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ANALYTIC ANALYSIS OF ELECTRONIC
AND TRANSPORT PROPERTIES OF FINITE POLYENES

Various important characteristics of finite polyene chains are found on the basis of approximate
solutions of the characteristic equations. The obtained approximate and limit expressions for
the wave functions, energy gap, etc. can be used for the analysis of the electronic and transport
properties of polyenes, which gives a deeper understanding of the fundamental properties of
finite alternating polyene chains. We also demonstrate the high efficiency of the proposed ap-
proximations as a zero-order estimate for the numerical solution of the characteristic equation.
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1. Introduction
Theoretical investigations of polyacetylenes (as po-
tentially conducting polymers) and finite oligopoly-
enes of known length were carried out in numerous
works; see, e.g., the review [1] and the references the-
rein. The applications of polyenes in the field of nano-
electronics is explained by their controllable chemical
and electrochemical properties. A simple model that
includes the first and second excited singlet states of
linear polyenes and thus explains their experimentally
measured electronic properties, e.g., the nonlinear op-
tical response, was proposed 30 years ago [2]. With an
aim to construct the analytic theory of nonlinear re-
sponse within the framework of the model proposed
in [2], exact equations for the one-electron molecular
orbital coefficients for an alternating polyene chain
were proposed and solved in [3]. Later, explicit ex-
pressions for the matrix elements of the Green func-
tion for bounded polyenes were deduced in [4, 5]. In
addition to analytic investigations, numerous studies
were focused on the numerical methods: the Green
function method in combination with DFT calcula-
tions were used to compute the electron and trans-
port characteristics of cyclic and linear polyenes [6];
high-precision DTF calculations of the structure and
harmonic frequencies of polyenes were performed in
[7]. In the present paper, we propose an analytic ap-
proach to the analysis of the electronic and transport
properties and other fundamental problems arising in
the theory of bounded polyenes.
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The electronic structure of a bounded polyene
chain is determined by the solutions of the charac-
teristic equation. The model-exact equation for the
eigenvalues of the system depicted in Fig. 1 appears
in the Lennard-Jones theory of polyenes [8]. Recently,
the solutions of the characteristic equation were ana-
lyzed for bounded graphene sheets and linear polye-
nes, and several approximate solutions were proposed
[9]. The obtained analytic approximations turn out
to be very accurate and are used in what follows to
find the expressions for eigenvalues and eigenstates
of finite polyene chains. Thus, in order to determine
the eigenstates and Green functions of the bounded
polyene chain presented in Fig. 1 and, hence, to clar-
ify its various electronic and transport properties, we
use approximate solutions of the transcendental char-
acteristic equation to get reliable approximations to
various important characteristics of polyenes: energy
gaps, wave functions, and transmission probability.

2. Eigenvalues, Eigenstates,
and Green Functions of Finite
Polyene Chains

The simplest and most successfully parametrized one-
electron Hamiltonian used for the description of the
𝜋-electron electronic structure of linear polyene, i.e.,
a bounded chain of 𝑁 CH groups; see Fig. 1, is
the Hückel Hamiltonian. The Su–Schrieffer–Heeger
model of polyene chains [10] uses two parame-
ters: the electron resonance transfer energy between
the nearest-neighbor CH groups in the undimerized
polyene 𝑡0 (𝑡0 < 0) and its variation caused by the
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Fig. 1. Bounded polyene chain with 𝑁𝑑 = 𝑁/2 double bonds;
𝛽𝑠 and 𝛽𝑑 specify the energy of electron transfer between the
carbon atoms connected by single and double bonds, respec-
tively; 𝑛 numbers the carbon atoms.

dimerization ±𝑘𝑢 expressed in terms of the electron-
phonon coupling constant 𝑘 and the C–C-bond al-
ternation 𝑢 along the axis of the molecule. Then the
hopping integrals 𝛽𝑠 and 𝛽𝑑 specifying the energy of
electron transfer between the nearest neighbors con-
nected by single and double bonds, respectively, can
be represented via the following two new parameters:

𝛽𝑠 = 𝛽𝑒−𝜂, 𝛽𝑑 = 𝛽𝑒𝜂,

related to the parameters 𝑢, 𝑘, and 𝑡0 by the following
equations:

𝑡0 = 𝛽 cosh 𝜂, 𝑘𝑢 = 𝛽 sinh 𝜂.

A similar approach based on the use of the hopping
integral weighted with an exponential function has
been recently applied to the analysis of the transport
properties of 𝜋-conjugated molecules [11].

Thus, a chain of CH groups with alternating length
of C–C bonds is described by the electronic part of
the Su–Schrieffer–Heeger Hamiltonian [10]

�̂�PE = −𝛽𝑑
𝑁𝑑∑︁
𝑚=1

(|𝑚𝑙⟩⟨𝑚𝑟|)−

−𝛽𝑠

𝑁𝑑∑︁
𝑚=1

(|(𝑚+ 1)𝑙⟩⟨𝑚𝑟|+ |(𝑚− 1)𝑟⟩⟨𝑚𝑙|). (1)

In Eq. (1), the index 𝑚 runs over the double bonds
whose number is equal to a half of the number of
all carbon atoms in the chain, i.e., 𝑁𝑑 = 𝑁/2; the
ket vector |𝑚𝑙(𝑟)⟩ has the meaning of a 2𝑝𝑧 atomic
orbital of the carbon atom, the label 𝑙 (𝑟) refers to
the left (right) atom connected by the 𝑚th double
bond. |0𝑟⟩ = |(𝑁 + 1)𝑙⟩ = 0; −𝛽𝑠 and −𝛽𝑑 are the
hopping integrals between the nearest neighbors con-
nected by single and double bonds, respectively.

The solution of the Schrödinger equation with
Hamiltonian (1) gives the 𝜋-electron spectrum formed
by valence (v) and conduction (c) bands

𝐸v(c)
𝜈 = −(+)

√︀
2 (cosh 2𝜂 + cos𝑥𝜈), 𝜈 = 1, ..., 𝑁𝑑,

(2)

in 𝛽 units. For open-end boundary conditions, i.e.,
for the (C = C)𝑁𝑑

chain with CH2 terminal groups,
the values 𝑥𝜈 are the solutions of the Lennard-Jones
equation [8]

𝐷 ≡ 𝑒−2𝜂 sin(𝑁𝑑𝑥) + sin[(𝑁𝑑 + 1)𝑥] = 0 (3)

within the interval 0 ≤ 𝑥 ≤ 𝜋. The approximate so-
lutions of this equation are presented in the next sec-
tion. These approximations can be used as zero-order
values for the numerical solution of Eq. (3).

In the model of polyene 𝜋-electron spectrum de-
scribed above, the appearance of the band gap is en-
tirely due to the bond-length alternation (manifesta-
tion of the Peierls instability), which is described by
the alternation parameter 𝜂. Note that, for 𝜂 = 0,
we have �̂�PE → �̂�(C)N . In this case, Eq. (3) gives
𝑥𝜈 |𝜂=0 = 2𝜋𝜈/(2𝑁𝑑 + 1).

The eigenstates of the Hamiltonian �̂�PE

ΨPE
v(c),𝜈 =

𝑁𝑑∑︁
𝑚=1

(︁
𝜓
v(c)
2𝑚−1,𝜈 |2𝑚− 1⟩+ 𝜓

v(c)
2𝑚,𝜈 |2𝑚⟩

)︁
, (4)

were found in [3] and have the form:

𝜓
v(c)
2𝑚−1,𝜈 = ±(−1)𝜈+1𝐵(𝑥𝜈) sin [(𝑁𝑑 + 1−𝑚)𝑥𝜈 ], (5)

𝜓
v(c)
2𝑚,𝜈 = 𝐵 (𝑥𝜈) sin (𝑚𝑥𝜈), (6)

where the normalization constant 𝐵 is

𝐵2 (𝑥𝜈) =
2 sin𝑥𝜈

(2𝑁𝑑 + 1) sin𝑥𝜈 − sin [(2𝑁𝑑 + 1)𝑥𝜈 ]
. (7)

The matrix elements of the Green function needed
to find the transmission spectra are (in 𝛽 units) [5]

𝐺1,1 = 𝐺𝑁,𝑁 =
𝐸 sin(𝑁𝑑𝑥)

𝐷
, 𝐺1,𝑁 = −𝑒

𝜂 sin𝑥

𝐷
, (8)

where 𝐷 is defined in Eq. (3) and

2 cos𝑥+ 2 cosh 2𝜂 = 𝐸2. (9)

In the next section, we obtain approximate ex-
pressions for the eigenvalues and eigenstates of finite
polyene chains by using the approximate solutions of
Eq. (3) recently found in [9].
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3. Approximations and Limit
Expressions for Finite Polyene Chains

Using the results from [9], we find the following ap-
proximation for the eigenenergies of bounded polyene
chain:
𝑥𝜈 ≈ 𝜋𝜈

𝑁𝑑 + 1− 1
1+𝑒2𝜂

. (10)

Despite the fact that this relation was obtained for
𝜈 ≪ 𝑁𝑑, it gives fairly accurate results for almost all
𝜈 except 𝜈 = 𝑁𝑑 − 𝜇, 𝜇≪ 𝑁𝑑. Thus, Eq. (10) can be
successively applied as the zero-order approximation
of solutions of Eq. (3) in the course of construction of
the numerical solution of the characteristic equation.

In addition, for the most interesting case 𝜂 ≪ 1,
Eq. (10) can be simplified to

𝑥𝜈 ≈ 2𝜋𝜈

2𝑁𝑑 + 1 + 𝜂
(11)

up to the order 𝑂(𝜂2). This relation is used in what
follows to find important characteristics of finite po-
lyenes, such as the HOMO-LUMO gap ΔHL and wave
functions. In order to obtain more accurate values of
𝑥𝜈 for 𝜈 close to 𝑁𝑑, we use a more sophisticated
approximation found in [9]. Rewritten for the case of
a polyene chain with 𝜂 ≪ 1, it has the form

𝑥𝜈 ≈ 𝜋(2𝜈 − 𝜂)

2𝑁𝑑 + 1 + 𝜂
− 𝜂

𝜋

2− 𝜋2(𝜂2 +𝐴)

𝜂 +𝑁𝑑(2𝜂2 +𝐴)
, (12)

where

𝐴 ≡ 2𝜇+ 1 + 𝜂(2𝜇+ 3)

2𝑁𝑑 + 1
. (13)

In what follows, we use approximations (10)–(12)
to find important characteristics of a polyene chain
formed by 𝑁 carbon atoms, such as the HOMO-
LUMO gap ΔHL, HOMO and HOMO−1 gap (Δ++

HL ),
and wave functions.

3.1. HOMO-LUMO gap

By using relation (11), we find a simple approxima-
tion for ΔHL, which works well for 𝑁𝑑 & 3:

ΔHL = 𝐸c
𝑁𝑑

− 𝐸v
𝑁𝑑

≈ 2

√︃
𝜋2(1 + 2𝜂)

(2𝑁𝑑 + 1)2
+ 4𝜂2 (14)

(for 𝑁𝑑 = 1, 2, the exact relations for ΔHL can be eas-
ily found analytically; see the Appendix). In the limit

Fig. 2. The heavy lines: exact dependences of the HOMO-
LUMO gap ΔHL and HOMO and HOMO−1 gap (Δ++

HL ) (in
the units of 𝛽) for a bounded polyene on 𝑁𝑑; 𝜂 = 0.133 [3].
The black dashed lines: approximation (14) and relation (19)
with 𝑥𝜈 found with the help of Eq. (11). The red dashed line:
ΔHL with 𝑥𝑁𝑑

found with the help of Eqs. (12), (13). The thin
lines: the limit expressions (15) and (17)

𝑁𝑑 → ∞, Eq. (14) gives the following well-known
result:

lim
𝑁𝑑→∞

ΔHL = 4𝜂. (15)

In the opposite case of the smallest 𝑁𝑑 = 1 for
which the exact value of ΔHL can be easily found and
equals 2𝑒𝜂, approximation (14) is also reasonable:

ΔHL ≈ 2
𝜋

3

√︀
1 + 2𝜂. (16)

Thus, for small 𝑁𝑑, when the first term under the
square-root sign in Eq. (14) is predominant:

ΔHL ≈ 2𝜋
√
1 + 2𝜂

2𝑁𝑑 + 1
, (17)

the values of the HOMO-LUMO gap are inversely
proportional to 𝑁𝑑 and weakly depend on 𝜂. As 𝑁𝑑

increases, the second term 4𝜂2 becomes larger than
the first term, and, for

𝑁𝑑 ≫ 𝜋

4𝜂
, (18)

the HOMO-LUMO gap is well approximated by
Eq. (15). These trends are well visible in Fig. 2, where
approximations (14), (15), and (17) are compared
with the exact dependences for ΔHL(𝑁𝑑).

It should be noted that the smaller 𝜈, the
greater the accuracy of approximation (10). Thus,
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Fig. 3. Dependences of the squared moduli of normalized
coefficients of the expansion of the wave functions for a finite
polyene chain

⃒⃒
𝜓v
𝑛,𝜈

⃒⃒2
=

⃒⃒
𝜓c
𝑛,𝜈

⃒⃒2 ≡ |𝜙𝑛,𝜈 |2 on the number of
carbon atom 𝑛 for 𝜂 = 0.133, 𝑁𝑑 = 15 and 𝜈 = 1 (upper panel)
and 𝜈 = 𝑁𝑑 = 15 (lower panel). The black filled symbols
are the exact dependences, whereas the blue symbols are the
approximate dependences obtained by using relations (11) for
𝜈 = 1 and (12) for 𝜈 = 15. The triangles and circles correspond
to odd 𝑛 = 2𝑚− 1 and even 𝑛 = 2𝑚, respectively

Fig. 4. Dependences 𝑇 (𝐸) for 𝐴 = 0.1, 𝑁𝑑 = 7, and 𝜂 =

0.133. The filled circles correspond to the exact solutions of
Eq. (3) and the blank circles correspond to approximation (11)

the HOMO-LUMO gap for the ionized polyene with
(2𝑁𝑑 − 2) 𝜋 electrons
Δ++

HL = 𝐸v
𝑁𝑑

− 𝐸v
𝑁𝑑−1 (19)

computed with the help of approximation (11) is
hardly distinguishable from the exact dependence; see
Fig. 2. At the same time, the approximation for ΔHL

with 𝑥𝑁𝑑
found with the help of Eqs. (12), (13) prac-

tically coincides with the exact dependence; see the
red dashed line in Fig. 2.

3.2. Wave functions

An example of the application of the obtained ap-
proximations for finding the coefficients of expansion
of the wave functions for the bounded polyene chain⃒⃒
𝜓v
𝑛,𝜈

⃒⃒2
=

⃒⃒
𝜓c
𝑛,𝜈

⃒⃒2 ≡ |𝜙𝑛,𝜈 |2 is shown in Fig. 3. By
analyzing the form of these functions presented in
Eqs. (5), (6), we can expect that these functions re-
quire very accurate approximations for 𝑥𝜈 , especially
for large 𝑁𝑑. However, for 𝜈 = 1, the exact and ap-
proximate dependences practically coincide regard-
less of the use of the simple approximation (11). A
more detailed analysis shows that, for 𝜈 ≪ 𝑁𝑑, the
dependences of 𝜓v(c)

𝑛,𝜈 on 𝑛 calculated by using ap-
proximation (11) are almost indistinguishable from
the exact dependences.

As for the function |𝜙𝑛,𝑁𝑑
|2, we observe a discrep-

ancy between the exact and approximate values even
for 𝑥𝑁𝑑

found with the help of expression (12), which
gives perfect approximations for ΔHL presented in the
previous subsection. Therefore, to find very accurate
dependences of 𝜓v(c)

𝑛,𝜈 on 𝑛 for the roots 𝑥𝜈 with 𝜈 close
to 𝑁𝑑, it might be necessary to find the exact values
of the roots numerically by using approximations (10)
or (12) as a starting value.

4. Transmission Spectra
for a Bounded Polyene Chain

A fundamental characteristic of coherent electronic
transport in a system formed by a single molecule
connecting two metal (or semiconductor) wires is the
transmission coefficient 𝑇 (𝐸), which determines the
probability that a stationary incident electron flux
passes through the obstacle. The transmission proba-
bility is directly related to the current-voltage charac-
teristics [12, 13]. Within the framework of the Green
function formalism, the transmission coefficient 𝑇 (𝐸)
can be expressed [5, 14, 15] in terms of the Green
functions corresponding to the noninteracting left and
right wires and the scattering region. In the content
of our discussion, the scattering region is the bounded
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polyene chain:

𝑇 (𝐸) =
4 Im (𝐴𝑙) Im (𝐴𝑟) |𝐺1,𝑁 |2⃒⃒⃒

(1−𝐴𝑙𝐺1,1) (1−𝐴𝑟𝐺𝑁,𝑁 )−𝐴𝑙𝐴𝑟𝐺2
1,𝑁

⃒⃒⃒2 ,
(20)

where 𝐴𝑙 and 𝐴𝑟 are coupling constants specifying
the shift and broadening of molecular levels due to the
metal-molecule interaction [15,16], and the matrix el-
ements of the Green function 𝐺1,1, 𝐺𝑁,𝑁 , and 𝐺1,𝑁

are defined in Eq. (8). Since we are mainly interested
in the electronic spectrum of polyene, we use a simple
model with identical pure imagine coupling constants
for the left and right contacts: 𝐴𝑙 = 𝐴𝑟 = −𝑖𝐴. Thus,
for 𝐴 ≪ 1, the positions of the peaks of transmis-
sion coefficients are specified by the spectrum of the
polyene chain placed between the wires.

The results of our calculations of the energy de-
pendences of the transmission coefficient (20) are pre-
sented in Fig. 4. It is easy to see that the positions of
the exact eigenvalues (marked by the filled circles)
are well approximated by the simple relation (11)
(blank circles). The maximum deviations from the ex-
act values are attained for the HOMO and LUMO
levels. Thus, for these eigenvalues, it is preferable to
use approximation (12). The calculated dependences
𝑇 (𝐸) also clarify the role of the term proportional
to 𝐺2

1,𝑁 in the denominator of relation (20). Namely,
for all energy values, except the close neighborhoods
of eigenvalues 𝐸v(c)

𝜈 , this term almost does not af-
fect the behavior of 𝑇 (𝐸), and the curves presented
in Fig. 4 remain identical, if they are calculated with
and without the term proportional to 𝐺2

1,𝑁 in the
denominator. On the contrary, in the vicinities of
𝐸 = 𝐸

v(c)
𝜈 , i.e., in the case of resonant transmis-

sion where |𝐺1,1|, |𝐺𝑁,𝑁 |, |𝐺1,𝑁 | ≫ 1, its presence
becomes crucial.

5. Conclusions

In conclusion, we note that, depending on the form of
the analyzed characteristics (energy gaps, wave func-
tions, Green functions, etc.), the accurate approxi-
mation (12) or the much simpler approximation (11)
can be used to find the roots of the characteristic
equation 𝑥𝜈 . The obtained explicit expressions for the
eigenvalues allow us to find approximate analytic ex-
pressions for the energy gap and obtain their limits in
the cases of large and small numbers of double bonds

in finite polyenes. It is also worth noting that the ap-
proximations found above can be successfully used as
initial values for the exact numerical calculations or
as the zero-order approximations for a more detailed
analytic analysis of the electrical and transport prop-
erties of alternating polyene chains.

APPENDIX.
HOMO-LUMO gap for particular cases

It is useful to deduce exact relations for the HOMO-LUMO
gap in two simple particular cases: 𝑁𝑑 = 1 and 𝑁𝑑 = 2. Na-
mely, for 𝑁𝑑 = 1, Eq. (3) turns onto 𝑒−2𝜂 + 2 cos𝑥 = 0, and
we immediately get

𝐸c
1 = 𝑒𝜂 , ΔHL = 2𝑒𝜂 . (A.1)

For 𝑁𝑑 = 2, Eq. (3) can be rewritten in the form 2𝑒−2𝜂 cos𝑥+

4 cos2 𝑥 − 1 = 0. Thus, we solve the quadratic equation and
obtain

𝐸c
1,2 = ∓

𝑒−𝜂

2
+

√︃
𝑒−2𝜂

4
+ 𝑒2𝜂 , ΔHL = 𝑒−𝜂 . (A.2)
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АНАЛIТИЧНИЙ АНАЛIЗ
ЕЛЕКТРОННИХ ТА ТРАНСПОРТНИХ
ВЛАСТИВОСТЕЙ ОБМЕЖЕНИХ ПОЛIЄНIВ

На основi наближеного розв’язку характеристичних рiв-
нянь визначено важливi характеристики обмеженого лан-
цюжка полiєну. Отриманi наближення та граничнi значен-
ня хвильових функцiй, енергетичної щiлини та iн. можна
використати для аналiзу електронних та транспортних ха-
рактеристик полiєнiв, що дозволяє вивчити фундаменталь-
нi властивостi обмежених альтернованих ланцюжкiв полiє-
ну. Продемонстровано хорошу ефективнiсть запропонова-
них апроксимацiй для чисельного розв’язку характеристич-
них рiвнянь.

Ключ о в i с л о в а: полiєн, функцiї Грiна, енергетична щi-
лина, коефiцiєнт переносу.

624 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 7


