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GENERALIZED UNCERTAINTY
PRINCIPLE AND DELTA-FUNCTION POTENTIAL

In recent studies, the Heisenberg uncertainty principle has been modified into the generalized
uncertainty principle (GUP) to explain gravity from a quantum mechanical perspective. Here,
we study the GUP corrections to the bound-state energy eigenvalues for a delta-function poten-
tial well and a double delta-function potential well using nonrelativistic quantum mechanical
tools. Transmission probabilities for scattering states have also been derived and compared with
the unmodified cases for both systems.
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1. Introduction

Explaining the gravitational interaction from the
quantum mechanical perspective, as well as the unifi-
cation of it with the other fundamental interactions, is
a big challenge for modern theoretical physics. There
are several approaches to quantum gravity such as
the string theory [1], loop quantum gravity [2|, dou-
bly special relativity [3], etec. which lead to a min-
imum measurable length near the Planck scale. In
a study, the Heisenberg uncertainty principle has
been modified to the generalized uncertainty principle
(GUP) [4] which predicts the existence of the mini-
mal length scale. The consequent modification of the
position-momentum commutation relation has been
seen with a momentum-dependent result. The time-
independent Schrodinger equation has also been mod-
ified accordingly. The GUP affects many quantum
mechanical phenomena such as a harmonic oscillator
[5], the hydrogen atom problem [6], angular momen-
tum algebra [7], step and barrier potential wells [§],
quantum tunneling [9], etc.

In 1995, Kempf, Mangano, and Mann first proosed
a modified commutation relation between the one-
dimensional position and the momentum as [10]

[z,p] = ih[1 + Bp*), (1)

where (8 is a very small parameter with dimension of
momentum 2. It depends on Planck’s constant and
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Planck’s length. There was another group of scientists
who tried to modify the standard Poisson bracket by
deforming the classical Newtonian mechanics like a
quantum commutator [11]

{z,p} = [1+ Bp°]. (2)

There are many approaches to the GUP. The 3D
quantum gravity theories modify this quantum com-
mutator as [§]

[zi,pj] = ih[6:; + BSi;p° + 2Bpip;]- (3)
Following this modification, GUP becomes [8]

b b p > ML+ B8 p)? + ()} +

+26{a p +%pz->2}]- (4)
However, by defining

T = Toi, (5)
we have

pi = poi (1 + Bpp), (6)

with p3 = Z?=1 Poj Poj, where xq; and p; satisfy the
well-known commutation relations

(7)

If we consider a particle of mass m and energy F
with a potential V' (z), the ordinary time-independent
Schréodinger equation becomes

n o d?
(2mdw2+v)\1:_E\11, (8)
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where U(z) is the wave function associated to this
particle. Using Eq. (7), the ordinary time-indepen-
dent Schrédinger equation is modified by GUP (keep-
ing only terms up to the order of 3) [9] as

L
m

From Eq. (9), it is clear that, under the GUP, the
time-independent Schrédinger equation acquires the

%;) which can be treated as a per-

turbed Hamiltonian to find the solution of this GUP-
modified time-independent Schrodinger equation.
This work is arranged as follows. In Sect. 2, we
will discuss the GUP corrections to the bound-
state energy eigenvalues for the delta-function po-
tential. Some transmission probabilities for scattering
states will be derived and compared with the unmod-
ified cases. Following the same procedure, we study
the case of a double delta-function potential well in
Sect. 3. Finally, we present our conclusions in Sect. 4.

extra term (%ﬁ‘l

2. GUP and Delta-Function Potential

The delta-function is an infinitesimally narrow spike
at the origin (z = 0) with the infinite height. Its def-
inite integral is unity by definition:

(o]

/ §(z) dx = 1.

— 00

(10)

So, the spike of a unit area at x = a is denoted as
d(z — a). For any arbitrary function f(z),

[ 1@ - ayds = (@) (1)
Let us consider the potential of the form
Vi(z) =—ad(x), (12)

where « is some positive constant with the dimen-
sion of [energy x length|. Now, the time-independent
Schrodinger equation under GUP for a delta-function
well reads

B 3rv B 4 d*U

- gt E 1) U = 1
2m dz?2 m  dz? +(E+ad(z) 0 (13)
R\ d*v  2m

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 8

where the Planck length (Ip) = v/28h2 « 1073° m.
From this time-independent Schrédinger equation un-
der GUP, the solutions for both bound states (£ < 0)
and scattering states (E > 0) can be derived as
follows.

Let us start with bound states (E < 0). For both
regions z < 0 and & > 0, the potential V(x) = 0, and,
at x = 0, the potential V'(z) has an infinite spike. As

(ﬁh‘*%) is the perturbed Hamiltonian H ', the so-

m
lutions for the unperturbed bound-state energy (Ep)
and the wave function (¥q) are [12]

Eoz—%f, Uy = ‘/?e*%‘wl. (15)
Now, the first-order correction to the energy,

ma2\’
E' = (Vg | H' | ¥y) = 48m (2%2> (16)

Therefore, only one bound-state energy is allowed:

2 2\2
E_E0+E_mo‘+4ﬁm<mo‘). (17)

2h2 2h2
Now, at the scattering states (E > 0), for both the
regions ¢ < 0 and x > 0, the potential V(z) = 0.
So, the GUP-modified time-independent Schrédinger
equation (TISE) reads

d*v d*v
W; ~lu dx41 TR0 =0: <0, (18)
4>V d'v
A (19)

where k? = 22 E. Following the method of [8] in solv-
ing this fourth-order differential equation in a general
way by neglecting the exponentially decaying term
(~e~1®l/ter) from the wave function due to the quick
drop for a very small value of [,; or Planck length, we
find the following physical solution set for both of the
regions:

Uy = Ae’¥'* 4 BemF'r, 4 <, (20)

Uy = Fel¥* 4 Ge™ ™. 1>0, (21)

where k' = k(1 — Bh%k?). Applying the boundary
conditions.

I. ¥ will be always continuous at x = 0;
U,(0) ="5(0)= A+ B=F+G. (22)
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II. ‘é—‘i’ is also continuous except at the point z = 0,
where the potential is infinite. Now, integrating the
GUP-modified TISE from —e to +¢ and later setting
the limit of € tends to zero, we get:

€

[ raw , [ dU
l%[/dx?dx_lpl/dx‘ldx—F

2m /
+ﬁ (E—i—aé(x))\ll(x)dx] =0
So,

. av 9 1 v 2ma

e—0 e—0
where
dv
lim A () —ik'(F-G—A+B);
e—0 d,’I,‘

3y
lim A () =ik®(F -G —A+B).
X

Meanwhile, Uy = A + B. So, we get

. 2ma 1
Let us consider £ = %W7
pl
F—G=AQ1+142) — B(1 —1i26). (25)

Here, A is the amplitude of the incident wave, B
is the amplitude of the reflected wave, and F is the
amplitude of the transmitted wave. As there is no re-
flection of the wave from the right, G will be zero:
G =0.

Solving Egs. (22) and (25), we obtain

ié§ L1
l—ifA’ F_l—i§
570

B= A (26)

Now, the reflection coefficient (Rgup) and transmis-
sion coefficient (Tgup) are

peen_ (BY(BY_ € _ 1
GUP — A A _1+§2_1+h4(k’+l§lk’3)2’

(27)

o= () (3) = e o
GUP = || \7] = = .
AJNA) 1€ 14 ey

(28)

The sum of these two probabilities
Rgup + Tgup = 1.

Now, if we take some approximation due to the very
small value of {1, we find the expressions of the above

probabilities:
1

Rgup = RA (k2412 k4 — 412 kS) (29)
m2a?
1

Toup = 1 m2a2 (30)

RA (K2 +12, k4 — 412, kF)

From the above expressions, we can get more than
one value of the energy for which Rgyp becomes
1, and Tgup becomes 0, as k' = k(1 — 8h%k?) and
kK = Q,TTE To find those values, we are interested
to use only the accurate expression of Egs. (27) and
(28). From them, we found that there is a drastic
change in the probabilities for a specific value of the
energy, E, = ﬁ for the GUP cases. Furthermore,
for 8 = 0, these two probabilities are reduced to the

non-GUP case [12] with
1
Ty 2mE

ma?

(31)

1

= ma? ’
1 + 2h2E

T (32)

To compare the relative behaviour of these probabil-
ities, we represent Eqs. (27) and (28) in Figs. 1 and
2 using Planck units with A =1, m = 1, « = 1 with
the energy on the horizontal axis.

3. GUP and Double
Delta-Function Potential

Let us consider the equation with the attractive dou-
ble delta-function potential well as

V(z)=—-ald(z+a)+d(x—a),
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where « is the same positive constant that has
the dimension of [energy x length|. Now, we have
to solve the GUP-modified time-independent Schro-
dinger equation (9) following the method given in [8].
First, we consider the bound state (E < 0). The so-
lution takes the form

Ae= Nz,

x> a,
W(z) = ¢ Bt + Ce¥*: —g <z <a, (34)
Dek'w . r < —a,

where k' = k(1 + Bh2k?), and k = 7“2”“3 Now, in
view of the boundary condition, the wave function ¥
will be continuous at x = +a, while there must be a
discontinuity at x = +a for the derivatives of the wave
function: (‘(%’). Applying the boundary conditions, we
have

AeVa = BeF'a 4 CeF'a,

De Fa = Be=Fa 4 Cek'a,

Belo — Ce ¥ = (2y —1)Ae ¥,

—De ¥4 (Be K@ — Cek'®) = (1 — 29)De F'o,

where v = W@m Solving this set of equa-
tions, we get

C*=B?=C=4+B. (35)
Here, the parity comes due to the symmetry of the po-
tential. So, we have both even and odd solutions. For
the even solution (C = B), we get D = A, and the
corresponding solution is given by

Ae= e, x> a,
U(z) =< B(eF* +e o). —a<az<a, (36)
Aek'w x < —a.

Applying the boundary condition, this set of even so-
lutions gives a transcendental equation

/ 1 R2k’ 2BRAK"
6_2’““:——1:——/67—1. (37)
5y mao ma
For 2k’a = z, Eq. (37) becomes
e =cz—p® —1, (38)
with ¢ = 2;;;2@0[7 p = %fjc. These coefficients become

K2 o 2a?
and 8 = 5. Now,

unity at the value of o = 5—

Eq. (38) becomes
e F =221 (39)
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Fig. 1. Reflection coefficient for 8 = 0.01 (blue line) and 8 =0
(red line) [Eq. (27)]
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Fig. 2. Transmission coefficient for 8 = 0.01 (solid line) and
B =0 (red line) [Eq. (28)]
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Fig. 3. Graphs of Eq. (39) taking e~*(blue) and z — 23—
—1 (red)

(See Fig. 3). Solving the above equation, we get two
approximate solutions:

z1 ~ —4.325: 2o &=~ —2.51.

Further, in view of Eq. (38), we note that four pos-
sibilities depend on the values of positive parameters
c and p. Now, we can find the proper solutions of that
equation as (i) ¢ < 1 and p < 1(c < p or ¢ > p), (ii)
¢c<landp>1, (iii) ¢ > 1 and p < 1 and (iv)
¢>1and p > 1(c < p or ¢ > p). Inspecting each of
the above cases, we found that there is no possible
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Fig. 4. Graphs of Eq. (43) taking e~ # (blue) and 1 — z+
+22 (red)
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Fig. 5. Transmission coefficient for 8 = 0.01 (blue line) GUP

case and B = 0 (red line) non-GUP case [Eq. (45)]

solution of Eq. (38) for case (i), but we have two real
possible solutions for the other three remaining cases
(i), (iii), and (iv).

The bound-state energy for the even wave function
can be calculated from the equation 2k’a = z,

88m%\ 2m 22
( 2 >E (hQ)EALa?NO'

Solving the above quadratic equation, we have only
one possible bound-state energy, which is

22h2

8ma?’

(40)

E~-— (41)
Now, let us consider Eq. (38). The possible energy
eigenvalues of the even wave function for the double
delta-function potential well are:

h? h?
BN = —(4.325)——, ESY°" = —(2.51)?

8ma?’ 8ma?’
Similarly, for the odd solution (C' = —B), we get
D = — A, and the corresponding solution is given by
Ae Kz, T > a,
U(z) = B(e’“liC + e‘k,x): —a <z <a, (42)
—Aek' T < —a.
572

With regard for the boundary conditions, this set of
odd solutions gives a transcendental equation

e =1—cz+pz®;, z=2ka. (43)

Putting the same conditions as previously, we can
again inspect each of the cases. Then we found that
there is only one possible solution of Eq. (43) for
¢ < 1, and we have three possible solutions for ¢ > 1.
For ¢ = 1 and p = 1, Eq. (43) has the solution:
z = 0. So, for odd one, the possible energy eigenvalue
is: Eodd =0,

Similarly to the above case, if we go to the scatter-
ing state and solve Eq. (9), we can get the solution as:

Feik’w + Gefik'z. < —a

. b

Heik':c +Iefk’z.
ik 1

Jek' x> a,

where k' = k(1—3h%k?). Applying the boundary con-
ditions, we get the transmission coefficient

V(r) = —a<z<a, (44)

89/4
TGUP = 14 12 12 ! a3 ’
(89’4 +4¢"?+1) + (49’2 —1) cos ¢ — 4¢’ sin ¢

(45)

where

, R2(K' + 28R%K'3) N h%(k + Bh2k® — 68%h1kD)
- 2ma - 2mao
and

¢ = 4a(k’' + 26R*K"3) =~ da(k + 281k — 65214 kS).

Here, we also find a similar drop in the transmis-
sion coefficient, as we got it under the variation of
the single delta-function. The energy is E. = ﬁ
for GUP.

To compare the relative behavior of Tqup, we plot
the Eq. (45) in Fig. 5 using Planck units with i =1,
m =1, « = 1 (with the energy on the horizontal axis).

4. Conclusions

In this paper, we have tried to explore quantum grav-
ity effects through GUP with consideration of the
momentum equation (6) which is based on non-local
quantum mechanics. Using the GUP-modified time-
independent Schrédinger equation, the delta-function
potential has been used to find the bound-state en-
ergy and to derive the scattering-state transmission
coefficient. Later, as a special case, the GUP-shifted
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bound state energy and GUP-shifted scattering-state
transmission coefficient have been calculated for the
double delta-function potential well. We have found
an interesting result that, at a particular value of the
energy, F. = ﬁ, the probabilities change drasti-
cally for both the cases. We hope that this modifica-
tion will help the scientific community in their future
work on GUP and will give some more interesting
results.
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C. Hapamanik, A. Hae, C. Caxy

V3ATAJTLHEHUI [TPUHITATI
HEBU3HAYEHOCTI TA ITIOTEHIIIAJI
Y BUIJIAII AEJTHTA-OYHKITIT

Hemonasuo npunnun HeBusHavyeHocTi [aitsenbepra Oyso y3a-
ranbaeno (YITH) miua Toro, mo6 nosicHuTH rpasitaiiio B Me-
2KaxX KBaHTOBOI mexaHiku. BuxkopucroByioun YIIH Ta meromn
HEPEeJIITUBICTUYHOI KBAHTOBOI MEXaHIKM, MU 3HAWUIIIA BJIaCHL
3HAYEHHS €HEPril 3B’d3aHUX CTAHIB I MOTEHI[AJbHOI MM,
10 Ma€ BUTJISA JeIbTa-PYyHKIIT ab0 MoABIHHOT AebTa-dyHKII.
OTrpumano HMOBIPHOCTI IIPOXOKEHHS AJIsI CTAHIB PO3CiloBaH-
HsI Ta IPOBEJIEHO 1X NOPIBHAHHSA 3 pe3yJIbTaTaMy, OTPUMAaHUMU
y Bumagkax 6e3 mMomudikariil IPUHIUIY HEBH3HAYEHOCTI IJIst
0b60x cucreM

Katowoei caoea: y3arajJbHEHHH NPUHINI HEBU3HAYUEHO-
CTi, MoTeHIjaIbHA IMa Y BUIVISA] J1esIbTa-DyHKIIT, MiHIMaIbHa

JIOBXKHWHA.
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