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DECOHERENCE IN A 𝒫𝒯 -SYMMETRIC QUBIT

We investigate the decoherence in a 𝒫𝒯 -symmetric qubit coupled with a bosonic bath. Using
canonical transformations, we map the non-Hermitian Hamiltonian representing the 𝒫𝒯 -sym-
metric qubit to a spin boson model. Identifying the parameter 𝛼 that demarcates the hermiticity
and non-hermiticity in the model, we show that the qubit does not decohere at the transition
from the real eigen spectrum to a complex eigen spectrum. Using a general class of spectral
densities, the strong suppression of the decoherence is observed due to both vacuum and thermal
fluctuations of the bath, and the initial correlations hold, as we approach the transition point.
K e yw o r d s: 𝒫𝒯 -symmetry, decoherence, system-bath correlations.

1. Introduction

The fundamentals of quantum mechanics were
thought of just as an academic interest, but ever since
more and more non-hermitian systems became ex-
perimentally accessible [1–4], the notion changed. In
fact, recent experiments have shown that the her-
miticity postulate of quantum mechanics may not as
fundamental as thought [5, 6]. It was just mere con-
venience to say that every quantum system should be
represented by Hermitian operators, as they have real
spectrum, but the converse is not necessarily true, one
could have real eigen values with non-Hermitian oper-
ators as well. One of the examples are 𝒫𝒯 -symmetric
Hamiltonians which have been realized in many dif-
ferent setups, such as optical [7, 8], optomechanical
[9] or microcavity-based experiments [10]. In a nut-
shell, one could define 𝒫𝒯 -symmetric systems to be
those which are invariant under the joint time rever-
sal 𝒯 and parity 𝒫 operations. It has been shown that
𝒫𝒯 -symmetric Hamiltonians not only admit a real
spectrum, but can also be mapped into Hermitian
Hamiltonians with suitable transformations [11].
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Укр. фiз. журн. 68, № 2, 101 (2023).

When a quantum system of interest interacts with
an environment, its evolution becomes non-unitary
and displays the decoherence [12]. Decoherence is the
fundamental mechanism by which fragile superposi-
tions are destroyed thereby producing a quantum to
classical transition [13,14]. In fact, the decoherence is
one of the main obstacles for the preparation, obser-
vation, and implementation of multiqubit entangled
states. The intensive work on quantum information
and computing in recent years has tremendously in-
creased the interest in exploring and controlling the
decoherence effects [15–27]. A natural question would
pertain to the decoherence in 𝒫𝒯 -symmetric systems
and how the decoherence varies with a change in the
“amount of hermiticity” of the Hamiltonian.

It has been observed that the non-hermiticity leads
to a slowing of the decoherence [10, 11] in the long
time limit of the dynamics. In this work, for the first
time we address the question pertaining the decoher-
ence in a 𝒫𝒯 -symmetric qubit without any approx-
imation on the dynamics. We consider both the sit-
uations, where the qubit and bath are initially un-
correlated, as well as correlated; we will show that
the decoherence imparted by the initial correlations
(as well as in uncorrelated case) is significantly sup-
pressed, as we change the hermiticity in the model.

This work is organized as follows. We introduce the
𝒫𝒯 -symmetric qubit model in Section 2. This Hamil-
tonian depends on the parameter 𝛼 which separates
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the real and complex eigen spectra of the system. We
map the non-Hermitian Hamiltonian to spin boson
model with suitable canonical transformations. Assu-
ming the system and bath at the thermal equilibrium
at times before 𝑡 = 0, we make a projective mea-
surement on the system only, which results in a bath
state that depends on the state vector of the sys-
tem. In Section 3, we study the decoherence due to
this state-dependent bath, as well as due to uncor-
related initial states, and show that the decoherence
due to these initial correlations is strongly modified
by a change in the parameter 𝛼 controlling the na-
ture of the model Hamiltonian. We make finally con-
clusions in Section 4.

2. 𝒫𝒯 -Symmetric Model
Hamiltonian Coupled with a Bosonic Bath

The system under consideration is a 𝒫𝒯 -symmetric
qubit coupled to a bosonic bath described as

𝐻 = 𝐻𝑆 ⊗ 𝐼𝐵 + 𝐼𝑆 ⊗𝐻𝐵 +𝐻𝐼 , (1)

where 𝐻𝑠 = 𝑖𝛼𝜎𝑧 + 𝜎𝑥 is a 𝒫𝒯 -symmetric qubit
Hamiltonian [11, 28]. We see that 𝐻𝑠 has two eigen-
values 𝐸± = ±

√
1− 𝛼2. Thus, for |𝛼| ≤ 1, we will

have real eigenvalues. 𝛼 = 1 would, therefore, corre-
spond to the transition point separating the real and
complex eigen spectra. For future references, 𝛼 will be
called the hermiticity or hermiticity parameter and,
hence, defines the hermiticity in the Hamiltonian.
𝐻𝐵 =

∑︀
𝑘 𝜔𝑘𝑏

†
𝑘𝑏𝑘 represents the bosonic bath with 𝑏𝑘

as an annihiliation operator of 𝑘th bosonic mode with
energy 𝜔𝑘. The interaction between the qubit and
bath is given by 𝐻𝐼 =

∑︀
𝑘(𝑖𝛼𝜎

𝑧 + 𝜎𝑥)(𝑔𝑘𝑏𝑘 + 𝑔*𝑘𝑏
†
𝑘).

This Jamiltonian can be mapped to a Hermitian
Hamiltonian 𝐻 via an operator 𝑇 which preserves
quantum canonical relations. Identifying

𝑇 = Δ†
(︁
𝑠+ 0
0 𝑠−

)︁
Δ, (2)

with 𝑠± =
√︀
2(1± 𝛼) and Δ = 1√

2

(︁
𝑖 1
−𝑖 1

)︁
, we can

write

�̃� = 𝑇𝐻𝑆𝑇
−1 ⊗ 𝐼𝐵 + 𝐼𝑆 ⊗ 𝑇𝐻𝐵𝑇

−1 + 𝑇𝐻𝐼𝑇
−1 =

= 𝐸𝜎𝑥 +
∑︁
𝑘

𝜔𝑘𝑏
†
𝑘𝑏𝑘 +

∑︁
𝑘

𝐸𝜎𝑥(𝑔𝑘𝑏𝑘 + 𝑔*𝑘𝑏
†
𝑘), (3)

with 𝐸 =
√
1− 𝛼2. It is clear that the transformed

Hamiltonian is Hermitian with 𝑔𝑘𝐸 as the effective

coupling. Making the transformation 𝜎𝑥 → 𝜎𝑧, we
get

�̃� = 𝐸𝜎𝑧 +
∑︁
𝑘

𝜔𝑘𝑏
†
𝑘𝑏𝑘 +

∑︁
𝑘

𝐸𝜎𝑧(𝑔𝑘𝑏𝑘 + 𝑔*𝑘𝑏
†
𝑘), (4)

which is the well-known spin-boson model. The dis-
tinctive feature of this dephasing model is that the
average populations of the qubit states do not depend
on time.

3. Decoherence

3.1. Uncorrelated state

Suppose that, at time 𝑡 = 0, the state of the compos-
ite system is described by the initial density matrix
𝜌(0). Then, at the time 𝑡, the density matrix in the
interaction picture is given by

𝜌(𝑡) = 𝑈(𝑡) 𝜌(0)𝑈(𝑡)†, (5)

where 𝑈(𝑡) = 𝑇 𝑒−𝑖
∫︀ 𝑡
0
𝑑𝑡′𝐻𝐼(𝑡

′) is the time evolution
operator, 𝐻𝐼(𝑡) is the interaction Hamiltonian in the
interaction picture, and 𝑇 is the chronological time
ordering operator. Our main interest is to calculate
the reduced density matrix of the system by tracing
over the degrees of freedom of the bath:

𝜌𝑠(𝑡) = Tr𝐵 [𝑈(𝑡) 𝜌(0)𝑈(𝑡)†]. (6)

We assume the initial density matrix of the total sys-
tem as a direct product state:

𝜚(0) = 𝜚𝑆(0)⊗ 𝜚𝐵 , 𝜚𝐵 = e−𝛽𝐻𝐵/𝑍𝐵 , (7)

where 𝛽 = 1/𝑘B𝑇 , and 𝑍𝐵 is the bath partition func-
tion. Note that 𝜚𝑆(0) may be a pure state, as well as
a mixed state of the qubit.

Then we write

𝑈(𝑡) = 𝑇𝑒−𝑖
∫︀ 𝑡
0
𝑑𝜏𝐻𝐼(𝜏) = 𝑒𝑖𝜑(𝑡)𝑒𝜎

𝑧Λ̂(𝑡),

where 𝜑(𝑡) is a function of the time only, and Λ̂(𝑡) =

=
∑︀

𝑘[𝛼𝑘(𝑡)𝑏𝑘 − 𝛼*
𝑘(𝑡)𝑏

†
𝑘] with 𝛼𝑘(𝑡) = 𝐸𝑔𝑘

𝑒−𝑖𝜔𝑘𝑡−1
𝜔𝑘

.
Therefore, we can write, for the qubit state |𝜓⟩ =
= 𝑎|0⟩+ 𝑏|1⟩:

𝜌𝑠(𝑡) = Tr𝐵 [𝑈(𝑡) 𝜌(0)𝑈(𝑡)†] =

= Tr𝐵 [𝑒
𝜎𝑧Λ̂(𝑡)|𝜓⟩⟨𝜓| ⊗ 𝜚𝐵𝑒

−𝜎𝑧Λ̂(𝑡)] =

=

(︂
|𝑎|2 𝑎𝑏*𝑒−𝛾1(𝑡)

𝑏𝑎*𝑒−𝛾1(𝑡) |𝑏|2
)︂
, (8)
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with 𝛾1(𝑡) defined as

𝛾1(𝑡) = −
∑︁
𝑘

ln
⟨
exp

[︁
𝛼𝑘(𝑡)𝑏

†
𝑘 − 𝛼*

𝑘(𝑡)𝑏𝑘

]︁⟩
𝐵
, (9)

where the symbol ⟨...⟩𝐵 denotes averages taken with
the bath distribution 𝜚𝐵 . After a straightforward al-
gebra, we find

𝛾1(𝑡) = (1− 𝛼2)

∞∫︁
0

𝑑𝜔 𝐽(𝜔) coth (𝛽𝜔/2)
1− cos𝜔𝑡

𝜔2
,

(10)

where the continuum limit of the bath modes is per-
formed, and the spectral density 𝐽(𝜔) is introduced
by the rule [12]∑︁
𝑘

4|𝑔𝑘|2 𝑓(𝜔𝑘) =

∞∫︁
0

𝑑𝜔 𝐽(𝜔)𝑓(𝜔).

Expression (10) is the exact result for the decoherence
function in model (4) under the uncorrelated initial
condition (7). We observe that the decoherence func-
tion is scaled by the factor 𝐸2 = 1−𝛼2. Thus change
of 𝛼 from zero to 1 results in a suppression of the
decoherence. At the transition point from the Hermi-
tian Hamiltonian to a non-Hermitian one, 𝛼 = ±1, no
decoherence results in making the qubit state maxi-
mally robust. In the next ssubection, we will see the
same effect in correlated initial states.

3.2. Correlated initial States

We assume the total system plus bath are in the ther-
mal equilibrium state at times 𝑡 < 0, and a measure-
ment is made on such state at the time 𝑡 = 0, when
we have [29–31]

𝜌(0) =
1

𝑍

∑︁
𝑚

Ω𝑚𝑒
−𝛽𝐻Ω†

𝑚, (11)

where Ω𝑚 are the projection operators on a desired
state of the system and/or bath; 𝑍 is the normal-
ization constant called a partition function. Now, we
make a particular case of the selective measurement,
a projection by taking [30]

Ω𝑚 = |𝜓⟩⟨𝜓| ⊗ 𝐼𝐵 , (12)

where 𝐼𝐵 is the identity operation on the state of the
bath, and |𝜓⟩ is a pure state of the qubit. Therefore,

we write

𝜌(0) = |𝜓⟩⟨𝜓| ⊗ 𝜌𝐵(𝜓), (13)

where 𝜌𝐵(𝜓) = 1
𝑍 ⟨𝜓|𝑒−𝛽𝐻 |𝜓⟩ represents the density

matrix of the bath and clearly depends on the state
of the qubit |𝜓⟩

𝜌𝑠(𝑡) = Tr𝐵 [𝑈(𝑡) 𝜌(0)𝑈(𝑡)†], (14)

= Tr𝐵 [𝑒
𝜎𝑧Λ̂(𝑡)|𝜓⟩⟨𝜓| ⊗ 𝜌𝐵(𝜓)𝑒

−𝜎𝑧Λ̂(𝑡)]. (15)

Now, to evaluate the above expression, we take the
general state of the qubit as |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩, while
we relegate the derivation to appendix 5. We have

𝜌𝑠(𝑡) =

(︂
|𝑎|2 𝑎𝑏*𝐹 (𝑡)

𝑏𝑎*𝐹 *(𝑡) |𝑏|2
)︂
, (16)

where

𝐹 (𝑡) =

[︃[︃ |𝑎|2𝑒−𝛽𝜔0/2𝑒𝑖(1−𝛼2)Φ(𝑡) +

+ |𝑏|2𝑒𝛽𝜔0/2𝑒−𝑖(1−𝛼2)Φ(𝑡)

]︃
|𝑎|2𝑒−𝛽𝜔0/2 + |𝑏|2𝑒𝛽𝜔0/2

]︃
𝑒−𝛾1(𝑡), (17)

with Φ(𝑡) =
∑︀

𝑘
4|𝑔𝑘|2
𝜔2

𝑘
sin𝜔𝑘𝑡. Using the relations

|𝑎|2 + |𝑏|2 = 1 and ⟨𝜎𝑧⟩ = |𝑎|2 − |𝑏|2, we can write

|𝑎|2𝑒−𝛽𝜔0/2𝑒𝑖(1−𝛼2)Φ(𝑡) + |𝑏|2𝑒𝛽𝜔0/2𝑒−𝑖(1−𝛼2)Φ(𝑡)

|𝑎|2𝑒−𝛽𝜔0/2 + |𝑏|2𝑒𝛽𝜔0/2
=

= cos(1− 𝛼2)Φ(𝑡)− 𝑖
sinh 𝛽𝜔0

2 − ⟨𝜎𝑧⟩ cosh 𝛽𝜔0

2

cosh 𝛽𝜔0

2 − ⟨𝜎𝑧⟩ sinh 𝛽𝜔0

2

×

× sin(1− 𝛼2)Φ(𝑡). (18)

In order to get the dephasing or time-dependent
frequency shift explicity, we define

tan[𝜒(𝑡)] =
sinh(𝛽𝜔0/2)− ⟨𝜎𝑧⟩ cosh(𝛽𝜔0/2)

cosh(𝛽𝜔0/2)− ⟨𝜎𝑧⟩ sinh(𝛽𝜔0/2)
×

× tan[(1− 𝛼2)Φ(𝑡)] (19)

so that 𝐹 (𝑡) simplifies to 𝐹 (𝑡) = 𝑒𝑖𝜒(𝑡)𝑒−𝛾1(𝑡)−𝛾𝑐(𝑡) =
= 𝑒𝑖𝜒(𝑡)−𝛾(𝑡) with 𝛾(𝑡) = 𝛾1(𝑡) + 𝛾𝑐(𝑡) and

𝛾𝑐(𝑡) =

= −1

2
ln

[︃
1− (1− ⟨𝜎𝑧⟩2) sin2[(1− 𝛼2)Φ(𝑡)]

(cosh(𝛽𝜔0/2)− ⟨𝜎𝑧⟩ sinh(𝛽𝜔0/2))2

]︃
.

(20)
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a

b

c
Fig. 1. Time dependence of the exponential of the total de-
coherence function 𝑒−𝛾(𝑡) for the initially correlated state for
different values of 𝛼 with 𝛽𝜔0 = 1 and the initial condition
⟨𝜎𝑧⟩ = 0,Ω𝛽 = 1 in all the subohmic 𝑠 = 0.2 (a) ohmic 𝑠 = 1

(b) and superohmic 𝑠 = 2 cases (c)

The term 𝛾1(𝑡) represents the decoherence due to vac-
cum and thermal fluctuations of the bath, while 𝛾𝑐(𝑡)
represents the decoherence due to initial correlations
of the composite system. Thus, we see that the de-
coherence function 𝛾1(𝑡) gets scaled by a factor of
1− 𝛼2, while as a different functional dependence on
𝛼 is found for 𝛾𝑐(𝑡). The reduced dynamics of a 𝒫𝒯 -
symmetric qubit can be calculated as 𝑇−1𝜌𝑠(𝑡)𝑇 .

In order to understand the effect of the parameter
𝛼 on the decoherence dynamics, we define a spectral
density function for the bath 𝐽(𝜔) =

∑︀
𝑘 4|𝑔𝑘|2𝛿(𝜔−

−𝜔𝑘). It is convenient to describe 𝐽(𝜔) phenomeno-
logically by assuming the power law form with a cer-
tain frequency cut-off. Therefore, we write 𝐽(𝜔) =

a

b

c
Fig. 2. Time dependence of the exponential of the decoher-
ence due to initial correlations 𝑒−𝛾𝑐(𝑡) for different values of
𝛼 with 𝛽𝜔0 = 1 and the initial condition ⟨𝜎𝑧⟩ = 0,Ω𝛽 = 1 in
all the subohmic 𝑠 = 0.2 (a) ohmic 𝑠 = 1 (b) and superohmic
𝑠 = 2 cases (c)

= 𝜆𝑠(𝜔/Ω)
𝑠Ω𝑒−𝜔/Ω where 𝜆𝑠 is the dimensionless

coupling constant, and Ω is the cutt-off frequency.
The values 𝑠 determine the nature of the bath. If
𝑠 = 1, we call it the ohmic bath. While, if 𝑠 < 1 or
𝑠 > 1, it is called the subohmic or superohmic bath,
respectively.

Figure 1 shows the variation of the total decoher-
ence 𝑒−𝛾(𝑡) with respect to Ω𝑡 for different values of 𝛼
in the subohmic 𝑠 < 1, ohmic 𝑠 = 1, and superohmic
𝑠 = 2 regimes, where 𝛾(𝑡) = 𝛾1(𝑡)+𝛾𝑐(𝑡). We see from
Figure 1, a that, for 𝛼 = 0, we observe strong oscilla-
tions of 𝑒−𝛾(𝑡). However, as 𝛼 increases from 0 to 1,
the oscillations freeze out. The oscillations observed
in 𝑒−𝛾(𝑡) are due to the initial correlations in the sub-
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ohmic regime, as can be seen from Figure 2, a. The
period of oscillations increases from a finite value to
the infinite one, and the freeze out occurs at the value
of 𝛼 = 1. These features are due to the fact that it
takes a longer time for the system to complete one
Hilbert space oscillation resulting in the extremely
slow dynamics near the boundary 𝛼 = 1 on which
the dynamics completely freezes.

Now, we turn to the ohmic case 𝑠 = 1. In this case,
using the explicit form of 𝐽(𝜔), we can write the ex-
plicit form of decoherence functions in closed form
as [31]

𝛾1(𝑡) = (1− 𝛼2)

[︂
𝜆1
2

ln(1 + Ω2𝑡2) +

+2𝜆1[ln Γ(1 + 1/Ω𝛽)− 1

2
ln |Γ(1 + 1/Ω𝛽 + 𝑖𝑡/𝛽)|2

]︂
,

Φ(𝑡) = 𝜆1 tan
−1(Ω𝑡). (21)

Figures 1, b and 2, b show the variation of 𝑒−𝛾(𝑡) and
𝑒−𝛾𝑐(𝑡) with respect to Ω𝑡 for different values of 𝛼. It
can be seen from the plot that the hermiticity param-
eter increases from 0 to 1, and the slowing down of
the decoherence is observed. We mention the sudden
transition at 𝛼 = 1 with no decoherence at all. This
feature can be attributed to the frozen dynamics of
the system Hamiltonian at 𝛼 = 1.

In the superohmic case, no oscillatory behavior is
found unlike the subohmic case (see Figs. 1, c and
2, c). This is in complete contrast with the subohmic
case where the oscillation time period becomes in-
finite. Although, in both superohmic and subohmic
cases, the dynamics kicks off at 𝑡 = 0, the bath has
a rapid correlation-dependent effect on the qubit ex-
plaining the initial minima in the graphs. But, in the
long time limit, the qubit settles in a steady state
completely independent of the initial dynamics for
the superohmic case, whereas no such steady state
is formed in the subohmic case. Nevertheless, both
the dynamics have the same physical consequences;
namely, the intial correlations disappear. In other
words, it would be no matter whether the system was
initially prepared independently, or a projective mea-
surement was made on the thermalized system and
bath, both will result in approximately the same dy-
namics near the boundary of separation of the phys-
ical and unphysical Hamiltonians.

4. Conclusions

In this work, we have studied a 𝒫𝒯 -symmetric qubit
coupled to a bosonic bath. Using a canonical transfor-
mation, we mapped the 𝒫𝒯 -symmetric model to the
well-known spin-boson model which is a purely de-
phasing model. Using a projective measurement on
the system only in a thermalized state of the sys-
tem plus bath, we arrive at a correlated initial state
with the bath state depending on the degrees of free-
dom of the system. We have shown that the decoher-
ence due to these initial correlations is strongly mod-
ified in the subohmic regime. Moreover, it is found
that the total decoherence is slowed down with an
increase in the hermiticity parameter 𝛼. At the tran-
sition point that seperates the Hermitian and non-
Hermitian regimes, the dynamics of the qubit freezes
out making the qubit more robust against external
perturbations. A similar dynamics is also observed
in the Kibble–Zurek mechanism applied to the one-
dimensional Ising model [32, 33]. We see that the de-
coherence due to initial correlations in all the sub-
ohmic, ohmic, and superohmic cases is suppressed in
the physically relevant regime for 𝛼 near to 1. This
results in approximately the same dynamics of the
initially correlated and uncorrelated states.
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APPENDIX A

In this appendix, we derive the time evolution of the reduced
density matrix 𝜌𝑠(𝑡) given in Eq. (16). Since the Hamiltonian
�̃� given in Eq. (4) is a purely dephasing model, which results
in no dynamics of the diagonal terms of the density matrix
𝜌𝑠(𝑡). Observing that

𝑒−𝛽�̃� |1⟩ = 𝑒−𝛽𝜇𝑒−𝛽𝐻+
|1⟩,

𝑒−𝛽�̃� |0⟩ = 𝑒𝛽𝜇𝑒−𝛽𝐻−
|0⟩,
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with 𝐻± =
∑︀
𝑘
𝜔𝑘𝑏

†
𝑘𝑏𝑘 ±

∑︀
𝑘
𝐸(𝑔𝑘𝑏𝑘 + 𝑔*𝑘𝑏

†
𝑘) and 𝜇 = 𝜔𝑜

2
, we

can write the ⟨1|𝜌𝑠(𝑡)|0⟩ = 𝜌10𝑠 (𝑡) as

𝜌10𝑠 (𝑡) =
𝑎𝑏*

𝑍
(|𝑎|2𝑒−𝛽𝜇Tr𝐵 [𝑒2Λ̂(𝑡)𝑒−𝛽𝐻+

] +

+ |𝑏|2𝑒𝛽𝜇Tr𝐵 [𝑒2Λ̂(𝑡)𝑒−𝛽𝐻−
]), (A1)

where the partition function 𝑍 is given by

𝑍 = |𝑎|2𝑒−𝛽𝜇Tr𝐵 [𝑒−𝛽𝐻+
] + |𝑏|2𝑒𝛽𝜇Tr𝐵 [𝑒−𝛽𝐻−

].

Now, we define a unitary transformation 𝑂± = exp[±
∑︀

𝑘
𝐸
𝜔𝑘

×
× (𝑔𝑘𝑏𝑘 − 𝑔*𝑘𝑏

†
𝑘)] such that 𝐻± = 𝑂−1

± (𝐻𝐵 − 𝜉)𝑂± with 𝜉 =

=
∑︀

𝑘 𝐸2 |𝑔2𝑘|
𝜔𝑘

and 2Λ̂(𝑡) = 𝑂−1
± [2Λ̂(𝑡) ± 𝑖𝐸2Φ(𝑡)]𝑂±. There-

fore, we have

Tr𝐵 [𝑒2Λ̂(𝑡)𝑒−𝛽𝐻±
] =

= Tr𝐵 [𝑂−1
± 𝑒2Λ̂(𝑡)±𝑖𝐸2Φ(𝑡)𝑂±𝑂−1

± 𝑒−𝛽𝐻𝐵+𝛽𝜉𝑂±] =

= Tr𝐵 [𝑂−1
± 𝑒2Λ̂(𝑡)±𝑖𝐸2Φ(𝑡)𝑒−𝛽𝐻𝐵+𝛽𝜉𝑂±] =

= 𝑒±𝑖(1−𝛼2)Φ(𝑡)𝑍𝐵𝑒−𝛾1(𝑡)𝑒𝛽𝜉,

where 𝑍𝐵 = Tr𝐵 [𝑒−𝛽𝐻𝐵 ]. This makes the partition function
𝑍 to be

𝑍 = 𝑍𝐵𝑒𝛽𝜉(|𝑎|2𝑒−𝛽𝜇 + |𝑏|2𝑒𝛽𝜇).

Substituting all the above results in the expression for the off-
diagonal element 𝜌10𝑠 (𝑡), we have

𝜌10𝑠 (𝑡) = 𝑎𝑏* ×

×

[︁
|𝑎|2𝑒−𝛽

𝜔0
2 𝑒𝑖(1−𝛼2)Φ(𝑡) + |𝑏|2𝑒𝛽

𝜔0
2 𝑒−𝑖(1−𝛼2)Φ(𝑡)

]︁
|𝑎|2𝑒−𝛽

𝜔0
2 + |𝑏|2𝑒𝛽

𝜔0
2

𝑒−𝛾1(𝑡).

1. C.M. Bender. Making sense of non-hermitian Hamiltoni-
ans. Rep. Prog. Phys. 70, 947 (2007).

2. L. Feng, YL. Xu, W. Fegadolli et al. Experimental demon-
stration of a unidirectional reflectionless parity-time meta-
material at optical frequencies. Nat. Mater. 12, 108
(2013).

3. S. Longhi. Optical realization of relativistic non-hermitian
quantum mechanics. Phys. Rev. Lett. 105, 013903
(2010).

4. S. Longhi, G. Della Valle. Photonic realization of PT-
symmetric quantum field theories. Phys. Rev. A 85, 012112
(2012).

5. P.A.M. Dirac. A new notation for quantum mechanics.
Math. Proc. Cambridge Philos. Soc. 35, 416 (1939).

6. J. von Neumann. Mathematical Foundations of Quantum
Mechanics (Princeton University Press, 1955).
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ДЕКОГЕРЕНЦIЯ
В 𝒫𝒯 -СИМЕТРИЧНОМУ КУБIТI

Ми вивчаємо втрату когерентностi в 𝒫𝒯 -симетричному ку-
бiтi, який взаємодiє з бозонним оточенням. Використовую-
чи канонiчнi перетворення, ми знайшли неермiтiв гамiльто-
нiан, що описує 𝒫𝒯 -симетричний кубiт, в моделi бозонiв зi
спiном. Ми визначили параметр 𝛼, який розмежовує обла-
стi ермiтовостi i неермiтовостi в моделi, i знайшли, що ку-
бiт не втрачає когерентностi при переходi вiд дiйсного вла-
сного спектра до комплексного. Використовуючи загальний
клас спектральних густин, ми показуємо, що має мiсце зна-
чне зменшення втрати когерентностi завдяки вакуумним та
тепловим флуктуацiям середовища, i що вихiднi кореляцiї
зберiгаються при наближеннi до точки переходу.

Ключ о в i с л о в а: 𝒫𝒯 -симетрiя, декогеренцiя, кореляцiї
мiж системою та середовищем.
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