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GENERALIZED UNCERTAINTY
PRINCIPLE AND DELTA-FUNCTION POTENTIAL

In recent studies, the Heisenberg uncertainty principle has been modified into the generalized
uncertainty principle (GUP) to explain gravity from a quantum mechanical perspective. Here,
we study the GUP corrections to the bound-state energy eigenvalues for a delta-function poten-
tial well and a double delta-function potential well using nonrelativistic quantum mechanical
tools. Transmission probabilities for scattering states have also been derived and compared with
the unmodified cases for both systems.
K e yw o r d s: generalized uncertainty principle, delta-function potential well, minimal length.

1. Introduction

Explaining the gravitational interaction from the
quantum mechanical perspective, as well as the unifi-
cation of it with the other fundamental interactions, is
a big challenge for modern theoretical physics. There
are several approaches to quantum gravity such as
the string theory [1], loop quantum gravity [2], dou-
bly special relativity [3], etc. which lead to a min-
imum measurable length near the Planck scale. In
a study, the Heisenberg uncertainty principle has
been modified to the generalized uncertainty principle
(GUP) [4] which predicts the existence of the mini-
mal length scale. The consequent modification of the
position-momentum commutation relation has been
seen with a momentum-dependent result. The time-
independent Schrödinger equation has also been mod-
ified accordingly. The GUP affects many quantum
mechanical phenomena such as a harmonic oscillator
[5], the hydrogen atom problem [6], angular momen-
tum algebra [7], step and barrier potential wells [8],
quantum tunneling [9], etc.

In 1995, Kempf, Mangano, and Mann first proosed
a modified commutation relation between the one-
dimensional position and the momentum as [10]

[𝑥, 𝑝] = 𝑖~ [1 + 𝛽𝑝2], (1)

where 𝛽 is a very small parameter with dimension of
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚−2. It depends on Planck’s constant and
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Planck’s length. There was another group of scientists
who tried to modify the standard Poisson bracket by
deforming the classical Newtonian mechanics like a
quantum commutator [11]

{𝑥, 𝑝} = [1 + 𝛽𝑝2]. (2)

There are many approaches to the GUP. The 3D
quantum gravity theories modify this quantum com-
mutator as [8]

[𝑥𝑖, 𝑝𝑗 ] = 𝑖~ [𝛿𝑖𝑗 + 𝛽𝛿𝑖𝑗𝑝
2 + 2𝛽𝑝𝑖𝑝𝑗 ]. (3)

Following this modification, GUP becomes [8]

M 𝑥𝑖 M 𝑝𝑖 ≥
~
2

[︀
1 + 𝛽{(M 𝑝)2 + ⟨𝑝⟩2}+

+2𝛽{M 𝑝2𝑖 + ⟨𝑝𝑖⟩2}
]︀
. (4)

However, by defining

𝑥𝑖 = 𝑥0𝑖, (5)

we have

𝑝𝑖 = 𝑝0𝑖 (1 + 𝛽𝑝20), (6)

with 𝑝20 =
∑︀3

𝑗=1 𝑝0𝑗 𝑝0𝑗 , where 𝑥0𝑖 and 𝑝0𝑖 satisfy the
well-known commutation relations

[𝑥0𝑖, 𝑝0𝑖] = 𝑖}𝛿𝑖𝑗 and 𝑝0𝑖 = −𝑖}
𝑑

𝑑𝑥0𝑖
. (7)

If we consider a particle of mass 𝑚 and energy 𝐸
with a potential 𝑉 (𝑥), the ordinary time-independent
Schrödinger equation becomes(︂
− }2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉

)︂
Ψ = 𝐸Ψ, (8)
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where Ψ(𝑥) is the wave function associated to this
particle. Using Eq. (7), the ordinary time-indepen-
dent Schrödinger equation is modified by GUP (keep-
ing only terms up to the order of 𝛽) [9] as(︂
− }2

2𝑚

𝑑2

𝑑𝑥2
+

𝛽

𝑚
}4

𝑑4

𝑑𝑥4
+ 𝑉 (𝑥)

)︂
Ψ = 𝐸Ψ. (9)

From Eq. (9), it is clear that, under the GUP, the
time-independent Schrödinger equation acquires the
extra term

(︁
𝛽
𝑚}4 𝑑4

𝑑𝑥4

)︁
which can be treated as a per-

turbed Hamiltonian to find the solution of this GUP-
modified time-independent Schrödinger equation.

This work is arranged as follows. In Sect. 2, we
will discuss the GUP corrections to the bound-
state energy eigenvalues for the delta-function po-
tential. Some transmission probabilities for scattering
states will be derived and compared with the unmod-
ified cases. Following the same procedure, we study
the case of a double delta-function potential well in
Sect. 3. Finally, we present our conclusions in Sect. 4.

2. GUP and Delta-Function Potential

The delta-function is an infinitesimally narrow spike
at the origin (𝑥 = 0) with the infinite height. Its def-
inite integral is unity by definition:

∞∫︁
−∞

𝛿(𝑥) 𝑑𝑥 = 1. (10)

So, the spike of a unit area at 𝑥 = 𝑎 is denoted as
𝛿(𝑥− 𝑎). For any arbitrary function 𝑓(𝑥),

∞∫︁
−∞

𝑓(𝑥) 𝛿(𝑥− 𝑎) 𝑑𝑥 = 𝑓(𝑎). (11)

Let us consider the potential of the form

𝑉 (𝑥) = −𝛼 𝛿(𝑥), (12)

where 𝛼 is some positive constant with the dimen-
sion of [energy × length]. Now, the time-independent
Schrödinger equation under GUP for a delta-function
well reads

}2

2𝑚

𝑑2Ψ

𝑑𝑥2
− 𝛽

𝑚
~4

𝑑4Ψ

𝑑𝑥4
+ (𝐸 + 𝛼 𝛿(𝑥))Ψ = 0, (13)

𝑑2Ψ

𝑑𝑥2
− 𝑙2𝑝𝑙

𝑑4Ψ

𝑑𝑥4
+

2𝑚

~2
(𝐸 + 𝛼 𝛿(𝑥))Ψ = 0, (14)

where the Planck length (𝑙pl) =
√︀

2𝛽~2 v 10−35 m.
From this time-independent Schrödinger equation un-
der GUP, the solutions for both bound states (𝐸 < 0)
and scattering states (𝐸 > 0) can be derived as
follows.

Let us start with bound states (𝐸 < 0). For both
regions 𝑥 < 0 and 𝑥 > 0, the potential 𝑉 (𝑥) = 0, and,
at 𝑥 = 0, the potential 𝑉 (𝑥) has an infinite spike. As(︁
𝛽
𝑚~4 𝑑4Ψ

𝑑𝑥4

)︁
is the perturbed Hamiltonian 𝐻

′
, the so-

lutions for the unperturbed bound-state energy (𝐸0)
and the wave function (Ψ0) are [12]

𝐸0 = − 𝑚𝛼2

2}2
, Ψ0 =

√
𝑚𝛼

~
𝑒−

𝑚𝛼
}2 |𝑥|. (15)

Now, the first-order correction to the energy,

𝐸′ = ⟨Ψ0 | 𝐻 ′ | Ψ0⟩ = 4𝛽𝑚

(︂
𝑚𝛼2

2}2

)︂2
. (16)

Therefore, only one bound-state energy is allowed:

𝐸 = 𝐸0 + 𝐸
′
= − 𝑚𝛼2

2~2
+ 4𝛽𝑚

(︂
𝑚𝛼2

2~2

)︂2
. (17)

Now, at the scattering states (𝐸 > 0), for both the
regions 𝑥 < 0 and 𝑥 > 0, the potential 𝑉 (𝑥) = 0.
So, the GUP-modified time-independent Schrödinger
equation (TISE) reads

𝑑2Ψ1

𝑑𝑥2
− 𝑙2𝑝𝑙

𝑑4Ψ1

𝑑𝑥4
+ 𝑘2Ψ1 = 0 : 𝑥 < 0, (18)

𝑑2Ψ2

𝑑𝑥2
− 𝑙2𝑝𝑙

𝑑4Ψ2

𝑑𝑥4
+ 𝑘2Ψ2 = 0 : 𝑥 > 0, (19)

where 𝑘2 = 2𝑚
~2 𝐸. Following the method of [8] in solv-

ing this fourth-order differential equation in a general
way by neglecting the exponentially decaying term
(∼𝑒−|𝑥|/𝑙pl) from the wave function due to the quick
drop for a very small value of 𝑙pl or Planck length, we
find the following physical solution set for both of the
regions:

Ψ1 = 𝐴𝑒𝑖𝑘
′𝑥 +𝐵𝑒−𝑖𝑘′𝑥 : 𝑥 < 0, (20)

Ψ2 = 𝐹𝑒𝑖𝑘
′𝑥 +𝐺𝑒−𝑖𝑘′𝑥 : 𝑥 > 0, (21)

where 𝑘′ = 𝑘(1 − 𝛽}2𝑘2). Applying the boundary
conditions.

I. Ψ will be always continuous at 𝑥 = 0;

Ψ1(0) = Ψ2(0) ⇒ 𝐴+𝐵 = 𝐹 +𝐺. (22)
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II. 𝑑Ψ
𝑑𝑥 is also continuous except at the point 𝑥 = 0,

where the potential is infinite. Now, integrating the
GUP-modified TISE from −𝜖 to +𝜖 and later setting
the limit of 𝜖 tends to zero, we get:

lim
𝜖→0

[︃ 𝜖∫︁
−𝜖

𝑑2Ψ

𝑑𝑥2
𝑑𝑥− 𝑙2𝑝𝑙

𝜖∫︁
−𝜖

𝑑4Ψ

𝑑𝑥4
𝑑𝑥+

+
2𝑚

}2

𝜖∫︁
−𝜖

(𝐸 + 𝛼𝛿(𝑥))Ψ(𝑥) 𝑑𝑥

]︃
= 0.

So,

lim
𝜖→0

M

(︂
𝑑Ψ

𝑑𝑥

)︂
− 𝑙2𝑝𝑙 lim

𝜖→0
M

(︂
𝑑3Ψ

𝑑𝑥3

)︂
=

= −2𝑚𝛼

}2
lim
𝜖→0

[︃ 𝜖∫︁
−𝜖

𝛿(𝑥)Ψ(𝑥) 𝑑𝑥

]︃
.

Equation (11) gives

lim
𝜖→0

M

(︂
𝑑Ψ

𝑑𝑥

)︂
− 𝑙2𝑝𝑙 lim

𝜖→0
M

(︂
𝑑3Ψ

𝑑𝑥3

)︂
= −2𝑚𝛼

~2
Ψ(0), (23)

where

lim
𝜖→0

M

(︂
𝑑Ψ

𝑑𝑥

)︂
= 𝑖 𝑘′(𝐹 −𝐺−𝐴+𝐵);

lim
𝜖→0

M

(︂
𝑑3Ψ

𝑑𝑥3

)︂
= 𝑖 𝑘′3(𝐹 −𝐺−𝐴+𝐵).

Meanwhile, Ψ0 = 𝐴+𝐵. So, we get

(𝐹 −𝐺−𝐴+𝐵) = 𝑖
2𝑚𝛼

}2𝑘′

1

(1 + 𝑙2𝑝𝑙𝑘
′2)

(𝐴+𝐵). (24)

Let us consider 𝜉 = 𝑚𝛼
}2𝑘′

1
(1+𝑙2𝑝𝑙𝑘

′2)
,

𝐹 −𝐺 = 𝐴(1 + 𝑖2𝜉)−𝐵(1− 𝑖 2𝜉). (25)

Here, 𝐴 is the amplitude of the incident wave, 𝐵
is the amplitude of the reflected wave, and 𝐹 is the
amplitude of the transmitted wave. As there is no re-
flection of the wave from the right, 𝐺 will be zero:
𝐺 = 0.

Solving Eqs. (22) and (25), we obtain

𝐵 =
𝑖𝜉

1− 𝑖𝜉
𝐴; 𝐹 =

1

1− 𝑖𝜉
𝐴. (26)

Now, the reflection coefficient (𝑅GUP) and transmis-
sion coefficient (𝑇GUP) are

𝑅GUP =

(︂
𝐵

𝐴

)︂*(︂
𝐵

𝐴

)︂
=

𝜉2

1 + 𝜉2
=

1

1 +
~4(𝑘′+𝑙2𝑝𝑙𝑘

′3)2

𝑚2𝛼2

,

(27)

𝑇GUP =

(︂
𝐹

𝐴

)︂*(︂
𝐹

𝐴

)︂
=

1

1 + 𝜉2
=

1

1 + 𝑚2𝛼2

~4(𝑘′+𝑙2𝑝𝑙𝑘
′3)2

.

(28)
The sum of these two probabilities

𝑅GUP + 𝑇GUP = 1.

Now, if we take some approximation due to the very
small value of 𝑙pl, we find the expressions of the above
probabilities:

𝑅GUP =
1

1 +
}4(𝑘2+𝑙2𝑝𝑙𝑘

4−4𝑙4𝑝𝑙𝑘
6)

𝑚2𝛼2

, (29)

𝑇GUP =
1

1 + 𝑚2𝛼2

}4(𝑘2+𝑙2𝑝𝑙𝑘
4−4𝑙4𝑝𝑙𝑘

6)

. (30)

From the above expressions, we can get more than
one value of the energy for which 𝑅GUP becomes
1, and 𝑇GUP becomes 0, as 𝑘′ = 𝑘(1 − 𝛽}2𝑘2) and
𝑘2 = 2𝑚

}2 𝐸. To find those values, we are interested
to use only the accurate expression of Eqs. (27) and
(28). From them, we found that there is a drastic
change in the probabilities for a specific value of the
energy, 𝐸𝑐 = 1

2𝑚𝛽 for the GUP cases. Furthermore,
for 𝛽 = 0, these two probabilities are reduced to the
non-GUP case [12] with

𝑅 =
1

1 + 2~2𝐸
𝑚𝛼2

, (31)

𝑇 =
1

1 + 𝑚𝛼2

2~2𝐸

. (32)

To compare the relative behaviour of these probabil-
ities, we represent Eqs. (27) and (28) in Figs. 1 and
2 using Planck units with } = 1, 𝑚 = 1, 𝛼 = 1 with
the energy on the horizontal axis.

3. GUP and Double
Delta-Function Potential

Let us consider the equation with the attractive dou-
ble delta-function potential well as

𝑉 (𝑥) = −𝛼 [𝛿(𝑥+ 𝑎) + 𝛿 (𝑥− 𝑎)], (33)
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where 𝛼 is the same positive constant that has
the dimension of [energy × length]. Now, we have
to solve the GUP-modified time-independent Schrö-
dinger equation (9) following the method given in [8].
First, we consider the bound state (𝐸 < 0). The so-
lution takes the form

Ψ(𝑥) =

⎧⎪⎨⎪⎩
𝐴𝑒−𝑘′𝑥 : 𝑥 > 𝑎,

𝐵𝑒𝑘
′𝑥 + 𝐶𝑒−𝑘′𝑥 : −𝑎 ≤ 𝑥 ≤ 𝑎,

𝐷𝑒𝑘
′𝑥 : 𝑥 < −𝑎,

(34)

where 𝑘′ = 𝑘(1 + 𝛽~2𝑘2), and 𝑘 ≡
√
−2𝑚𝐸
} . Now, in

view of the boundary condition, the wave function Ψ
will be continuous at 𝑥 = ±𝑎, while there must be a
discontinuity at 𝑥 = ±𝑎 for the derivatives of the wave
function:

(︀
𝑑Ψ
𝑑𝑥

)︀
. Applying the boundary conditions, we

have⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝑒−𝑘′𝑎 = 𝐵𝑒𝑘

′𝑎 + 𝐶𝑒−𝑘′𝑎,

𝐷𝑒−𝑘′𝑎 = 𝐵𝑒−𝑘′𝑎 + 𝐶𝑒𝑘
′𝑎,

𝐵𝑒𝑘
′𝑎 − 𝐶𝑒−𝑘′𝑎 = (2𝛾 − 1)𝐴𝑒−𝑘′𝑎,

−𝐷𝑒−𝑘′𝑎 + (𝐵𝑒−𝑘′𝑎 − 𝐶𝑒𝑘
′𝑎) = (1− 2𝛾)𝐷𝑒−𝑘′𝑎,

where 𝛾 = 𝑚𝛼
~2(𝑘′−2𝛽~2𝑘′3) . Solving this set of equa-

tions, we get

𝐶2 = 𝐵2 ⇒ 𝐶 = ±𝐵. (35)

Here, the parity comes due to the symmetry of the po-
tential. So, we have both even and odd solutions. For
the even solution (𝐶 = 𝐵), we get 𝐷 = 𝐴, and the
corresponding solution is given by

Ψ(𝑥) =

⎧⎪⎨⎪⎩
𝐴𝑒−𝑘′𝑥 : 𝑥 > 𝑎,

𝐵(𝑒𝑘
′𝑥 + 𝑒−𝑘′𝑥) : −𝑎 ≤ 𝑥 ≤ 𝑎,

𝐴𝑒𝑘
′𝑥 : 𝑥 < −𝑎.

(36)

Applying the boundary condition, this set of even so-
lutions gives a transcendental equation

𝑒−2𝑘′𝑎 =
1

𝛾
− 1 =

~2𝑘′

𝑚𝛼
− 2𝛽~4𝑘′3

𝑚𝛼
− 1. (37)

For 2𝑘′𝑎 = 𝑧, Eq. (37) becomes

𝑒−𝑧 = 𝑐𝑧 − 𝑝𝑧3 − 1, (38)

with 𝑐 = ~2

2𝑎𝑚𝛼 , 𝑝 = 𝛽~2

2𝑎2 𝑐. These coefficients become
unity at the value of 𝛼 = }2

2𝑚𝑎 and 𝛽 = 2𝑎2

~2 . Now,
Eq. (38) becomes

𝑒−𝑧 = 𝑧 − 𝑧3 − 1. (39)

Fig. 1. Reflection coefficient for 𝛽 = 0.01 (blue line) and 𝛽 = 0

(red line) [Eq. (27)]

Fig. 2. Transmission coefficient for 𝛽 = 0.01 (solid line) and
𝛽 = 0 (red line) [Eq. (28)]

Fig. 3. Graphs of Eq. (39) taking 𝑒−𝑧(blue) and 𝑧 − 𝑧3−
−1 (red)

(See Fig. 3). Solving the above equation, we get two
approximate solutions:

𝑧1 ≈ −4.325: 𝑧2 ≈ −2.51.

Further, in view of Eq. (38), we note that four pos-
sibilities depend on the values of positive parameters
𝑐 and 𝑝. Now, we can find the proper solutions of that
equation as (i) 𝑐 < 1 and 𝑝 < 1(𝑐 < 𝑝 or 𝑐 > 𝑝), (ii)
𝑐 < 1 and 𝑝 > 1, (iii) 𝑐 > 1 and 𝑝 < 1 and (iv)
𝑐 > 1 and 𝑝 > 1(𝑐 < 𝑝 or 𝑐 > 𝑝). Inspecting each of
the above cases, we found that there is no possible
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Fig. 4. Graphs of Eq. (43) taking 𝑒−𝑧 (blue) and 1 − 𝑧+

+𝑧3 (red)

Fig. 5. Transmission coefficient for 𝛽 = 0.01 (blue line) GUP
case and 𝛽 = 0 (red line) non-GUP case [Eq. (45)]

solution of Eq. (38) for case (i), but we have two real
possible solutions for the other three remaining cases
(ii), (iii), and (iv).

The bound-state energy for the even wave function
can be calculated from the equation 2𝑘′𝑎 = 𝑧,(︂
8𝛽𝑚2

}2

)︂
𝐸2 −

(︂
2𝑚

}2

)︂
𝐸 − 𝑧2

4𝑎2
≈ 0. (40)

Solving the above quadratic equation, we have only
one possible bound-state energy, which is

𝐸 ≈ − 𝑧2}2

8𝑚𝑎2
. (41)

Now, let us consider Eq. (38). The possible energy
eigenvalues of the even wave function for the double
delta-function potential well are:

𝐸even
1 = −(4.325)2

~2

8𝑚𝑎2
, 𝐸even

2 = −(2.51)2
~2

8𝑚𝑎2
.

Similarly, for the odd solution (𝐶 = −𝐵), we get
𝐷 = −𝐴, and the corresponding solution is given by

Ψ(𝑥) =

⎧⎪⎨⎪⎩
𝐴𝑒−𝑘′𝑥 : 𝑥 > 𝑎,

𝐵(𝑒𝑘
′𝑥 + 𝑒−𝑘′𝑥) : −𝑎 ≤ 𝑥 ≤ 𝑎,

−𝐴𝑒𝑘
′𝑥 : 𝑥 < −𝑎.

(42)

With regard for the boundary conditions, this set of
odd solutions gives a transcendental equation

𝑒−𝑧 = 1− 𝑐𝑧 + 𝑝𝑧3; 𝑧 = 2𝑘′𝑎. (43)

Putting the same conditions as previously, we can
again inspect each of the cases. Then we found that
there is only one possible solution of Eq. (43) for
𝑐 < 1, and we have three possible solutions for 𝑐 > 1.
For 𝑐 = 1 and 𝑝 = 1, Eq. (43) has the solution:
𝑧 = 0. So, for odd one, the possible energy eigenvalue
is: 𝐸odd = 0.

Similarly to the above case, if we go to the scatter-
ing state and solve Eq. (9), we can get the solution as:

Ψ(𝑥) =

⎧⎪⎨⎪⎩
𝐹𝑒𝑖𝑘

′𝑥 +𝐺𝑒−𝑖𝑘′𝑥 : 𝑥 < −𝑎,

𝐻𝑒𝑖𝑘
′𝑥 + 𝐼𝑒−𝑘′𝑥 : −𝑎 ≤ 𝑥 ≤ 𝑎,

𝐽𝑒𝑖𝑘
′𝑥 : 𝑥 > 𝑎,

(44)

where 𝑘′ = 𝑘(1−𝛽~2𝑘2). Applying the boundary con-
ditions, we get the transmission coefficient

𝑇GUP =
8𝑔′4

(8𝑔′4+4𝑔′2+1) + (4𝑔′2−1) cos𝜑− 4𝑔′ sin𝜑
,

(45)
where

𝑔′ ≡ ~2(𝑘′ + 2𝛽~2𝑘′3)
2𝑚𝛼

≈ ~2(𝑘 + 𝛽~2𝑘3 − 6𝛽2~4𝑘5)
2𝑚𝛼

and

𝜑 ≡ 4𝑎(𝑘′ + 2𝛽}2𝑘′3) ≈ 4𝑎(𝑘 + 2𝛽~2𝑘3 − 6𝛽2~4𝑘5).

Here, we also find a similar drop in the transmis-
sion coefficient, as we got it under the variation of
the single delta-function. The energy is 𝐸𝑐 = 1

2𝑚𝛽
for GUP.

To compare the relative behavior of 𝑇GUP, we plot
the Eq. (45) in Fig. 5 using Planck units with ~ = 1,
𝑚 = 1, 𝛼 = 1 (with the energy on the horizontal axis).

4. Conclusions

In this paper, we have tried to explore quantum grav-
ity effects through GUP with consideration of the
momentum equation (6) which is based on non-local
quantum mechanics. Using the GUP-modified time-
independent Schrödinger equation, the delta-function
potential has been used to find the bound-state en-
ergy and to derive the scattering-state transmission
coefficient. Later, as a special case, the GUP-shifted

572 ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 8



Generalized Uncertainty Principle and Delta-Function Potential

bound state energy and GUP-shifted scattering-state
transmission coefficient have been calculated for the
double delta-function potential well. We have found
an interesting result that, at a particular value of the
energy, 𝐸𝑐 = 1

2𝑚𝛽 , the probabilities change drasti-
cally for both the cases. We hope that this modifica-
tion will help the scientific community in their future
work on GUP and will give some more interesting
results.
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УЗАГАЛЬНЕНИЙ ПРИНЦИП
НЕВИЗНАЧЕНОСТI ТА ПОТЕНЦIАЛ
У ВИГЛЯДI ДЕЛЬТА-ФУНКЦIЇ

Нещодавно принцип невизначеностi Гайзенберга було уза-
гальнено (УПН) для того, щоб пояснити гравiтацiю в ме-
жах квантової механiки. Використовуючи УПН та методи
нерелятивiстичної квантової механiки, ми знайшли власнi
значення енергiї зв’язаних станiв для потенцiальної ями,
що має вигляд дельта-функцiї або подвiйної дельта-функцiї.
Отримано ймовiрностi проходження для станiв розсiюван-
ня та проведено їх порiвняння з результатами, отриманими
у випадках без модифiкацiї принципу невизначеностi для
обох систем

Ключ о в i с л о в а: узагальнений принцип невизначено-
стi, потенцiальна яма у виглядi дельта-функцiї, мiнiмальна
довжина.
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