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PHENOMENA AND PHYSICAL ASPECTS OF 2014
NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE

This review article is devoted to the formulation of the Richard Feynman’s classification of
three stages in the study of natural phenomena and the application of this classification to
the amazing discovery of the hexagonal grid cells that constitute a positioning system in the
brain which was awarded the 2014 Nobel Prize in Physiology and Medicine. The problem of
grid cells in brain is considered with accounting for (a) the experimental studies that led to
the emergence of hexagons in the human and animal brains, (b) discussion of the problem of
generation and propagation of an action potential along nerve fibers, (c) physical parameters of
the human brain and its medical applications in the method of hyperthermia for the treatment
of malignant tumors, (d) theoretical considerations using a certain analogy between grid cells in
brain and the Abrikosov vortex lattice in type II superconductors, and (e) hexagonal graphene
and dimensional crossover.
K e yw o r d s: Feynman’s classification, grid cells, physical parameters of brain, method of
hyperthermia, conduction and induction currents, Abrikosov vortex lattice.

“The real glory of science is that
we can find a way of thinking
such that the law is evident.” [1]

Richard FEYNMAN,
1965 Nobel Prize winner in Physics

1. Introduction

In this review article (being a continuation of the ar-
ticle by one of the authors [2], while a number of
new problems are considered here, and some others
are discussed in more details), we will focus our at-
tention on integration trends in science and education
which are associated with interdisciplinary synergetic
bonds between physics and medicine (see, e.g., [3–
9]). In our opinion, the main idea of synergetics is the
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fundamental possibility of using quantitative results
obtained by exact methods of a “simpler” science (e.g.,
physics) in similar (isomorphic) phenomena of a much
more complex science (e.g., medicine). Such a syner-
getic approach unites various natural phenomena pre-
viously related to different areas of scientific knowl-
edge, and thereby largely compensates for the differ-
entiation processes that have been characteristic of
the development of natural sciences (such as physics)
for more than three centuries. To explain the funda-
mental reasons for the processes of ordering and for-
mation of a new phase, we propose to use the so-called
“The Feynman’s classification of the three stages in
the study of natural phenomena”. These three stages
were essentially discussed by Richard Feynman in his
lectures on physics [1]. They include two obvious, one
might say – generally accepted, the following stages:
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the first of them is the accumulation and systematiza-
tion of experimental data; then the second stage may
come (or not, as in a number of scientific fields) –
the creation of a theory that explains the obtained
experimental data. Finally, in the third, less obvious,
stage, it may happen that Feynman called as follows:
“the real glory of science is that we can find a way
of thinking such that the law is evident”. Undoub-
tedly, this third stage is the most important, enabling
to establish the main reason for the “first principle”
underlying the theory which explains the experimen-
tal data obtained, respectively, at the first and sec-
ond stages in the study and cognition of this natural
phenomenon.

Here, we shall also consider the examples of using
a synergetic approach to explaining the occurrence
of hexagonal structures on the border of physics and
medicine. It should be noted that hexagons can be
found in many objects of inanimate and living na-
ture. In the inanimate (inorganic) world, they arise
in Benard cells [10], in crystals and alloys with hexag-
onal or other type of symmetry [11], on the sur-
face of the Salt Lake Uyuni in Bolivia [12], in geo-
logical colonnades Giant’s Causeway in Ireland [13],
in the cloud structure around Saturn’s North Pole
[14], in such carbon modifications as fullerene C60

having 62.5% hexagonal faces (1986 Nobel Prize in
Chemistry) [15] and graphene being a hexagonal
monoatomac plane (2010 Nobel Prize in Physics)
[16, 17], etc. In the living (organic) world, hexago-
nal structures appear in grid cells of brain (2014 No-
bel Prize in Physiology or Medicine) [18], in beeswax
honeycombs [19], in such biomedical phenomena as
the spreading depression of Leao and other neurolog-
ical dysfunctions [20], in the problem of cell-to-cell
communication (synaptic transmission) [21–23] with
regard for the porosytosis hypothesis and hexagonal
synaptomers [24], etc. The striking geometric similar-
ity of these structures, as well as the variaty of ob-
jects in which they appear, suggests that there should
probably exist a universal explanation or, in other
words, the first principle underlying their formation.

The structure of this review article is as fol-
lows. Section 2 discusses, in more details, “The Feyn-
man’s classification of the three stages of the studyi
in natural phenomena” and provides relevant exam-
ples. The neurophysiological system of the so-called
place and grid cells in brain providing the spatial ori-
entation of humans and animals [18] is considered in

Section 3 with accounting for such important points:
(a) the experimental studies that led to the discovery
of the hexagonal structures of grid cells in brain, (b)
discussion of the problem of generation and propa-
gation of an action potential (AP) along nerve fibers
[25], (c) physical parameters of the human brain and
its medical applications in the method of hyperther-
mia which is used in the treatment of malignant tu-
mors [26–30, 8, 9], (d) theoretical considerations us-
ing a certain analogy between hexagonal structures in
grid cells in brain and the Abrikosov vortex lattice in
type II superconductors [18, 31–34], (e) discovery of
graphene (2010 Nobel Prize in Physics) [16, 17] and
dimesional crossover applications [35–37].

2. The Feynman’s Classification
of the Three Stages in the Study
of Natural Phenomena

An outstanding American physicist Richard Feyn-
man, receiving the 1965 Nobel Prize in Physics, has
essentially discussed three stages in the study of nat-
ural phenomena in a famous textbook “The Feynman
Lectures on Physics” [1]. These lectures were deliv-
ered by Richard Feynman in 1961–1963 to students
at the California Institute of Technology (Caltech),
taped and prepared for publication by Prof. Robert
Leighton and Prof. Matthew Sands. As an example
of the three stages of studying the natural phenom-
ena, Prof. Richard Feynman chose the optical phe-
nomenon of light refraction at the air-water interface
considered in [1]. These three stages are proposed to
be called “The Feynman’s classification of the
three stages in the study of natural phenom-
ena” , being as follows:

1st stage: Accumulation and systematiza-
tion of experimental data. The optical phe-
nomenon of light refraction was studied experimen-
tally by Claudius Ptolemy (Claudius Ptolemaeus)
about 140 AD. Richard Feynman cited a table of ex-
perimental data from Ptolemy’s book “Optics”, which
presents the relationship between the angles of inci-
dence and refraction of a light beam at the boundary
of air and water.

2nd stage: Finding a law (creating a theory)
explaining the experimental data. The law con-
necting the incident and refraction angles was found
by the Dutch scientist Willibrord Snellius (Snell van
Royen) in 1621. As is well known, the Snell’s law
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states that the ratio between the sine of the angle
of incidence (sin𝛼) and the sine of the angle of re-
fraction (sin𝛽) of a light beam is equal to the refrac-
tive index (𝑛) of the medium in which the refracted
ray propagates relative to the medium in which the
incident beam propagates. It should be noted that
there is a good quantitative agreement between the
experimental data of Ptolemy and theoretical data
according to Snell’s law for the angles of refraction of
a light beam in water, accounting for their “distance”
in time, which is almost 1500 years (see Table 1 which
unifies Table 26.1 and 26.2 in [1]).

It would seem that, with such agreement between
experiment and theory, the problem of light refrac-
tion at the interface between two media could be con-
sidered practically solved. However, Richard Feyn-
man believed that another final stage of the study
and cognition is needed to fully understand this
problem.

3rd stage: Formulation of the first principle
underlying the theory that explains experimen-
tal data. For the optical phenomenon of light reflec-
tion, this first-principle law was discovered by the
French mathematician, physicist, and lawyer Pierre
de Fermat in 1662, and is called “Fermat’s principle
of least time”. The physical meaning of this princi-
ple is that a ray of light passing from point A of one
medium (e.g., air) through the interface to point B of
another medium (e.g., water) chooses such a trajec-
tory, along which the travel time will be minimal. In
the mathematical language, Fermat’s principle means
that the following integral, which determines the time
of movement of the light beam along the trajectory

Table 1. Comparison of experiment
(Ptolemy’s data) and theory (Snell’s law)

Angle of incidence
𝛼 of the light

beam in the air

Refraction angle 𝛽

of a light beam in
water (Ptolemy’s

experiment)

Refraction angle 𝛽

of a light beam in
water (Snell’s law)

10 8 7.5
20 15.5 15
30 22.5 22
40 28 29
50 35 35
60 40.5 40
70 45 48
80 50 49.5

AB, should take the minimum possible value:
𝐵∫︁

𝐴

𝑛𝑑𝑆/𝑐 = 𝑡min, (1)

where 𝑑𝑆 is the element of the trajectory length, 𝑐 is
the light speed in vacuum, 𝑛 is the refractive index of
a medium.

Another equivalent definition of “Fermat’s principle
of least time” is the “Principle of least optical length”,
according to which a ray of light between two points
A and B chooses a trajectory along which the optical
length takes the minimum possible value. “Principle
of least optical length” can be written in the form
𝐵∫︁

𝐴

𝑛𝑑𝑆 = 𝑐

𝑡𝐵∫︁
𝑡𝐴

𝑑𝑡 = 𝑐𝑡min = [𝐴𝐵]min. (2)

Here, the notation for optical length [𝐴𝐵] =
∫︀ 𝐵

𝐴
𝑛𝑑𝑆

is used [38].
Following the classical example from geometric op-

tics discussed by R. Feynman and related to the phe-
nomenon of light refraction at the boundary of two
media, let us consider other physical examples that
illustrate the manifestations of “Feynman’s classifi-
cation of three stages in the study of natural phe-
nomena” and especially the implementation of the
third stage, which requires formulations of “first-
priniciple laws” for a theoretical explanation of the
observed data.

First of all, we turn to the laws of conservation of
energy, momentum, and angular momentum. At the
first stage associated with the accumulation and sys-
tematization of observed data (in the sense of Feyn-
man’s classification), these laws use a lot of exper-
imental data, and not only of a physical nature. In
this regard, the contribution of the German physi-
cian and subsequently physicist Julius Robert Mayer,
who is considered one (and, possibly, the first) of the
founders of the law of conservation of energy, is of
interest.

In the early 40s of the XIX century, Julius Robert
Mayer worked as a ship’s doctor and used the method
of treating diseases with the help of leeches (hirudo –
in Latin) which was widespread at that time. The
leeches’ saliva contains the enzyme hirudin, hav-
ing anticoagulant properties and being discovered in
1884. In the process of treating sailors’ diseases with
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leeches (in more modern terms – by the method of
hirudotherapy), Robert Mayer visually detected a
change in the color of the patients’ blood from bright
red to darker red, which is characteristic of arterial
and venous blood. Considering this fact, Mayer came
to the conclusion that there must be a relationship
and equivalence between the amount of heat that the
human body receives (and blood, including) and the
work related to the oxygen consumption in the hu-
man body. At that time, the concept of “energy” was
associated with the concept of “vital forces”. Julius
Robert Mayer published his article “A note on the
forces of inanimate nature” (Annals of Chemistry and
Pharmacy, 1842) on the essence of the law of conser-
vation of energy (his first article on this topic was sent
to print in 1841, but was not published), before the
publications of James Joule and Hermann Helmholtz,
who are also considered by right the founders of the
law of conservation of energy. Figure 1 contains the
portraits of the scientists, including Julius Robert
Mayer (far right), who made the significant contri-
butions to both medicine and physics [39].

To these scientists should be added the German
Professor of medicine and physics Germann Ludwig
Helmholtz, who co-authored the law of conservation
of energy due to his book “On Conservation of Force”
published in 1847, as well as the great English physi-
cist James Prescott Joule (his article on the mea-
surement of the mechanical equivalent of heat was
published in 1843). Another universal scientist was
the French physicist and physician, Academician of
the French Medical Academy Jean Louis Poiseuille,
who was the first to measure blood pressure with a
mercury manometer in 1828 and who experimentally
proved a hydrodynamical (haemodynamical) law in
1841 that was formulated by a German physicist and
hydraulic builder Gotthilf Hagen two years earlier
in 1839. In accordance with this law, known as the
Hagen–Poiseuille law, the volume of a fluid (blood)
𝑉 , flowing per unit of time 𝑡 (the so-called volumet-
ric velocity 𝑄 = 𝑉/𝑡, or minute blood flow) is directly
proportional to the fourth power of the radius of the
cylindrical tube (blood vessel). It is of interest that
the volumetric velocity (minute flow rate) of blood
in the aorta of adults is 5–6 liters per minute in a
calm state and up to 20 liters per minute in a state
of maximum excitement [8, 9].

The laws of conservation of energy, momentum,
and angular momentum, which have received numer-

Fig. 1. Title cover of “Medical and Biological Physics. Prac-
tice” with portraits of D. Bernoulli, T. Young, and J.R. Mayer,
being physicians and physicists [39]

ous experimental and theoretical justifications, are
ones of the most fundamental laws of nature. From
the viewpoint of Feynman’s classification, one could
say that these laws of concervation are themselves
the first principles of nature, being necessary to ex-
plain the phenomena and processes occurring in ani-
mate and inanimate nature. However, this statement
is not true, since the question remains as follows:
what initial positions underlie the laws of conser-
vation of energy, momentum, and angular momen-
tum or, in simpler words, where these laws come
from? The answer to this question is given by sym-
metry considerations, which were first formulated by
the German mathematician Emmy Noether in [40]
(the Noether’s theorem) and were consistently proved
in the first volume “Mechanics” of the famous text-
books “Theoretical Physics” by Lev Landau and Eu-
genii Lifshits [41].

As is known, the laws of conservation of energy,
momentum, and angular momentum are based on the
following first principles: 1) the law of conservation
of energy is a consequence of the first principle which
is related to the homogeneity of time, 2) the law of
conservation of momentum is a consequence of the
first principle which is related to the homogeneity of
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Fig. 2. Hexagonal grid cells in the entorhinal cortex of the
rat’s brain (from Nobel lecture by Edward Moser “Grid Cells
and the Entorhinal Map of Space” [18])

space, 3) the law of conservation of momentum is a
consequence of the first principle which is related to
the isotropy of space.

3. Discovery of Grid Cells, Physical
Parameters of Brain and Its Medical
Applications, Analogy between Grid Cells
and a Vortex Lattice in Superconductors

In this section, we will consider the following prob-
lems: 1) discovery of place and grid cells in brain
(2014 Nobel Prize in Physiology or Medicine) [18],
2) generation and propagation of the action potential
(AP) along nerve fibers (1963 Nobel Prize in Physiol-
ogy or Medicine) [25], 3) physical parameters of the
human brain and its medical applications [26–30, 8,
9], 4) Edwin Moser’s idea of analogy between hexag-
onal grid cells in brain and the Abrikosov vortex lat-
tice in superconductors [18, 31–34], and 5) discovery
of graphene (2010 Nobel Prize in Physics) [16,17] and
the concept of a dimensional crossover [35–37].

3.1. Discovery of place
and grid cells (2014 – Nobel Prize
in Physiology or Medicine)

The 2014 – Nobel Prize in Physiology or Medicine
was awarded to the American and British physiologist
John O’Keefe from the University College London
and to the Norwegian physiologists May-Britt Moser
and Edward Moser from the Norwegian University of

Science and Technology “for their discoveries of cells
that constitute a positioning system in the brain”
[18]. Prof. John O’Keefe, being a founder of these
studies, has discovered a special type of “place cells”
in 1971 that are capable to create a positioning map
in the hippocampus of animals (rats) [42]. Prof. Ed-
ward Moser and Prof. May-Britt Moser have found
the “grid cells” in 2005, being an additional compo-
nent of the orientational system that is locating in
the entorhinal cortex of brain [43]. Later, grid cells
were found not only in the brains of rats and other
animals, but also in the brain of humans [44]. Such
studies have opened up new possibilities for the un-
derstanding processes taking place in brain [45–54].

An experiment on detecting the grid cells [43] was
carried out by May-Britt Moser, Edward Moser, and
their students T. Hafting, M. Fyhn, and S. Molden as
follows. They implanted electrodes in the entorhinal
cortex of the rat’s brain. Such an operation made it
possible to fix the action potential (AP) occurrence
or, in other physiological words, the “firing of AP” in
neurons, as a result of the spatial movements of the
rat in a confined space.

It turned out that the spatial distribution of grid
cells is characterized by a virtual 6-sided lattice with
a periodic hexagonal symmetry (see Fig. 2), which
creates a coordinate navigation system and allows an-
imals and humans to find their position in space, as
well as the direction and the speed of movement. It is
worth to mention that the discovery of grid cells and
the study of the features of their functioning are di-
rectly related to the problem of treating Alzheimer’s
disease associated with disorders of the entorhinal
cortex of the human brain in the early stages of this
disease [42]. All the above applies to the first “exper-
imental” stage from the point of view of Feynman’s
classification.

3.2. Generation and propagation
of the action potential (1963 Nobel
Prize in Physiology or Medicine)

In this subsection, we will focus our attention on
the electrical mechanism of intercellular interaction
caused by the generation and propagation of AP
along the axon. A discussion of some of the physico-
chemical aspects of the problem of cell-to-cell com-
munication and synaptic transmission with regard for
the porosytosis hypothesis and synaptomers having a
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hexagonal geometry, as well as a quantative descrip-
tion of this problem based on nonlinear kinetic models
can be found, for example, in [21–24].

First, let us discuss some theoretical considerations
related to the description of grid cells in brain at the
second “theoretical” stage of Feynman’s classification.
In this regard, we will briefly review the classic stud-
ies on the AP emergence and propagation along the
nerve fibers by Alan Hodgkin and Andrew Huxley.
They were awarded the 1963 Nobel Prize in Physiol-
ogy or Medicine together with John Eccles, “for their
discoveries concerning the ionic mechanisms involved
in the excitation and inhibition in the peripheric and
central portions of the nerve cell membrane” [25].

As is known (see, e.g., [46–54, 8, 9]), the AP is
generated as a result of the certain external stimu-
lus of electrical, mechanical, or some other nature,
which causes the depolarization phenomenon inside
an axon. The process of depolarization of the axo-
plasm is associated with a local shift of the electri-
cal potential from its value given by the formula for
the equilibrium Nernst electric potential for potas-
sium ions

𝜑𝐾
𝑖 = (𝑅𝑇/𝐹 ) ln([K+]𝑒/[K

+]𝑖) ≈ −70 mV (3)

to the threshold potential value 𝜑thr ≈ −(40–50) mV.
Here, 𝑅 is the universal gas constant, 𝑇 is the abso-
lute temperature, 𝐹 is the Faraday number, and sub-
scripts “𝑒” and “𝑖” correspond to the concentrations
in the environment and inside the axoplasm, respec-
tively. As a result, sodium channels become open, and
a significant increase (approximately 500 times in a
giant squid axon) of the permeability for Na+ ions
occurs in 1–2 ms. The depolarization process leads to
an increase in the internal potential of the axoplasm
to the value of the equilibrium Nernst electric poten-
tial for sodium ions given by the following formula:

𝜑Na
𝑖 = (𝑅𝑇/𝐹 ) ln([Na+]𝑒/[Na+]𝑖) ≈ +40 mV. (4)

Thus, a quantitative estimate of the AP am-
plitude 𝜑AP gives an approximate value 𝜑AP =
= 𝜑Na

𝑖 − 𝜑K
𝑖 ≈ 110 mV characterizing the firing of AP

in neurons.
The most important result of the Hodgkin–Huxley

model is the experimental and theoretical substanti-
ation of a nonlinear partial differential equation for
the function Δ𝜑(𝑥, 𝑡), which describes the process of

AP propagation along nerve fibers:

𝑟

2𝜌𝑎

𝜕2Δ𝜑

𝜕𝑥2
= 𝐶𝑚

𝜕Δ𝜑

𝜕𝑡
+ 𝑔K𝑛

4(Δ𝜑− 𝜑K
𝑖 )+

+ 𝑔Na𝑚
3ℎ(Δ𝜑− 𝜑Na

𝑖 ) + 𝑔oth(Δ𝜑− 𝜑oth
𝑖 ). (5)

Here, in the Hodgkin–Huxley equation (5), 𝑟 is
the axon radius; 𝜌𝑎 is the specific resistance of ax-
oplasm; 𝐶𝑚 is the membrane capacity; 𝑔K, 𝑔Na, 𝑔oth
are, respectively, the conductances of the ion channels
of potassium, sodium, and other ions (like chlorine
Cl−); 𝑛(𝑡), 𝑚(𝑡) are numbers of activated pottasium
and sodium channels, and ℎ(𝑡) is the number of in-
activated sodium channels. We note the fundamental
similarity between the AP propagation process along
nerve fibers, the signal propagation process along an
electrical wire, and the process of soliton propagation
in nonlinear media and molecular systems, described,
respectively, by the Hodgkin–Huxley equation (5),
the cable (telegraph) equation, the Korteweg-de Vries
equation, as well as the equations for Davydov’s soli-
tons, and corresponding equations for nonequilibrium
processes in various media (see [55–58], references
therein, and famous results obtained by scientists of
the Bogolyubov Institute for Theoretical Physics of
the NAS of Ukraine).

3.3. Physical parameters
of the human brain and its medical
applications in the hyperthermia method

In living nature, unique electrical processes are re-
alized in nerve fibers (axons), depending on whether
the axons are covered by the myelin sheath or not. So,
the nerve bundles of the white matter of brain have,
for the most part, a myelin sheath, which prevents
the diffusion of the main inorganic ions of potassium
and sodium and, thus, the continious propagation of
the action potential along the axon.

However, in the process of biological evolution, na-
ture has created a mechanism of transmission of an
electrical signal in jumps through the so-called Ran-
vier interceptions, which are implemented on sections
of axons not isolated from the external environment
with a width of about 1𝜇m and at distances from
each other up to 1.5 mm, which do not have a myelin
sheath and contain a large number of voltage-gated
sodium channels in these places. Such a saltatory
(jumping) mechanism of electrical signal transmis-
sion using Ranvier’s interceptions has a significantly
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higher speed of about 25÷100 m/s, than the speed
of signal propagation in unmyelinated axons, which
turns out to be 1-2 orders of magnitude lower and
reaches 0.7÷2.3 m/s.

Here, we will consider some physical parameters of
the substance of the human brain that are useful for a
further consideration. Speaking about the neurons of
brain and without going into the anatomical details of
its structure, it should be noted that we are talking
primarily about the neurons of the gray matter of
brain, since the white matter of brain consists mainly
of bundles of nerve fibers (axons) covered by the white
myelin sheath.

Now, we will estimate the average density of the
human brain matter, using known statistical data on
the average mass and volume of the human brain
[2, 30, 46]. The average mass of the human brain
is 1350± 50 g, while the average volume of the
human brain is within 1400± 200 cm3. Therefore,
the average density of the human brain matter is
0.96± 0.17 g/cm3, i.e., slightly less than the density
of water 𝜌water ≈ 1 g/cm3, the most common and
mysterious liquid in nature.

As is shown in [8, 9, 30], the numerical values of the
relative dielectric permeability 𝜖 for such substances
as water, blood, gray (gmb) and white (wmb) sub-
stances of brain are almost close to each other and
equal:

𝜖water = 81, 𝜖gmb = 𝜖blood = 85, 𝜖wmb = 95.

The electric conductivity of biological tissues may
very in a very wide interval [8, 9]. Such biological
fluids as cerebrospinal fluid (crbf) and blood (bld)
are substances with a high electric conductivity and,

Table 2. Specific electrical
resistivity of various biological tissues [8, 9]

Biological tissues
Specific electrical

ressistivity 𝜌,
Ohm ·m

Cerebrospinal fluid 0.55
Blood 1.66
Muscles ≈2
Brain tissue ≈14
Adipose tissue ≈33
Dry skin 105

Bone without periosteum 107

respectively, low electric specific resistance: 𝜌crbf ≈
≈ 0.55 Ohm ·m, 𝜌bld ≈ 1.66 Ohm ·m. At the same
time, such dense biological tissues as dry skin and
bone, on the contrary, have a low electric conduc-
tivity and a very high electric specific resistance:
𝜌skin ≈ 105 Ohm ·m, 𝜌bone ≈ 107 Ohm ·m. The brain
tissue has a more or less intermediate value of the
electric specific resistance: 𝜌brain ≈ 14 Ohm ·m.

It should be taken into account that the above low
and high values of the specific resistivity of biological
tissues are of fundamental imporance in the choice of
physiotherapeutic methods for the treatment of on-
cological diseases. Conducted studies (for more de-
tails, see, e.g., [26–30]) confirm that the use of the
hyperthermia method in oncology, based on heating
malignant tumors, leads to a significant damage or
even to the complete destruction of tumor cells and,
as a result, the volume of the tumor. Hyperthermia,
as a method of treating malignant tumors, is used at
temperatures higher than 39.5 ∘C (usually at temper-
atures 41–45 ∘C) with a choice of time and tempera-
ture intervals depending on the type and location of
tumors. Usually, hyperthermia in oncology is used in
conjunction with methods such as chemotherapy and
radiation therapy. This increases the effectiveness of
a number of chemotherapy drugs, as well as provides
a higher sensitivity of tumor cells to the effects of
radiation during radiation therapy.

In the case of the alternating conduction current
with density 𝑗cond, the heat effect may be evaluated
by a specific quantity of heat 𝑄cond in unit volume
𝑉 per unit time 𝑡, for which the following formula
of the Joule–Lenz law in the differential form can be
written:

𝑄cond/𝑉 𝑡 = 𝜌𝑗2cond. (6)

This formula proves that, at a fixed conduction cur-
rent density 𝑗cond, more heated will be tissues with
more specific electical resistivity 𝜌 such as bones and
skin, while less heated will be cerebrospinal fluid and
blood (see Table 2) [8, 9].

In the case of alternating induction current (other
notable titles – vortex current or Foucault current),
the heat effect may be evaluated by the Joule–Lenz
law (6) with regard for such a formula for the ampli-
tude of the induction current density:

𝑗ind ∼ 𝜔𝐵0/𝜌, (7)
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which gives the following expression for the amplitude
of the specific heat quantity 𝑄ind/𝑉 𝑡:

𝑄ind/𝑉 𝑡 = 𝑘
𝜔2𝐵2

0

𝜌
. (8)

Here, 𝑘 is the coefficient depending on the geometric
dimensions of a tissue, 𝜔 and 𝐵0 are the frequency
and the amplitude of the alternating magnetic induc-
tion, respectively.

As follows from formula (8), the use of the hyper-
thermia method is more effective for tissues with low
specific electrical resistivity, i.e., for such biological
fluids as cerebrospinal fluid, blood, and limph. Thus,
both methods of hypertermia discussed above, using
conduction currents and induction (vortex) currents,
can complement each other at different localizations
of oncological formations.

In addition to the studies mentioned above, it
should be noted that the research team of the Depart-
ment of Medical and Biological Physics and Informat-
ics of the Bogomolets National Medical University in
Kyiv conduct scientific reasearches on problems at the
border of physics and medicine, including joint stud-
ies with scientists from the clinical departments of the
Bogomolets National Medical University in Kyiv and
other institutions of Ukraine (see, e.g., [21, 59–63]).

3.4. Analogy between hexagonal grid
cells and a vortex lattice of superconductors

In conclusion of this section, we will focus on the
theoretical studies which can be considered as an
initial attempt to formulate the first principle of
the emergence of hexagonal grid cells in brain in
the spirit of Feynman’s classification of the study
of natural phenomena. In his Nobel lecture “Grid
Cells and the Entorhinal Map of Space” [18], Ed-
ward Moser suggested to explain the appearance
of hexagonal structures in brain using the results
of the magnetic properties of superconductors [31,
32]. He proposed drawing an analogy between grid
cells in brain and the vortex lattice of superconduc-
tors by Aleksei Abrikosov, 2003 Nobel Prize laureate
in Physics. Actually, A. Abrikosov obtained funda-
mental physical results on the magnetic properties of
superconductors of the second group that preserve
their superconducting properties in strong magnetic
fields [31], while the experimental studies by U. Ess-
mann and H. Trauble [32] confirmed the theoretical

results of A. Abrikosov, as is written in the English-
language scientific literature. The idea of such an
analogy between seemingly so distant fields as the-
oretical physics of superconductors and neurophysio-
logical studies of human and animal brains could be
explained by the fact that Edward Moser received his
first scientific degree in mathematics, statistics, and
programming in 1985. Five years later, he received
two more degrees in psychology and neurophysiology.

The problem of superconductivity has a long, in-
teresting, and sometimes tragic history that goes far
beyond the scope of this review. Here, it seems to
us necessary to emphasize the fact [33] that the first
experimental studies in the field of type II supercon-
ductors were carried out in Kharkiv, at the Ukrainian
Institute of Physics and Technology (UPhTI) by
L.V. Shubnikov, V.I. Khotkevich,b Yu.D. Shepelev,
and Yu.N. Ryabinin [34]. On the basis of these ex-
perimental studies, A.A. Abrikosov (whose scien-
tific superviser was L.D. Landau, who together with
V.L. Ginzburg created the theory of superconductiv-
ity [64] or, as it is sometimes called, the theory of
type I superconductors), developed the theory of type
II superconductors [31], which not only qualitatively,
but also quantitatively confirmed the experimental
results obtained by Shubnikov et al. [34]. Thus, the
truth lies in the fact that, at first, the experimen-
tal data of L.V. Shubnikov with his collaborators
were obtained [34]. 20 years later, the theory of type
II superconductors was created by A.A. Abrikosov
[31], describing these experimental data, and, 10
years later, additional experimental data by U. Es-
smann and H. Trauble [32] appeared, which essen-
tially confirmed the experiments [34] and the theory
[31]. Today, physicists over the world often use the
term “Shubnikov phase” for type II superconductors,
introduced by Pierre-Gilles de Gennes, 1991 Nobel
Prize laureate in Physics for achievements in the field
of soft matter physics which showed that “methods
developed for studying order phenomena in simple
systems can be generalized to more complex forms of
matter, in particular to liquid crystals and polymers”.

The creators of the theory of superconductivity, the
great theoretical physicists L.D. Landau, V.L. Ginz-
burg, and A.A. Abrikosov became the winners of the
Nobel Prize in Physics: Lev Landau – in 1962, Vi-
taly Ginzburg and Aleksei Abrikosov – in 2003. The
great experimental physicist Lev Vasil’evich Shub-
nikov lived a very short 36-year life. He was shot in
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1937 on charges of inviting foreign scientists to the
UPhTI who allegedly engaged in espionage [33]. In
connection with the above, it is necessary to mention
the undoubtedly decisive influence of the Kharkiv pe-
riod of the work of L.D. Landau and the Kyiv pe-
riod of the work of N.N. Bogolyubov, as well as the
Ukrainian theoretical schools created by them for the
further development of physical and mathematical re-
searches in the scientific centers of Kyiv, Kharkiv,
Lviv, Odesa, and other cities known far beyond the
borders of Ukraine, in particular, in the field of study-
ing the influence of fluctuation effects on phase tran-
sitions in various media (see, e.g., [57, 58, 65–76]).

3.5. Hexagonal graphene
(2010 Nobel Prize in Physics)
and dimensional crossover

While discussing hexagons in physical systems, let
us briefly mention the bright scientific discovery re-
lated to the discovery of graphene (2010 Nobel Prize
in Physics), achievements of Ukrainian physicists,
and the dimensional crossover. Graphene is one of
the carbon modifications having a two-dimensional
hexagonal crystal lattice formed by a monolayer of
carbon atoms. The 2010 Nobel Prize in Physics was
awarded to Andrey Geim and Konstantin Novoselov
“for groundbreaking experiments regarding the two-
dimensional material graphene” [16, 17]. Without
dwelling in detail on the unique physical propeties
of graphene, one should note the contribution of
Ukrainian physicists from the Bogolyubov Instutute
for Theoretical Physics (NASU, Kyiv) [77–80] to the
study of these properties which are cited in the papers
of Nobel laureates Aleksei Abrikosov, Andrey Geim,
and Konstantin Novoselov.

Table 3. Values of the lower crossover
dimensionality 𝐷LCD for real systems

Real confined
3-dimentional

systems

Corresponding
limiting cases

Lower crossover
dimensionality

𝐷LCD

Plane-parallel layer,
slitlike pore, membrane,
synaptic cleft, layered
graphite Molecular plane 2

Cylindrical pore,
bar, ionic channel Molecular line 1

Using the notion of the lower crossover dimension-
ality 𝐷LCD (see Table 3, [35–37]), it will be correct
to say that graphene is layered graphite in the limit,
when the value of the lower crossover dimensionality
(LCD) tends to the value 𝐷LCD = 2. The value of
the low crossover dimensionality 𝐷LCD (3rd column
of Table 3) characterizing a certain real system (1st
column) corresponds to such a limiting spatial dimen-
sion of a geometric object (2nd column) at which the
linear size of a system in the directions of its spatial
limitation reaches the molecular size. As an example
of such a 3𝐷 ↔ 2𝐷 dimensional crossover, a bulk
sample of layered graphite takes a form of a graphene
monomolecular plane.

Obviously, the transition between systems of dif-
ferent dimensions (say, from a 3d system to a 2d
one) cannot occur adruptly, but must be a contin-
uous and smooth transition (of course, with the ex-
ception of special cases such as mechanical chipping of
bulk graphite to obtain 2d graphene samples). One of
the conformations of a smooth dimensional crossover
can be a result of computer experiments [81, 82] and
theoretical studies [35–37] describing this dimensional
crossover.

The Kawasaki’s idea from the theory of mode cou-
pling [83] was used in [35–37] to obtain the following
interpolation formula for the effective critical expo-
nents 𝑛 giving a continuous and non-jumping transi-
tion from its 3d 𝑛3 to 2d 𝑛2 numerical values:

𝑛 = 𝑛3 +

(︂
2

𝜋
arctg (𝑎𝑥− 𝑏)− 1

)︂
𝑛3 − 𝑛2

2
, (9)

where 𝑥 = 𝐿/𝐿0 is the dimensionless width of a slit-
like pore or the radius of a cylindrical pore; 𝐿0 is
the linear size of the system in restricted geometry
at which the dimensional crossover occurs; 𝑎 and 𝑏
are the dimensionless parameters characterizing the
slope and position of the 3𝐷 ↔ 2𝐷 crossover.

The shift of the critical temperature 𝑇 pore
C =

= 𝑇C(𝐻) for confined systems in slitlike pores, as
compared with its bulk critical temperature 𝑇 3𝐷 =
= 𝑇C(∞), is given by the following formula (see,
e.g., 81]):

𝑇C(𝐻)

𝑇C(∞)
= 1 + 𝑘𝐻−1/𝜈 , (10)

where 𝑘 is the coefficient of proportionality, and 𝐻 is
the width of the slitlike pore. This formula allows one
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to check the interpolation formula (9) by the results
of computer experiments [81] with accounting for the
size dependence of the critical exponent 𝜈(𝐻) for the
correlation length inside the following interval: 𝜈 =
0.63 for 𝐷 = 3 and 𝜈 = 1 for 𝐷 = 2.

The curve shown in Fig. 3 was obtained in the com-
puter experiment [81]. The size dependence of the
critical temperature 𝑇C(𝐻) in slitlike pores obtained
from (10) is shown in Fig. 4. The agreement between
the computer experiment data and theoretical cal-
culations appears to be quite satisfactory. The au-
thors of [81] pointed to the fact that the beginning
of the 3𝐷 ↔ 2𝐷 dimensional crossover (when the ef-
fective critical exponent 𝜈eff ≈ 1) takes place at the
thickness 𝐻* ≈ 2.4 nm of a slitlike pore filled by wa-
ter molecules with its diameter about 0.3 nm. Thus,
such a crossover thickness 𝐻* corresponds to ap-
proximately 8 monolayers of water molecules in slit-
like pores.

An interesting consequence of the 3𝐷 ↔ 2𝐷 di-
mensional crossover for the effective spatial 𝑑eff and
fractal 𝑑fr dimensionalities in the process of layer-by-
layer ordering was studied in [35, 37] and illustrated in
Fig. 5. The calculation of effective critical exponents
depending on the number 𝑆 of molecular layers was
carried out according to formula (9), while the fol-
lowing formulas were used to calculate the effective
spatial 𝑑eff and fractal 𝑑fr dimensionalities, respec-
tively:

a) the known hyperscaling relation for the spatial
dimensionality

𝑑eff = (2− 𝛼eff)/𝜈eff ; (11)

b) the Mandelbrot formula for the fractal dimen-
sionality

𝑑fr = 𝑑eff − 𝛽eff/𝜈eff . (12)

In (11) and (12), the effective critical exponents 𝛼eff

and 𝛽eff descibe, respectibely, the temperature depen-
dence of the isochoric heat capacity and liquid/vapor
densities on the coexistance curve for the liquid-vapor
system near its critical point. The calculations us-
ing the interpolation formula (9) together with (11),
(12), and experimental values of the critical expo-
nents 𝛼, 𝛽, 𝜈 from papers by Mikhail Anisimov and
his collaborators [84, 85] show that, as a result of the
3𝐷 ↔ 2𝐷 dimensional crossover, the effective criti-
cal exponents 𝛼eff , 𝛽eff and the fractal dimensional-
ity 𝑑fr decrease smoothly from values 𝛼3𝑑 = 0.011,

Fig. 3. Size dependence of the pore critical temperature (com-
puter experiment [82])

Fig. 4. Size dependence of the critical temperature in a slitlike
pore (finite-size scaling + formula (9) for 𝜈)

Fig. 5. The dependence of the effective spatial 𝑑eff and fractal
𝑑fr dimensionalities on the number 𝑆 of molecular layers in a
confined system

𝛽3𝑑 = 0.325 and 𝑑fr = 2.482 for 3-dimentional sys-
tems to values 𝛼2𝑑 = 0 (respectively, to a logarith-
mic singularity), 𝛽2𝑑 = 0.125, and 𝑑fr = 1.875 for
2-dimentional systems.
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To conclude this subsection, let us consider the
question of the role of order-parameter fluctuations
and their dependence on the spatial dimensional-
ity 𝑑. The role of fluctuation effects may be clari-
fied on the basis of the Levanyuk–Ginzburg criterion
[86, 87] of the applicability of the Landau thermody-
namic mean-field theory which neglects fluctuation
effects. In other words, the role of fluctuations can be
estimated by analyzing the Ginzburg number 𝐺𝑖 (see,
e.g., [88, 89]). The Ginzburg number 𝐺𝑖 is determined
through the ratio of the average square deviation of
order-parameter fluctuations ⟨Δ𝜑2⟩ to the square of
the order parameter 𝜑2

0. It can be shown that the fol-
lowing relation holds for the Ginzburg number 𝐺𝑖 in
a 𝑑-dimensional space:

𝐺𝑖 ∝ 𝜑𝑑−4
0 /𝑅𝑑

0, (13)

where 𝑅0 is the radius of the intermolecular inter-
action. As follows directly from formula (13), the
Ginzburg number 𝐺𝑖 ≪ 1 near the points (lines) of
phase trasitions, if 𝑑 ≥ 4 and/or 𝑅0 → ∞. In this
case, fluctuations of the order parameter can be ne-
glected, and the Landau thermodynamic mean-field
theory becomes valid (speaking exactly, with logarith-
mic precision). As is known, this fact is used in the
Fisher–Wilson 𝜖-expansion method, where 𝜖 = 4− 𝑑.

Another important cosequence of formula (13) is
the fact that, as the spatial dimensionality 𝑑 de-
creases, the role of order-parameter fluctuations is
enhanced. Indeed, the order parameter tends to zero
while approaching the phase transition points (lines),
and the Ginzburg number 𝐺𝑖 and, accordingly, the
role of fluctuation effects grow, as the spatial dimen-
sion 𝑑 decreases in (13), since 𝑑−4 is negative and in-
creases in modulus. Obviously, an increase in fluctua-
tion effects should be taken into account when study-
ing the phase transions in two-dimensional graphene.

4. Conclusions

This review paper is aimed at formulating the
Richard Feynman’s classification of three stages in the
study of natural phenomena and, first of all, the most
important 3rd stage of cognition related to under-
standing the “first principles” that explain the reasons
for the laws describing the experimental data. Here,
we have considered Edward Moser’s idea of a certain
analogy between grid cells in brain and the Abrikosov
vortex lattice in type II superconductors. In addition,

we paid a special attention to the experimental stud-
ies, which led to the discovery of the hexagonal struc-
tures of grid cells in the human and animal brains,
and to the main theoretical provisions that should be
taken into account to formulate the first principle re-
lated to the proposed Feynman’s classification, as well
as to describe the physical parameters of the human
brain and its medical applications, features of the pro-
cess of generation and propagation of the action po-
tential, and the electrical and chemical natures of the
intercellular interection. It is these essential factors
that will later enable us to show that the grid cells
in a chemically interacting system of neurons rather
belong to the universality class of real liquid-vapor
systems with a scalar order parameter.
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ФЕЙНМАНIВСЬКА КЛАСИФIКАЦIЯ ПРИРОДНИХ
ЯВИЩ I ФIЗИЧНI АСПЕКТИ ВIДКРИТТЯ, ЗА ЯКЕ
БУЛО ПРИСУДЖЕНО НОБЕЛIВСЬКУ ПРЕМIЮ
З ФIЗIОЛОГIЇ АБО МЕДИЦИНИ 2014 РОКУ

Ця оглядова стаття присвячена формулюванню класифi-
кацiї трьох етапiв дослiдження природних явищ Рiчарда
Фейнмана та застосуванню цiєї класифiкацiї до дивовижно-
го вiдкриття клiтин гексагональної сiтки, що утворюють
систему позицiонування в мозку, яке було удостоєно Нобе-
лiвської премiї 2014 року з фiзiологiї або медицини. Про-
блема “grid cells” в мозку розглядається з урахуванням (а)

експериментальних дослiджень, якi привели до появи ше-
стикутникiв у мозку людини i тварин, (б) обговорення про-
блеми генерацiї та поширення потенцiалу дiї вздовж нерво-
вого волокна, (в) фiзичних параметрiв людського мозку та
їх медичного застосування в методi гiпертермiї для лiкува-
ння злоякiсних пухлин, (г) теоретичних мiркувань з вико-
ристанням певної аналогiї мiж клiтинами сiтки в мозку та
вихровою ґраткою Абрикосова в надпровiдниках типу II i
(д) гексагональний графен i розмiрний кросовер.

Ключ о в i с л о в а: класифiкацiя Фейнмана, фiзичнi пара-
метри головного мозку, метод гiпертермiї, струми провiд-
ностi та iндукцiї, вихрова ґратка Абрикосова.
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