This physical phenomenon is produced auto-
matically from the influence of the perturbed effec-
tive potentials Σpert

hiq (𝑟) and Δpert
hiq (𝑟) which we have

seen in Eqs. (39) and (40). We consider the fermionic
particles undergoing the rotation with angular veloc-
ity Ω. The features of this subjective phenomenon are
determined by replacing an arbitrary vector Θ with
𝛽Ω. We now replace two couplings (LΘ and ̃︀LΘ)
with (𝛽LΩ and 𝛽̃︀LΩ), respectively:(︂
L̃︀L
)︂
Θ → 𝛽

(︂
L̃︀L
)︂
Ω

{︂for spin-sy,
for p-spin-sy.

(52)

Here 𝛽 is just an infinitesimal real constant. We
can express the effective potential Σhiq−rot

pert (𝑠) and
Δhiq−rot

pert (𝑠) which induce the rotational movements
of fermionic particles as follows:

Σhiq−rot
pert (𝑠) = 𝛽

(︂
𝑘 (𝑘 + 1)

𝑟4
+

𝜈𝜈1𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟 (1− 𝑞 exp (−𝜈𝑟))
2 −

− 𝐴𝜈𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟3
− 𝐴𝑞𝛾𝑠 exp (−𝜈𝑟)

𝑟4

)︂
LΩ+𝑂

(︀
Ω2
)︀

(53.1)
and

Δhiq−rot
pert (𝑠) = 𝛽

(︂
𝑘 (𝑘 − 1)

𝑟4
+

𝜈𝜈1𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟 (1− 𝑞 exp (−𝜈𝑟))
2 −

− 𝐴𝜈𝑞𝛾𝑠 exp (−𝜈𝑟)

2𝑟3
− 𝐴𝑞𝛾𝑠 exp (−𝜈𝑟)

𝑟4

)︂̃︀LΩ+𝑂
(︀
Ω2
)︀
.

(53.2)

To simplify the calculations, we choose the rota-
tional velocity Ω to be parallel to the (𝑂𝑧) axis
(Ω =Ωe𝑧). Of course, this does not change the phys-
ical nature of the studied problem and simplifies the
calculations. Then we transform the spin-orbit cou-
plings into new physical phenomena as follows:(︂
L̃︀L
)︂
Ω → 𝛽Ω

(︂
𝐿𝑧̃︀𝐿𝑧

)︂
. (54)

All of these data allow us to find new corrected
energies Δ𝐸rot−𝑠

hiq (𝑛, 𝜈, 𝜈1, 𝐴, 𝛽, 𝑚) and Δ𝐸rot−𝑝𝑠
hiq

(𝑛, 𝜈, 𝜈1, 𝐴, 𝛽 ̃︀𝑚) due to the perturbed effective poten-
tials Σhiq−rot

pert (𝑠) and Δhiq−rot
pert (𝑠) which are generated

at once by the influence of the improved Hulthén plus

hyperbolic exponential inversely quadratic potential
for the (𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th excited state in DDT sym-
metries as follows:(︂
Δ𝐸rot−𝑠

hiq

Δ𝐸rot−𝑝𝑠
hiq

)︂
= 𝛽Ω

⎛⎝⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) 𝑚⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ̃︀𝑚

⎞⎠. (55)

It is worth mentioning that the authors of Ref. [90]
studied a rotating isotropic or anisotropic harmoni-
cally confined ultra-cold Fermi gas in the two- and
three-dimensional spaces at the zero temperature.
But, in this study, the rotational term was added to
the Hamiltonian operator in contrast to our recent
study, where two rotation operators Σhiq−rot

pert (𝑠)LΩ

and Δhiq−rot
pert (𝑠) ̃︀LΩ appear due to the augmented

symmetries resulting from a space-space deformation
under the improved Hulthén plus hyperbolic expo-
nential inversely quadratic potential.

3.5.1. Global relativistic correction of energies

Having obtained the physical form of three main parts
of energies through the effect of the IHHEIQP, the
next task is to obtain the formula for bound-state
energies for a system moving in this potential. We
have seen that the eigenvalues Ξ (𝑗, 𝑙, 𝑠) and Ξ(𝑗,̃︀𝑙, ̃︀𝑠)
of the operators G2 and ̃︀G2are, respectively, are equal
to{︃
Ξ(𝑗, 𝑙, 𝑠) = [𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 3/4]/2,

Ξ(𝑗,̃︀𝑙, ̃︀𝑠) = [𝑗(𝑗 + 1)− ̃︀𝑙(̃︀𝑙 − 1)− 3/4]/2.
(56)

Thus, for the case of spin-1/2 fields corresponding to
the up polarity and the down polarity, the possible
values of 𝑗 are 𝑙±1/2 and ̃︀𝑙±1/2 for the spin symmetry
Ξ (𝑗, 𝑙, 𝑠) and the pseudospin symmetry Ξ(𝑗,̃︀𝑙, ̃︀𝑠), are
as follows:

Ξ (𝑗 = 𝑙 ± 1/2, 𝑠 = 1/2) =

1

2

{︂
𝑙 for Up-p: 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for down-p: 𝑗 = 𝑙 − 1/2
(57.1)

and

Ξ(𝑗 = ̃︀𝑙 ± 1/2, ̃︀𝑠 = 1/2) =

1

2

{︃̃︀𝑙 for Up-p: 𝑗 = ̃︀𝑙 + 1/2,

−(̃︀𝑙 + 1) for Down-p: 𝑗 = ̃︀𝑙 − 1/2.
(57.2)
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The global relativistic energy

𝐸𝑠−hiq
𝑛𝑐 (𝑛, 𝜈, 𝜈1, 𝐴, 𝜂, 𝜎, 𝛽, 𝑗, 𝑙, 𝑠,𝑚) and

𝐸𝑝𝑠−hiq
𝑛𝑐 (𝑛, 𝜈, 𝜈1, 𝐴, 𝜂, 𝜎, 𝛽, 𝑗, ̃︀𝑙, ̃︀𝑠, ̃︀𝑚)

for the case of spin-1/2 with the improved Hulthén
plus hyperbolic exponential inversely quadratic
potential without tensor interaction, in the DDT
symmetries corresponding to the generalized
(𝑛, 𝑙,𝑚, 𝑠,̃︀𝑙, ̃︀𝑚, ̃︀𝑠)th excited states:

𝐸𝑠−hiq
𝑛𝑐 =𝐸𝑠

𝑛𝑘 + ⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴)

[︂
(𝜎ℵ+ 𝛽Ω)𝑚+

+
Θ

2

{︂
𝑙 for Up-p: 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for Down-p: 𝑗 = 𝑙 − 1/2

]︂
(58.1)

and

𝐸𝑝𝑠−hiq
𝑛𝑐 =𝐸𝑝𝑠

𝑛𝑘 + ⟨̃︀Λ⟩hiq
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)(𝑛, 𝜈, 𝜈1, 𝐴)

[︂
(𝜎ℵ+ 𝛽Ω) ̃︀𝑚+

+
Θ

2

{︃̃︀𝑙 for Up-p: 𝑗 = ̃︀𝑙 + 1/2,

−(̃︀𝑙 + 1) for Down-p: 𝑗 = ̃︀𝑙 − 1/2

]︃
. (58.2)

Here, 𝐸𝑠
𝑛𝑘 and 𝐸𝑝𝑠

𝑛𝑘 are usual relativistic energies un-
der the hyperbolic Hulthén plus the hyperbolic ex-
ponential inversely quadratic potential which can be
obtained from Eqs. (18) and (19) in the second sec-
tion. We can now generalize our obtained energies
𝐸hiq−𝑠

𝑔−𝑛𝑐 and 𝐸hiq−𝑝𝑠
𝑔−𝑛𝑐 which are produced with two

globally induced potentials Σpert
𝑡_hiq (𝑟) and Δpert

𝑡−hiq (𝑟)

for the spin and p-spin symmetries corresponding to
upper and lower components (𝐹 𝑠

𝑛𝑘 (𝑠) and 𝐺𝑠𝑝
𝑛𝑘 (𝑠))

and (𝐹 𝑝𝑠
𝑛𝑘 (𝑠) and 𝐺𝑝𝑠

𝑛𝑘 (𝑠)), respectively, as:

𝐸hiq−𝑠
𝑔−𝑛𝑐 =𝐸hiq−𝑠

𝑛𝑐 𝜃
(︀⃒⃒
𝐸hiq−𝑠

𝑛𝑐

⃒⃒)︀
−𝐸hiq−𝑠

𝑛𝑐 𝜃
(︀
−
⃒⃒
𝐸hiq−𝑠

𝑛𝑐

⃒⃒)︀
=

=

{︂
𝐸hiq−𝑠

𝑛𝑐 Upper component of spin 𝑠𝑦,
−𝐸hiq−𝑠

𝑛𝑐 Lower component of spin 𝑠𝑦.
(59.1)

and

𝐸hiq−𝑝𝑠
𝑔−𝑛𝑐 = 𝐸hiq−𝑝𝑠

𝑛𝑐 𝜃
(︀⃒⃒
𝐸hiq−𝑝𝑠

𝑛𝑐

⃒⃒)︀
−

−𝐸hiq−𝑝𝑠
𝑛𝑐 𝜃

(︀
−
⃒⃒
𝐸hiq−𝑝𝑠

𝑛𝑐

⃒⃒)︀
=

=

{︂
𝐸hiq−𝑝𝑠

𝑛𝑐 Upper component of p-spin 𝑠𝑦,
−𝐸hiq−𝑝𝑠

𝑛𝑐 Lower component of p-spin 𝑠𝑦.
(59.2)

3.6. Study of important relativistic
particular cases in the context of DDT

Here, we will examine some particular cases regarding
the new bound-state energy eigenvalues in Eqs. (58.1)
and (58.2). We could derive some particular poten-
tials useful for other physical systems, by adjust-
ing relevant parameters of the IHHEIQP model in
DDT symmetries such as the improved Hulthén po-
tential and the improved Dirac exponential inversely
quadratic potential.

3.6.1. Deformed Dirac equation
with the improved Hulthén potential
without tensor interaction

The improved Hulthén potential is obtained from
the improved Hulthén plus hyperbolic exponential in-
versely quadratic potential, in DDT symmetries, as
follows:

𝑉ℎ𝑝 (̂︀𝑟) = lim
(𝐴,𝑞)→(0,1)

𝑉hiq (̂︀𝑟) =

=
𝜈1 exp (−𝜈𝑟)

1− exp (−𝜈𝑟)
+

𝜈𝜈1
2𝑟

exp (−𝜈𝑟)

(1− exp (−𝜈𝑟))
2 LΘ, (60)

where we have used Eqs. (1), (2), and (35). The
first part is the Hulthén potential in usual relativis-
tic quantum mechanics [5, 91], while the second part
is related to the effect of topological properties on
the Hulthén potential. The global energies for the
improved Hulthén potential under the spin and p-
spin symmetries are obtained from Eqs. (58.1) and
(58.2) as

𝐸𝑠−ℎ𝑝
𝑛𝑐−𝑛𝑘 = 𝐸𝑠−ℎ𝑝

𝑛𝑘 +⟨Λ⟩ℎ𝑝(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1)

[︂
(𝜎ℵ+ 𝛽Ω)𝑚+

+
Θ

2

{︂
𝑙 for Up-p: 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for Down-p: 𝑗 = 𝑙 − 1/2

]︂
(61)

and

𝐸𝑝𝑠−ℎ𝑝
𝑛𝑐−𝑛𝑘 = 𝐸𝑝𝑠−ℎ𝑝

𝑛𝑘 +

+⟨̃︀Λ⟩ℎ𝑝
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛, 𝜈, 𝜈1, 𝐴)

[︂
(𝜎ℵ+ 𝛽Ω) ̃︀𝑚+

+
Θ

2

{︃̃︀𝑙 for Up-p: 𝑗 = ̃︀𝑙 + 1/2,

−(̃︀𝑙 + 1) for Down-p: 𝑗 = ̃︀𝑙 − 1/2

]︂
. (62)

Here, 𝐸𝑠−ℎ𝑝
𝑛𝑘 and 𝐸𝑝𝑠−ℎ𝑝

𝑛𝑘 are the Hulthén-potential
energies under the spin and pseudospin symmetries
obtained from the energy equations:(︁
𝐸𝑠−ℎ𝑝

𝑛𝑘 −𝑀
)︁(︁
𝐸𝑠−ℎ𝑝

𝑛𝑘 +𝑀
)︁
= − 1

𝑏2
×
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×

[︃
𝑛2 + 𝑛+ 1

2 + (2𝑛+ 1) (2𝑘 + 1)+

+𝑘 (𝑘 + 1)− 2
(︁
𝐸𝑠−ℎ𝑝

𝑛𝑘 +𝑀
)︁
𝜈1𝑏

2

]︃
(2𝑛+ 1)

2
+ (2𝑘 + 1)

(63)

and(︁
𝑀 + 𝐸𝑝𝑠−ℎ𝑝

𝑛𝑘

)︁(︁
𝑀 − 𝐸𝑝𝑠−ℎ𝑝

𝑛𝑘

)︁
= − 1

𝑏2
×

×

[︃
𝑛2 + 𝑛+ 1

2 + (2𝑛+ 1) (2𝑘 − 1)+

+𝑘 (𝑘 − 1)− 2
(︁
𝐸𝑝𝑠−ℎ𝑝

𝑛𝑘 −𝑀
)︁
𝜈1𝑏

2

]︃
(2𝑛+ 1)

2
+ (2𝑘 − 1)

. (64)

The new expectation values ⟨Λ⟩ℎ𝑝(𝑛𝑙𝑚𝑠) and ⟨̃︀Λ⟩ℎ𝑝
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)

are determined from Eq. (50), by applying the com-
pensation referred to above at the beginning of the
current subsection as follows:⎛⎝⟨Λ⟩𝑚𝑡

(𝑛𝑙𝑚𝑠)

⟨̃︀Λ⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)

⎞⎠ =

(︃
𝛾1𝑠
𝑛𝑘𝑅

𝑠−ℎ𝑝
1(𝑛𝑙𝑚𝑠) + 𝛾1𝑠

𝑛𝑘𝑅
𝑠−ℎ𝑝
1(𝑛𝑙𝑚𝑠)

𝛾1𝑝𝑠
𝑛𝑘 𝑅𝑝𝑠−ℎ𝑝

1(𝑛𝑙𝑚𝑠) + 𝛾1𝑝𝑠
𝑛𝑘 𝑅𝑝𝑠−ℎ𝑝

1(𝑛𝑙𝑚𝑠)

)︃
(65)

with

𝛾1𝑠
𝑛𝑘 = 𝜈4𝑘 (𝑘 + 1),

𝛿2𝑠𝑛𝑘 =
𝜈2𝜈1𝛾𝑠

2
,

𝛾1𝑝𝑠
𝑛𝑘 = 𝜈4𝑘 (𝑘 − 1),

𝛾2𝑝𝑠
𝑛𝑘 =

𝜈2𝜈1𝛾𝑝𝑠
2

.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
3.6.2. Deformed Dirac improved
exponential inversely quadratic potential

When 𝜈1 = 0 and 𝑞 = 1, the improved Hulthén plus
hyperbolic exponential inversely quadratic potential
reduces the improved exponential inversely quadratic
potential:

𝑉𝑖𝑞 (̂︀𝑟) = lim
(𝜈1,𝑞)→(0,1)

𝑉hiq (̂︀𝑟) , (66.1)

Which gives

𝑉𝑖𝑞 (̂︀𝑟) = −𝐴 exp (−𝜈𝑟)

𝑟2
−

−
[︂
𝐴𝜈

2𝑟3
exp (−𝜈𝑟) +

𝐴

𝑟4
exp (−𝜈𝑟)

]︂
LΘ. (66.2)

We have used Eqs. (1), (2), and (35). The first part
is the exponential inversely quadratic potential (in-
verse quadratic Yukawa potential) [92], while the sec-
ond part is the effect of topological properties on the

inverse quadratic Yukawa potential. The global en-
ergy for this potential under the spin and p-spin sym-
metries is obtained from Eqs. (58.1) and (58.2) as

𝐸𝑠−𝑖𝑞
𝑛𝑐−𝑛𝑘=𝐸𝑠−𝑖𝑞

𝑛𝑘 + ⟨Λ⟩𝑖𝑞(𝑛𝑙𝑚𝑠) (𝑛, 𝜈,𝐴)

[︂
(𝜎ℵ+ 𝛽Ω)𝑚+

+
Θ

2

{︂
𝑙 for Up polarity: 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for Down polarity: 𝑗 = 𝑙 − 1/2

]︂
(67)

and

𝐸𝑝𝑠−𝑖𝑞
𝑛𝑐−𝑛𝑘 = 𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘 +

+ ⟨̃︀Λ⟩𝑖𝑞
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛, 𝜈,𝐴)

[︂
(𝜎ℵ+ 𝛽Ω) ̃︀𝑚+

+
Θ

2

{︃̃︀𝑙 for Up polarity: 𝑗 = ̃︀𝑙 + 1/2,

−(̃︀𝑙 + 1) for Down polarity: 𝑗 = ̃︀𝑙 − 1/2

]︂
. (68)

Here, 𝐸𝑠−𝑖𝑞
𝑛𝑘 and 𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘 are the energy for the expo-
nential inversely quadratic Yukawa potential under
the spin and pseudospin symmetries obtained from
the energy equations:(︁
𝐸𝑠−𝑖𝑞

𝑛𝑘 −𝑀
)︁(︁

𝐸𝑠−𝑖𝑞
𝑛𝑘 +𝑀

)︁
= −𝑏−2 ×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︀
𝑛2 + 𝑛+ 1

2

)︀
+ (2𝑛+ 1)×

×
√︂
(2𝑘 + 1)

2 − 8𝐴
(︁
𝐸𝑠−𝑖𝑞

𝑛𝑘 +𝑀
)︁
+ 𝑘 (𝑘 + 1)

(2𝑛+ 1)
2
+
√︁
(2𝑘 + 1)

2 − 8𝐴 (𝐸𝑠
𝑛𝑘 +𝑀)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(69)

and(︁
𝑀 + 𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘

)︁(︁
𝑀 − 𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘

)︁
= −𝑏−2×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛2 + 𝑛+ 1
2 + (2𝑛+ 1)×

×
√︂
(2𝑘 − 1)

2 − 8𝐴
(︁
𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘 −𝑀
)︁
+ 𝑘 (𝑘 − 1)

(2𝑛+ 1)
2
+

√︂
(2𝑘 − 1)

2 − 8𝐴
(︁
𝐸𝑝𝑠−𝑖𝑞

𝑛𝑘 −𝑀
)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

,

(70)

while the new expectation values ⟨Λ⟩𝑖𝑞(𝑛𝑙𝑚𝑠) and
⟨̃︀Λ⟩𝑖𝑞

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) are determined from Eq. (50), by applying
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the compensation referred to above at the beginning
of the current subsection as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨Λ⟩𝑖𝑞(𝑛𝑙𝑚𝑠) = 𝜀1𝑠𝑛𝑘𝑅
𝑠−𝑖𝑞
1(𝑛𝑙𝑚𝑠) +

+ 𝜀3𝑠𝑛𝑘𝑅
𝑠−𝑖𝑞
3(𝑛𝑙𝑚𝑠) + 𝜀4𝑠𝑛𝑘𝑅

𝑠−𝑖𝑞
4(𝑛𝑙𝑚𝑠),

⟨̃︀Λ⟩𝑖𝑞
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) = 𝜀1𝑞𝑠𝑛𝑘 𝑅𝑞𝑠−𝑖𝑞

1(𝑛𝑙𝑚𝑠) +

+ 𝜀3𝑠𝑛𝑘𝑅
𝑞𝑠−𝑖𝑞
3(𝑛𝑙𝑚𝑠) + 𝜀4𝑠𝑛𝑘𝑅

𝑞𝑠−𝑖𝑞
4(𝑛𝑙𝑚𝑠)

(71)

with
𝜖1𝑠𝑛𝑘 = 𝜈4𝑘 (𝑘 + 1) ,

𝜖3𝑠𝑛𝑘 = −𝐴𝜈4𝛾𝑠
2

,

𝜖4𝑠𝑛𝑘 = −𝐴𝑞3𝛾𝑠𝜈
4,

𝜖1𝑝𝑠𝑛𝑘 = 𝜈4𝑘 (𝑘 − 1) ,

𝜖3𝑝𝑠𝑛𝑘 = −𝐴𝜈4𝛾𝑝𝑠
2

,

𝜖4𝑝𝑠𝑛𝑘 = −𝐴𝛾𝑝𝑠𝜈
4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(72)

3.6.3. Deformed IHHEIQP
model problems in ENRQM symmetries

To realize a study of the nonrelativistic limit, in the
extended nonrelativistic quantum mechanics (EN-
RQM) symmetries of the IHHEIQP model, two steps
must be applied; the first step corresponds to the
nonrelativistic limit, in usual nonrelativistic quantum
mechanics. This is done, by applying the following
steps. We replace 𝐶𝑠, 𝐸𝑠

𝑛𝑘 +𝑀 , 𝐸𝑠
𝑛𝑘 −𝑀 , 𝑘(𝑘 + 1),

𝐹𝑛𝑘 (𝑟) and 𝜖2𝑠 by 0 , 2𝜇, 𝐸𝑛𝑟
𝑛𝑙 , 𝑙(𝑙 + 1) and 𝑅𝑛𝑘 (𝑟),

respectively, which allows us to obtain the nonrela-
tivistic energy levels as:

𝐸𝑛𝑟
𝑛𝑙 = − 1

2𝜇𝑏2
×

×

⎡⎢⎢⎢⎢⎢⎢⎣

(︀
𝑛2 + 𝑛+ 1

2

)︀
𝑞 + 𝑞 (2𝑛+ 1)×

×
√︁
(2𝑙 + 1)

2 − 8𝐴𝜇+ 𝑞𝑙 (𝑙 + 1)− 2𝑞𝜇𝜈1𝑏
2

(2𝑛+ 1) 𝑞 +

√︁
(2𝑙 + 1)

2 − 8𝐴𝜇

⎤⎥⎥⎥⎥⎥⎥⎦

2

.

(73)

Now, the second step corresponds to the new coeffi-
cients:
𝛿1𝑛𝑟𝑛𝑙 = 𝜈4𝑙 (𝑙 + 1) 𝑞2,

𝛿2𝑛𝑟𝑛𝑙 = 𝜈2𝜈1𝑞
3/2𝜇,

𝛿3𝑛𝑟𝑛𝑙 = −𝐴𝜈4𝑞3𝜇,

𝛿4𝑛𝑟𝑛𝑙 = −𝐴2𝑞3𝜇𝜈4,

⎫⎪⎪⎬⎪⎪⎭

which are obtained, by applying the previous limits
to Eq. (41). This allows us to reexport the relativistic
expectation values ⟨Λ⟩hiq(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) of the spin
symmetry in Eq. (50) from the corresponding nonrel-
ativistic expectation values ⟨Λ⟩𝑛𝑟−hiq

(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) as:

⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠) (𝑛, 𝜈, 𝜈1, 𝐴) =

4∑︁
𝜇=1

𝛿4𝑛𝑟𝑛𝑙 𝑅𝑠−hiq
𝜇(𝑛𝑙𝑚𝑠) (74)

This allows us to express the nonrelativistic correc-
tion energy Δ𝐸hiq

𝑛𝑐−𝑛𝑟 (𝑛, 𝜈, 𝜈1, 𝐴, Θ, 𝜎, 𝛽, 𝑗, 𝑙, 𝑠,
𝑚) ≡ Δ𝐸hiq

𝑛𝑐−𝑛𝑟 produced by the new modified po-
tential problems as

Δ𝐸hiq
𝑛𝑐−𝑛𝑙 = ⟨Λ⟩𝑛𝑟−hiq

(𝑛𝑙𝑚𝑠)

[︂
(𝜎ℵ+ 𝛽Ω)𝑚+

+
Θ

2

{︂
𝑙 for 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for 𝑗 = 𝑙 − 1/2

]︂
. (75)

The global NR energy
𝐸hiq

𝑛𝑐−𝑛𝑙 (𝑛, 𝛼,𝐴,𝐵,Θ, 𝜎, 𝛽, 𝑗, 𝑙, 𝑠,𝑚) ≡ Δ𝐸hiq
𝑛𝑐−𝑛𝑟

produced with the new hyperbolic Hulthén plus hy-
perbolic exponential inversely quadratic potential
in ENRQM symmetries. A result of the topological
properties of a space-space deformation is the sum
of usual energy 𝐸hiq

𝑛𝑙 in Eq. (73) under the Hulthén
plus hyperbolic exponential inversely quadratic po-
tential in NRQM symmetries and the obtained cor-
rection Δ𝐸hiq

𝑛𝑐−𝑛𝑙 in Eq. (75) as follows:

𝐸hiq
𝑛𝑐−𝑛𝑙 = 𝐸𝑛𝑟

𝑛𝑙 + ⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠)

[︂
(𝜎ℵ+ 𝛽Ω)𝑚+

+
Θ

2

{︂
𝑙 for 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) for 𝑗 = 𝑙 − 1/2

]︂
. (76)

It should be noted that the corrected energy Δ𝐸hiq
𝑛𝑐−𝑛𝑙

expressed in Eq. (76) is due to the effect of the per-
turbed potential Λhiq

𝑛𝑟−pert (𝑟):

Λhiq
𝑛𝑟−pert (𝑟) =

=

(︂
𝑙 (𝑙 + 1) 𝑟−4 − 1

2𝑟

𝜕𝑉hiq (𝑟)

𝜕𝑟

)︂
LΘ+𝑂

(︀
Θ2
)︀
. (77)

The first term in Eq. (68) is due to the centrifu-
gal term 𝑙 (𝑙 + 1) ̂︀𝑟−2 in ENRQM symmetries which
equals the usual centrifugal term 𝑙 (𝑙 + 1) 𝑟−2 plus the
perturbative centrifugal term 𝑙 (𝑙 + 1) 𝑟−4LΘ, while
the second term is produced with the effect of the
IHHEIQP model. This is one of the most important
new results of this research.
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4. Spin-Averaged New Mass
Spectra of HLM under the IHHEIQP
Model in ENRQM symmetries

Our new theoretical model, in ENRQM symmetries,
developed so far is applicable to several QM physical
systems and to obtain the values of related quantum
physical quantities. In this section, we use the NR
energies that represent the binding energy between a
quark and an anti-quark to determine the modified
spin-averaged mass spectra of heavy and heavy-light
mesons (HLM) such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞, 𝑞 =
(𝑢, 𝑑) under IHHEIQP by using the following formula:

𝑀hiq𝑝
𝑛𝑙 = 𝑚𝑄 +𝑚𝑞 + 𝐸hiq

𝑛𝑐−𝑛𝑟 →

→ 𝑀hiq𝑝
𝑛𝑐−𝑛𝑙 = 𝑚𝑄 +𝑚𝑞 +

+

⎧⎨⎩
1

3

(︀
𝐸𝑛𝑐−𝑢

𝑛𝑙 + 𝐸𝑛𝑐−𝑚
𝑛𝑙 + 𝐸𝑛𝑐−𝑙

𝑛𝑙

)︀
for spin 1,

𝐸𝑛𝑐
𝑛𝑙 for spin 0.

(78)

The LHS of Eq. (78) 𝑀hiq𝑝
𝑛𝑙 describes the spin-

averaged mass spectra of HLM such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠,
𝑐𝑠, and 𝑏𝑞, 𝑞 = (𝑢, 𝑑) under the HHEIQP model in
usual NR QM symmetries, [93–96], while the RHS is
our generalization to this equation in ENRQM sym-
metries, 𝑚𝑄 and 𝑚𝑞 are the quark mass and the
anti-quark mass, 𝐸𝑛𝑟

𝑛𝑙 is the nonrelativistic energy un-
der HHEIQP model which is determined in Eq. (73),
while (𝐸𝑛𝑐−𝑢

𝑛𝑙 , 𝐸𝑛𝑐−𝑚
𝑛𝑙 , 𝐸𝑛𝑐−𝑙

𝑛𝑙 ) are the modified ener-
gies of HLM which have spin 1, while 𝐸𝑛𝑐

𝑛𝑙 is the mod-
ified energies of HLM which have spin 0. We need to
replace the factor Ξ (𝑗 = 𝑙 ± 1/2, 𝑠 = 1/2) with new
generalized values Ξ𝑛 (𝑗, 𝑙, 𝑠 = 0, 1) as follows:

2Ξ𝑛 (𝑗, 𝑙, 𝑠 = 0, 1) = 𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 𝑠(𝑠+ 1) =

=

⎧⎪⎪⎨⎪⎪⎩
𝑙 for: 𝑗 = 𝑙 + 1 and 𝑠 = 1,
−2 for: 𝑗 = 𝑙 and 𝑠 = 1,

−2 (𝑙 + 1) for: 𝑗 = 𝑙 − 1 and 𝑠 = 1,
0 for: 𝑗 = 𝑙and𝑠 = 0.

(79)

Now, we can obtain (𝐸𝑛𝑐−𝑢
𝑛𝑙 , 𝐸𝑛𝑐−𝑚

𝑛𝑙 , 𝐸𝑛𝑐−𝑙
𝑛𝑙 ) and 𝐸𝑛𝑐

𝑛𝑙

of the HLM such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞, 𝑞 = (𝑢, 𝑑)
as:

𝐸𝑛𝑐−𝑢
𝑛𝑙 = 𝐸hiq

𝑛𝑐−𝑛𝑙 + ⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠)

(︂
(𝜎ℵ+ 𝛽Ω)𝑚+Θ

𝑙

2

)︂
For: 𝑗 = 𝑙 + 1 and 𝑠 = 1, (80.1)

𝐸𝑛𝑐−𝑚
𝑛𝑙 = 𝐸hiq

𝑛𝑐−𝑛𝑙 + ⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠) ((𝜎ℵ+ 𝛽Ω)𝑚−Θ)

For: 𝑗 = 𝑙 and 𝑠 = 1, (80.2)

𝐸𝑛𝑐−𝑙
𝑛𝑙 = 𝐸hiq

𝑛𝑐−𝑛𝑙+⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠) ((𝜎ℵ+ 𝛽Ω)𝑚−Θ(𝑙 + 1))

For: 𝑗 = 𝑙 − 1 and 𝑠 = 1, (80.3)

𝐸𝑛𝑐
𝑛𝑙 = 𝐸hiq

𝑛𝑐−𝑛𝑙 + ⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠) (𝜎ℵ+ 𝛽Ω)𝑚

For: 𝑗 = 𝑙 and 𝑠 = 0. (80.4)

By substituting Eqs. (80, 𝑖 =1,2,3) and (76) into
Eq. (78), the new mass spectrum 𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 of the me-
son systems in the ENRQM symmetries under the
IHHEIQP model for any arbitrary radial and angular
momentum quantum numbers (𝑛𝑙) become:

𝑀hiq 𝑝
𝑛𝑐−𝑛𝑙 = 𝑀hiq 𝑝

𝑛𝑙 + ⟨Λ⟩𝑛𝑟−hiq
(𝑛𝑙𝑚𝑠) ×

×

{︃
(𝜎ℵ+ 𝛽Ω)𝑚− Θ

3
for spin-1,

(𝜎ℵ+ 𝛽Ω)𝑚 for spin-0.
(81)

Thus, the spin-averaged mass spectra 𝑀hiq 𝑝
𝑛𝑙 of HLM

such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞, 𝑞 = (𝑢, 𝑑) in the
HHEIQP model in usual NRQM symmetries are as
follows:

𝑀hiq 𝑝
𝑛𝑐−𝑛𝑙 = 𝑚𝑄 +𝑚𝑞 −

1

2𝜇𝑏2
×⎡⎢⎢⎢⎢⎢⎢⎣

(︀
𝑛2 + 𝑛+ 1

2

)︀
𝑞 + 𝑞 (2𝑛+ 1)×

×
√︁
(2𝑙 + 1)

2 − 8𝐴𝜇+ 𝑞𝑙 (𝑙 + 1)− 2𝑞𝜇𝜈1𝑏
2

(2𝑛+ 1) 𝑞 +

√︁
(2𝑙 + 1)

2 − 8𝐴𝜇

⎤⎥⎥⎥⎥⎥⎥⎦

2

.

(82)

Thus, we have 𝛿𝑀hiq 𝑝
𝑛𝑐−𝑛𝑙 in ENRQM symmetries:

𝛿𝑀hiq 𝑝
𝑛𝑐−𝑛𝑙 = 𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 −𝑀hiq 𝑝
𝑛𝑙 =

= ⟨𝑍⟩𝑞𝑦−𝑛𝑟
(𝑛𝑙𝑚𝑠)

{︃
(𝜎ℵ+ 𝛽Ω)𝑚− Θ

3
for spin 1,

(𝜎ℵ+ 𝛽Ω)𝑚 for spin 0.
(83)

This allows us to obtain the physical limit:

lim
(Θ,𝜎,𝛽)→(0,0,0)

𝑀hiq 𝑝
𝑛𝑐−𝑛𝑙 = 𝑀hiq 𝑝

𝑛𝑙

to be achieved. It is worth to mention that, for the
three simultaneous limits (Θ, 𝜎, 𝛽) → (0, 0, 0), we re-
cover the energy equations for the spin and p-spin
symmetries under the hyperbolic Hulthén plus hy-
perbolic exponential inversely quadratic potential.
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5. Conclusions

In summary, this work presents an approximate ana-
lytic solution of the three-dimensional deformed Di-
rac equation with a new hyperbolic Hulthén plus
hyperbolic exponential inversely quadratic potential
without tensor interaction under pseudospin and
spin symmetries with arbitrary spin-orbit coupling
quantum numbers 𝑘. To do so, we have dealt with
the centrifugal potential term using the Greene–Al-
drich approximation. We have obtained new approx-
imate bound-state energies that appear sensitive to
the quantum numbers (𝑗, 𝑘, 𝑙,𝑚,̃︀𝑙, ̃︀𝑚, 𝑠, ̃︀𝑠), potential
depths (𝑛, 𝜈1, 𝐴) of the studied potentials, potential
range, and noncommutativity parameters (Θ, 𝜎, 𝛽)
under the condition of spin and pseudospin symme-
tries. As we know, the improved Hulthén plus hy-
perbolic exponential inversely quadratic potential re-
duces the improved Hulthén potential and the im-
proved Dirac exponential inversely quadratic poten-
tial. In this research, we also studied the nonrelativis-
tic limit of the IHHEIQP model in ENRQM symme-
tries. The present results are applied for calculating
the new mass spectra 𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 of heavy-light mesons
such as 𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠, and 𝑏𝑞, 𝑞 = (𝑢, 𝑑) un-
der the effect of the IHHEIQP in ENRQM symme-
tries. The new mass spectra 𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 of heavy-light
mesons in ENCQM symmetries equal the correspond-
ing values 𝑀hiq 𝑝

𝑛𝑙 in ENRQM symmetries plus the
contribution of noncommutativity 𝛿𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 which is
an infinitesimal correction as compared with the main
part 𝑀hiq 𝑝

𝑛𝑙 . It is worth mentioning that, for all cases,
to make the three simultaneous limits (Θ, 𝜎, 𝛽) →
→ (0, 0, 0), the ordinary physical quantities are cov-
ered in Ref. [4]. Finally, a feature of the noncommu-
tative geometry on the 3D deformed Dirac equation
with the improved Hulthén plus hyperbolic exponen-
tial inversely quadratic potential would be the pres-
ence of many physical phonemes which usually appear
automatically, such as the spin-orbit and pseudospin-
orbit, modified Zeeman effect, and others, and cause
the behavior of topological properties of a space-space
deformation. Our studied physical model in the cur-
rent paper may be useful in investigating many inter-
esting physical systems such as heavy-light mesons
and can also include other applications.
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ВПЛИВ ДЕФОРМАЦIЇ ПРОСТОРIВ
НА ВИСОКО- ТА НИЗЬКОЕНЕРГЕТИЧНI
СПЕКТРИ ФЕРМIОНIВ ТА СПЕКТРИ
ВАЖКИХ КВАРКОНIЇВ ДЛЯ МОДИФIКОВАНОГО
ПОТЕНЦIАЛУ ХЮЛЬТЕНА I ГIПЕРБОЛIЧНОГО
ЕКСПОНЕНЦIАЛЬНО ОБРIЗАНОГО
ОБЕРНЕНО КВАДРАТИЧНОГО ПОТЕНЦIАЛУ

Знайдено наближенi розв’язки модифiкованого рiвняння
Дiрака для зв’язаних станiв з урахуванням спiнової або
псевдоспiнової симетрiї. При цьому використано наближе-
ний вираз для вiдцентрового бар’єра у виглядi потенцiа-
ла Хюльтена та гiперболiчного експоненцiально обрiзаного
обернено квадратичного потенцiалу, метод зсуву Боппа та
теорiю збурень в узагальненiй релятивiстичнiй квантовiй
механiцi. Розраховано спектри мас 𝑀hiq 𝑝

𝑛𝑐−𝑛𝑙 важких мезонiв
𝑐𝑐, 𝑏𝑏, 𝑏𝑐, 𝑏𝑠, 𝑐𝑠 та 𝑏𝑞, 𝑞 = (𝑢, 𝑑). Результати добре узгоджу-
ються з даними iнших робiт.

Ключ о в i с л о в а: некомутативнi простори, рiвняння Дi-
рака, рiвняння Шрьодiнгера, потенцiал Хюльтена з гiпербо-
лiчним експоненцiально обрiзаним обернено квадратичним
потенцiалом, метод зсуву Боппа, мезони.
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