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GENERATION OF ENTANGLED LIGHT
FROM A NONDEGENERATE THREE-LEVEL LASER
COUPLED TO A TWO-MODE VACUUM RESERVOIR

The quantum properties of a nondegenerate three-level cascade laser coupled to a two-mode
vacuum reservoir are throughly analyzed with the use of the pertinent master equation and
stochastic differential equations associated with the normal ordering. Particularly, the enhance-
ment of squeezing and the amplification of photon entanglement of the two-mode cavity light
are investigated. It is found that the two cavity modes are strongly entangled, and the degree
of entanglement is directly related to the two-mode squeezing. Moreover, the squeezing and
entanglement of the cavity radiation enhance with the rate of atomic injection.
K e yw o r d s: atomic coherence, quadrature squeezing, entanglement, mean photon number.

1. Introduction

Three-level lasers have been an interesting area of re-
search over the years in light of its capability to pro-
duce radiations with various quantum properties [1–
15]. The quantum properties of light are attributed
to the atomic coherence that can be induced either
by preparing the atoms initially in a coherent super-
position of the top and bottom levels [1, 14, 15], by
coupling these levels of the atom with a strong clas-
sical pumping radiation [2, 8–11], or by using these
mechanisms together [5]. Such mechanism imposes a
constraint on the populations of atoms in the bot-
tom and top levels in which transitions to and from
could not be made in the electric dipole approxima-
tion. The classical pumping radiation, therefore, con-
tributes to the observed nonclassical properties by fa-
cilitating the atomic population transfer pathway in
which the induced correlation is transferred to the
emitted photons.
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Moreover, the quantum entanglement has been
considered as the nonlocality aspect of quantum cor-
relations with no classical similarity. This wonder-
ful feature was investigated in the seminal paper
of Einstein–Podolsky–Rosen (EPR) [16]. After that,
Bell recognized that the entanglement leads to exper-
imentally testable deviations of quantum mechanics
from classical physics [17]. As we know, the genera-
tion of the entanglement has recently attracted great
interest, since it plays a key role in the quantum infor-
mation processing [18–22]. Particularly, much atten-
tion has been paid to the generation of a continuous-
variable entanglement, as it might be easier manip-
ulated than the discrete counterparts, quantum bits,
in order to perform the quantum information pro-
cessing. Hence, with the advent of quantum informa-
tion theory, the entanglement was known as a re-
source for many applications such as quantum cryp-
tography [23], quantum computation and commu-
nication [24], quantum dense coding [25], quantum
teleportation [26], entanglement swapping [27], sen-
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Fig. 1. Schematic representation of a nondegenerate three-
level laser coupled to a two-mode vacuum reservoir. Here,
�̂�1(�̂�2) is the annihilation operator for one of the modes of the
cavity radiation, 𝑟𝑎 represents the rate at which the atoms are
injected into the cavity, and 𝜅 is the cavity damping constant
taken to be the same for both transitions. Moreover, |3⟩, |2⟩,
and |1⟩, represent the top, intermediate, and bottom levels of
a three-level atom in a cascade configuration, respectively. We
consider the case for which the two cavity-mode are at reso-
nance with the two transitions |3⟩ → |2⟩ and |2⟩ → |1⟩ having
transition frequencies 𝜔1 and 𝜔2. The two modes 𝑎1 and 𝑎2 to
be at resonance with the two transitions |3⟩ → |2⟩ and |2⟩ → |1⟩
are dipole-allowed, and the direct transition between level |3⟩
and level |1⟩ to be dipole-forbidden

sitive measurements [28], and quantum telecloning
[29]. Hence, an interest in understanding the entan-
glement creation and quantification has gained the
attention of several authors[10, 13–15, 30–35]. In gen-
eral, the degree of entanglement degrades, as it in-
teracts with the environment. On the other hand,
the efficiency of the quantum information processing
highly depends on the degree of entanglement. As a
consequence, it is desirable to generate strongly en-
tangled continuous-variable states which can survive
from environmental noise.

Moreover, many schemes have been proposed to
produce a strong entangled light from a three-level
laser using different techniques theoretically [6, 7, 13–
15,35]. Some authors have studied the effect of a para-
metric amplifier on the quantum properties of light
generated by a three-level laser [7]. Alebachew has
found that the parametric amplifier in the laser cavity
increases the degree of entanglement [7]. This work
has been confined to the case in which the steady-
state analysis is above the threshold condition. Howe-

ver, the solutions for the cavity-mode variables can-
not be above the threshold condition of the steady-
state analysis [9, 16, 18].

In this paper, we consider a nondegenerate three-
level laser coupled to a vacuum reservoir with an in-
jected coherence system. Here, we carry out our anal-
ysis by applying the pertinent master equation de-
scribing the dynamics of the optical device [36]. Emp-
loying this master equation, we obtain the stochastic
differential equations. Hence, using the solutions of
these equations, we determined the correlation prop-
erty of noise forces associated with normal order-
ing. Finally, with the help of the steady-state solu-
tions of the 𝑐-number cavity mode operators, we stud-
ied the quadrature squeezing and entanglement using
logarithmic negativity criteria.

2. Hamiltonian and Master Equation

The interaction of a nondegenerate three-level atom
with two-mode cavity radiation can be expressed in
the interaction picture with the rotating-wave ap-
proximation (RWA) with the Hamiltonian of the form

�̂�𝐼 = 𝑖𝑔
[︀
|3⟩⟨2|�̂�1 − �̂�†1|2⟩⟨3|+ |2⟩⟨1|�̂�2 − �̂�†2|1⟩⟨2|

]︀
, (1)

where 𝑔 is a coupling constant which is taken to be the
same for both transitions, whereas �̂�1(�̂�

†
1) and �̂�2(�̂�

†
2)

are the annihilation (creation) operators of the cor-
responding cavity modes. In writing Eq. (1), we have
considered ~ = 1 for the sake of simplicity only.

In this paper, we take the initial state of a three-
level atom to be |𝜓𝐴(0)⟩ = 𝐶3(0)|3⟩ + 𝐶1(0)|1⟩.
Hence, the initial density operator for a single atom
has the form

𝜌𝐴(0) = 𝜌
(0)
33 |3⟩⟨3|+ 𝜌

(0)
31 |3⟩⟨1|+ 𝜌

(0)
13 |1⟩⟨3|+ 𝜌

(0)
11 |1⟩⟨1|,

(2)

where 𝜌
(0)
33 = |𝐶3|2 and 𝜌

(0)
11 = |𝐶1|2 are, respec-

tively, the probabilities for the atom to be initially
in the upper or lower levels, 𝜌

(0)
31 = 𝐶3𝐶

*
1 , and

𝜌
(0)
13 = 𝐶1𝐶

*
3 . Actually, this assumption corresponds

to a situation in which the three-level atom is initially
prepared in a coherent superposition of the top and
bottom levels.

In addition, we will consider the case where such
atoms are injected into a cavity at the constant
rate 𝑟𝑎 and removed after sometime 𝜏 , which is
long enough for the atoms to decay spontaneously
to levels other than the middle or lower level. The
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spontaneous decay rate 𝛾 is taken to be the same
for the two upper levels. In the good cavity limit,
𝛾 ≫ 𝜅, where 𝜅 is the cavity damping constant, the
cavity mode variables change slowly compared with
the atomic variables. Hence the atomic variables will
reach the steady state in a relatively short time. The
time derivative of such variables can then be set to
zero, while keeping the remaining terms at the time
𝑡. This procedure is referred as the adiabatic approx-
imation scheme. Since the coupling constant is taken
to be small, we restrict ourselves to a linear analy-
sis that includes dropping the higher order terms in
𝑔. Employing the linear and adiabatic approximation
schemes in the good cavity limit, we get the equa-
tion of evolution of the density operator for the cavity
modes in the absence of damping through the coupled
mirror in the form [14]

˙̂𝜌1(𝑡) =
𝐴𝜌

(0)
33

2

[︀
2�̂�†1𝜌�̂�1 − �̂�1�̂�

†
1𝜌− 𝜌�̂�1�̂�

†
1

]︀
+

+
𝐴𝜌

(0)
11

2

[︀
2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2

]︀
−

− 𝐴𝜌
(0)
31

2

[︀
2�̂�2𝜌�̂�1 − 𝜌�̂�1�̂�2 − �̂�1�̂�2𝜌

]︀
−

− 𝐴𝜌
(0)
13

2

[︀
2�̂�†1𝜌�̂�

†
2 − 𝜌�̂�†1�̂�

†
2 − �̂�†1�̂�

†
2𝜌
]︀
, (3)

where 𝐴 = 2𝑔2𝑟𝑎
𝛾2 is the linear gain coefficient, and,

for convenience, we have set 𝜌(0)31 = 𝜌
(0)*
31 .

Next, we consider a system coupled with a two-
mode vacuum reservoir. The density operator which
is extracted from the vacuum reservoir by the partial
trace operation is [37]

˙̂𝜌2(𝑡) =
𝜅

2
[2�̂�1𝜌�̂�

†
1 − �̂�†1�̂�1𝜌− 𝜌�̂�†1�̂�1] +

+
𝜅

2
[2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2]. (4)

Finally, using Eqs. (3), and (4), the master equa-
tion for the system takes the form:

˙̂𝜌(𝑡) =
𝜅

2
[2�̂�1𝜌�̂�

†
1 − �̂�†1�̂�1𝜌− 𝜌�̂�†1�̂�1] +

+
1

2
𝐴𝜌

(0)
33 [2�̂�

†
1𝜌�̂�1 − �̂�1�̂�

†
1𝜌− 𝜌�̂�1�̂�

†
1] +

+
1

2
(𝐴𝜌

(0)
11 + 𝜅)[2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2] +

+
𝐴𝜌

(0)
31

2

[︀
2�̂�2𝜌�̂�1 − 𝜌�̂�1�̂�2 − �̂�1�̂�2𝜌

]︀
+

+
𝐴𝜌

(0)
13

2

[︀
2�̂�†1𝜌�̂�

†
2 − 𝜌�̂�†1�̂�

†
2 − �̂�†1�̂�

†
2𝜌
]︀
. (5)

The above master equation can be used to derive
the time variation for the expectation values of vari-
ous system operators. The terms proportional to 𝜌(0)33

and 𝜌
(0)
11 describe the gain of cavity light for mode

𝑎1 and the loss for mode 𝑎2, respectively. The terms
proportional to 𝜌(0)31 are related to the correlation of
the generated radiation that indicates the existence of
quantum features. These terms are responsible for the
squeezing obtained in the cascade laser system. Fur-
thermore, the terms proportional to 𝜅 describe the
damping of cavity modes due to their coupling with
a two-mode vacuum reservoir via a single-port mirror.

It proves to be useful to introduce a new parameter
which relates the probabilities of the atom to be in
the upper and lower levels. We define the parameter 𝜂
such that 𝜌(0)33 = 1−𝜂

2 with −1 < 𝜂 < 1. For three-level
atoms initially in a coherent superposition of the top
and bottom levels, one obtains: 𝜌(0)11 = 1+𝜂

2 . Then, in
view of the relation |𝜌(0)31 |2 = 𝜌

(0)
33 𝜌

(0)
11 , one easily finds

𝜌
(0)
31 = 1

2

√︀
1− 𝜂2.

Employing the master equation (5), the evolution
of the two-mode cavity radiation in terms of 𝑐-number
variables associated with the normal ordering, 𝛼1(𝑡)
and 𝛼2(𝑡) can be expressed in the form

𝑑

𝑑𝑡
𝛼1(𝑡) = −Γ+𝛼1(𝑡)− 𝜉+𝛼

*
2(𝑡) + 𝑓1(𝑡), (6)

𝑑

𝑑𝑡
𝛼2(𝑡) = −Γ−𝛼2(𝑡)− 𝜉−𝛼

*
1(𝑡) + 𝑓2(𝑡), (7)

where
Γ± =

𝜅

2
− 𝐴

4
(𝜂 ± 1), (8)

𝜉± = ±𝐴
4

√︀
1− 𝜂2, (9)

𝑓1(𝑡) and 𝑓*2 (𝑡) are noise forces whose properties re-
main to be determined, 𝛼1(𝑡) and 𝛼2(𝑡) are the 𝑐-
number variables corresponding to the cavity-mode
operators �̂�1 and �̂�2.

Following the procedure described in Ref. [13], we
obtain:

𝛼1(𝑡) = 𝐴+(𝑡)𝛼1(0) +𝐵+(𝑡)𝛼
*
2(0) + 𝐹+(𝑡) +𝑊+(𝑡),

(10)

𝛼2(𝑡) = 𝐴−(𝑡)𝛼2(0) +𝐵−(𝑡)𝛼
*
1(0) + 𝐹−(𝑡) +𝑊−(𝑡),

(11)
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where

𝐴±(𝑡) =
1

2
[(1± 𝑝)𝑒−𝜆−𝑡 + (1∓ 𝑝)𝑒−𝜆+𝑡], (12)

𝐵±(𝑡) =
𝑞±
2
[𝑒−𝜆+𝑡 − 𝑒−𝜆−𝑡], (13)

𝐹+(𝑡) =
1

2

𝑡∫︁
0

[(1 + 𝑝)𝑒−𝜆−(𝑡−𝑡
′
) +

+(1− 𝑝)𝑒−𝜆+(𝑡−𝑡
′
)]𝑓1(𝑡

′
)𝑑𝑡

′
, (14)

𝐹−(𝑡) =
1

2

𝑡∫︁
0

[(1− 𝑝)𝑒−𝜆−(𝑡−𝑡
′
) +

+(1 + 𝑝)𝑒−𝜆+(𝑡−𝑡
′
)]𝑓2(𝑡

′
)𝑑𝑡

′
, (15)

𝑊+(𝑡) =
𝑞+
2

𝑡∫︁
0

[𝑒−𝜆+(𝑡−𝑡
′
)−𝑒−𝜆−(𝑡−𝑡

′
)]𝑓*2 (𝑡

′
)𝑑𝑡

′
, (16)

𝑊−(𝑡) =
𝑞−
2

𝑡∫︁
0

[𝑒−𝜆+(𝑡−𝑡
′
)−𝑒−𝜆−(𝑡−𝑡

′
)]𝑓*1 (𝑡

′
)𝑑𝑡

′
, (17)

with 𝑝 = 1/𝜂, 𝑞± = ±
√︀

1− 𝜂2/𝜂, 𝜆± = 𝜅
2 +

𝐴
4 (𝜂±1).

The correlation properties of the noise forces 𝑓1(𝑡)
and 𝑓2(𝑡) associated with the normal ordering satisfy
the relations

⟨𝑓1(𝑡)⟩ = ⟨𝑓2(𝑡)⟩ = ⟨𝑓1(𝑡
′
)𝑓1(𝑡)⟩ = 0, (18)

⟨𝑓2(𝑡)𝑓2(𝑡
′
)⟩ = ⟨𝑓*1 (𝑡)𝑓2(𝑡

′
)⟩ = 0, (19)

⟨𝑓2(𝑡
′
)𝑓*2 (𝑡)⟩ = ⟨𝑓*2 (𝑡

′
)𝑓1(𝑡)⟩ = 0, (20)

⟨𝑓1(𝑡
′
)𝑓*1 (𝑡)⟩ =

𝐴

2
(1− 𝜂)𝛿(𝑡− 𝑡

′
), (21)

⟨𝑓2(𝑡
′
)𝑓1(𝑡)⟩ = −1

2
𝜉−𝛿(𝑡− 𝑡

′
). (22)

3. Quadrature Fluctuations

In this section, following a similar approach, the evo-
lution of the two-mode quadrature squeezing is eval-
uated, and the comparison with the steady state case
is made whenever possible.

Generally, a two-mode cavity radiation can be de-
scribed by the operator

𝑐 =
1√
2
(�̂�1 + �̂�2). (23)

where �̂�1 and �̂�2 represent the separate modes. With
this consideration, the squeezing properties of the

cavity radiation can be studied applying the quadra-
ture operators defined by

𝑐+ = (𝑐† + 𝑐), (24)

𝑐− = 𝑖(𝑐† − 𝑐). (25)

These quadrature operators satisfy the commutation
relation [𝑐+, 𝑐+ = 2𝑖]. On the basis of these defini-
tions, a two-mode light is said to be in a two-mode
vacuum state, if either Δ𝑐2+ < 1 or Δ𝑐2− < 1. Taking
the cavity modes to be initially in a two-mode vacuum
state, the variances of the quadrature operators (24)
and (25) can be expressed in terms of the 𝑐-number
variables associated with the normal ordering as

Δ𝑐2± = 1+⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩+⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩+⟨𝛼*
1(𝑡)𝛼2(𝑡)⟩+

+ ⟨𝛼1(𝑡)𝛼
*
2(𝑡)⟩ ±

{︀
⟨𝛼1(𝑡)𝛼2(𝑡)⟩+ ⟨𝛼*

1(𝑡)𝛼
*
2(𝑡)⟩+

+
1

2
[⟨𝛼2

1(𝑡)⟩+ ⟨𝛼2
2(𝑡)⟩+ ⟨𝛼*2

1 (𝑡)⟩+ ⟨𝛼*2
2 (𝑡)⟩]

}︀
. (26)

It is necessary to determine the various correlations
described in Eq. (26) by using Eqs. (10) and (11). In
line with this, assuming that the cavity is initially
in a two-mode vacuum state, and the noise force at
time 𝑡 is not statistically related to the cavity mode
variables at earlier times, one can readily verify that

⟨𝛼2
1⟩ = ⟨𝛼2

2⟩ = ⟨𝛼1𝛼
*
2⟩ = ⟨𝛼*

1𝛼2⟩ = 0, (27)

⟨𝛼*
1𝛼1⟩ =

𝐴(1− 𝜂)2

𝜅(𝜅+𝐴𝜂)
+

𝐴(1− 𝜂2)

2𝜅(2𝜅+𝐴𝜂)
, (28)

⟨𝛼*
2𝛼2⟩ =

𝐴(1− 𝜂2)

2𝜅(2𝜅+𝐴𝜂)
− 𝐴(1− 𝜂2)

4𝜅(𝜅+𝐴𝜂)
, (29)

⟨𝛼1𝛼2⟩ =
𝐴
√︀

1− 𝜂2

2𝜅(2𝜅+𝐴𝜂)
−
𝐴(1− 𝜂)

√︀
(1− 𝜂2)

4𝜅(𝜅+𝐴𝜂)
. (30)

The results in Eq. (27), namely, ⟨𝛼2
1⟩ = ⟨𝛼2

2⟩ = 0,
represent the intercorrelation of each mode. It is a
well-known fact that the atoms in the quantum sys-
tem interact through the exchange of photons. Here,
a correlation among similar states of the cavity ra-
diation vanishes, which, in other words, means the
absence of intercorrelation interactions among the
atoms, as they are assumed to leave the cavity within
a short time interval. The results in Eqs. (28) and
(29) indicate the steady-state mean photon number
of the cavity modes �̂�1 and �̂�2, respectively. Moreo-
ver, Eq. (30) indicates the correlation between the
two cavity modes. The nonclassical features of the
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cavity radiation are attributed to the correlation be-
tween the two cavity modes given in this equation.

Furthermore, with the help of Eq. (27), one can
easily obtain

Δ𝑐2± = 1 + ⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩+ ⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩±

± 2⟨𝛼1(𝑡)𝛼2(𝑡)⟩. (31)

We clearly see from Fig. 2 that the squeezing occurs
for values of 𝜂 between 0 and 1. This corresponds to
the case where the atoms are initially prepared in such
a way that there are more atoms in the bottom level
than in the upper level. We also note that a significant
squeezing exists, when almost a half of the atoms are
initially on the upper level. Hence, we observe that
a light produced by a nondegenerate three-level laser
can exhibit a substantial degree of squeezing. This in-
dicates that the more the atoms are injected into the
cavity at a time, the more the degree of squeezing of
the cavity radiation would be. The maximum squeez-
ing occurs when the atoms are prepared with the ini-
tial coherence very close to the maximum possible
value in this case. Moreover, it is possible to realize
that the degree of squeezing increases with the lin-
ear gain coefficient. In particular, the maximum 72-%
squeezing occurs at 𝜂 = 0.1, when 𝐴 = 1000 and
𝜅 = 0.8.

On the basis of the definition of the parameter 𝜂,
we note that, for 𝜂 = 0, 𝜌(0)33 = 𝜌

(0)
11 = 𝜌

(0)
13 = 0.5,

which corresponds to the maximum initial atomic co-
herence. But, for 𝜂 = 1, 𝜌(0)33 = 𝜌

(0)
13 = 0 and 𝜌(0)11 = 1,

which indicates that there is no injected atomic co-
herence at the beginning. It is not difficult to see from
Fig. 2 that no squeezing property is exhibited, when
the atoms are initially prepared with maximum or
minimum atomic coherence.

4. Entanglement

Here, we study the degree of entanglement of the two-
mode cavity light produced by a nondegenerate three-
level cascade laser whose cavity contains a paramet-
ric amplifier. A pair of particles is taken to be en-
tangled in quantum theory, if its states cannot be
expressed as a product of the states of its individ-
ual constituents. The preparation and manipulation
of these entangled states that have nonclassical and
nonlocal properties lead to a better understanding of
the basic quantum principles [13, 14], if the density

Fig. 2. (Color online) Plots of the minus quadrature variance
of the cavity radiation in the steady state versus 𝜂 for 𝜅 = 0.8

operator for the combined state cannot be described
as the product of the density operators of the con-
stituents,

𝜌 ̸=
∑︁
𝑗

𝑃𝑗𝜌
(1)
𝑗

⨂︁
𝜌
(2)
𝑗 , (32)

in which 𝑃𝑗 ≥ 0, and
∑︀

𝑗 𝑃𝑗 = 1 is set to ensure the
normalization of the combined density of states.

A criterion to study the entanglement is the loga-
rithmic negativity which is used for a two-mode con-
tinuous variables based on the negativity of the par-
tial transposition [35, 38]. The negative partial trans-
pose must be parallel with respect to the entangle-
ment monotone in order to obtain the degree of entan-
glement. The logarithmic negativity is combined with
a negative partial transpose in another case where 𝑉
represents the smallest eigenvalue of the symplectic
matrix [38]:

𝑉𝑆 =

√︃
𝜎 −

√︀
(𝜎2 − 4 det Γ)

2
, (33)

where the invariant and covariance matrices are, re-
spectively, denoted as:

𝜎 = detΩ1 + detΩ2 − 2 detΩ12, (34)

Γ =

(︂
Ω1 Ω12

Ω𝑇
12 Ω2

)︂
, (35)

in which Ω1 and Ω2 are the covariance matrices de-
scribing each mode separately, while Ω12 are the in-
termodal correlations. The elements of the matrix in
equation (35) are given by:

Γ𝑖𝑗 = 1/2⟨�̂�𝑖�̂�𝑗 + �̂�𝑗�̂�𝑖⟩ − ⟨�̂�𝑖⟩⟨�̂�𝑗⟩, (36)
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Fig. 3. (Color online) Plots of the smallest eigenvalue 𝑉𝑆

versus 𝜂 for 𝜅 = 0.8 and for different values of the linear gain
coefficient 𝐴

Fig. 4. (Color online) Plot of the smallest eigenvalue 𝑉𝑆 versus
𝜂 and the linear gain coefficient 𝐴 for 𝜅 = 0.8

in which 𝑖, 𝑗 = 1, 2, 3, 4. The quadrature operators are
defined as

�̂�1 = �̂�1 + �̂�†1, �̂�2 = 𝑖(�̂�†1 − �̂�1), (37a)

�̂�3 = �̂�2 + �̂�†2, �̂�4 = 𝑖(�̂�†2 − �̂�2). (37b)

With this introduction, the extended covariance ma-
trix becomes

Γ =

⎛⎜⎝
Σ1 0 Σ12 0
0 Σ1 0 −Σ12

Σ12 0 Σ2 0
0 −Σ12 0 Σ2

⎞⎟⎠, (38)

where Σ1 = 2⟨𝛼*
1𝛼1⟩ + 1, Σ12 = 2⟨𝛼1𝛼2⟩, Σ2 =

= 2⟨𝛼*
2𝛼2⟩+ 1 are 𝑐-number variables associated with

the normal ordering. The logarithmic negativity is de-
fined as:

𝐸𝑁 = max[0,−log2𝑉𝑆 ]. (39)

The entanglement is achieved, when 𝐸𝑁 is positive
within the region of the lowest eigenvalue of the co-
variance matrix 𝑉𝑆 < 1 [35, 38].

In view of Eqs. (34) and (38), one can readily show
that:

detΩ1 = 1 + 4⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩[⟨𝛼*

1(𝑡)𝛼1(𝑡)⟩+ 1], (40a)

detΩ2 = 1 + 4⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩[⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩+ 1], (40b)

detΩ12 = −4⟨𝛼1(𝑡)𝛼2(𝑡)⟩2. (40c)

It is also possible to establish that:

det Γ =
[︀√︀

detΩ1 detΩ2 −
√︁

detΩ𝑇
12 detΩ12

]︀2
. (41)

As is seen in Fig. 3, the degree of entanglement
increases for smaller values for the initial prepara-
tion of atoms, but decreases for larger values. It can
also be seen that larger values of the linear gain co-
efficient produce a robust entangled light. The max-
imum achievable degree of entanglement of light in
this case is 96%, and this occurs for 𝐴 = 1000 and
𝜂 = 0.02. This criterion also predicts no entanglement
for 𝜂 = 1, no matter how we manipulate the rate of
atomic injection in the absence of a parametric am-
plifier (NLC) [14].

On the other hand, Fig. 4 shows that the effect
of a parametric amplifier for large values of the lin-
ear gain coefficient does not produce considerable
changes in the degree of entanglement. Hence, the
maximum achievable degree of entanglement of light
in this case is 82%, and this occurs for 𝐴 = 100 and
𝜂 = 0.13. Here, the entanglement occurs at the mini-
mum atomic coherence which represents the absence
of photons in the cavity for very large values of the
linear gain coefficient (rate of atomic injection).

5. Photon Statistics

Here, we study the statistical properties of the cav-
ity radiation of a three-level cascade laser such as the
mean photon number, Mandel’s𝑄-factor, the inensity
difference fluctuations, and the normalized second-
order correlation function for the system under con-
sideration.

5.1. Mean photon number

In order to know about the brightness of the gener-
ated light, it is necessary to study the mean number
of photon pairs describing the two-mode cavity radi-
ation that can be defined as

�̄� = ⟨𝑐†(𝑡)𝑐(𝑡)⟩. (42)

It then follows that

�̄� =
1

2

[︀
⟨𝛼*

1(𝑡)𝛼1(𝑡)⟩+ ⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩

]︀
. (43)
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Since ⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩ and ⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩ represent the
mean photon numbers in mode 𝑎1 and mode 𝑎2, re-
spectively, �̄� can be interpreted as the mean num-
ber of photon pairs. As it can be seen from Eq. (43),
the term that contains 𝜀 represents the contribution
from the external driving coherent light of a paramet-
ric amplifier to the total mean photon number. The-
refore, it is easy to verify that Eq. (43) represents the
mean number of photon pairs of the system.

It is not difficult to see from Fig. 5 that the mean
number of photon pairs increases with the linear gain
coefficient for 𝜅 = 0.8 and for smaller values of 𝜂,
but it decreases for larger values. Moreover, Fig. 6
clearly indicates that the mean photon number of the
two-mode cavity light increases with the linear gain
coefficient, 𝐴. It is quite interesting to note from this
figure that the linear gain coefficient enhances the
mean photon number over the laser system by a large
number of mean photon numbers. Therefore, the in-
crease in the mean photon number is observed in a
region, where the degrees of two-mode squeezing and
entanglement are significant making the system un-
der consideration a viable source of intense squeezed,
as well as entangled, light.

5.2. Mandel’s 𝑄-factor

It is a common experience that a nonclassical photon
number correlation can be studied applying the mea-
sure of the departure of the photon statistics from the
Poisson character. The measure of a departure can be
represented by Mandel’s 𝑄-factor defined as

𝑄 =
⟨(Δ�̂�)2⟩ − ⟨�̂�⟩

⟨�̂�⟩
, (44)

where �̂� = 𝑐†𝑐 is the photon number operator of a
two-mode cavity radiation. It is not difficult to verify
that Eq. (44) can be expressed by putting the opera-
tors in the normal ordering as

𝑄 =
⟨𝑐†2𝑐2⟩+ ⟨𝑐†𝑐⟩2

⟨𝑐†𝑐⟩
, (45)

where 𝑐 = 1√
2
(�̂�1 + �̂�2) is the annihilation operator

that describes the two-mode cavity radiation. In view
of this, the normal ordering of the operators would
not be altered, since �̂�1 and �̂�2 commute. Hence, it is
possible to put the resulting expression in terms of 𝑐-

Fig. 5. (Color online) Plot of the mean photon number 𝑁

versus 𝜂 and the linear gain coefficient 𝐴 for 𝜅 = 0.8

Fig. 6. (Color online) Plots of the mean photon number 𝑁

versus 𝜂 for 𝜅 = 0.8 and for different values of the linear gain
coefficient 𝐴

number variables associated with the normal order as

𝑄 =
⟨𝛾*2(𝑡)𝛾2(𝑡)⟩+ ⟨𝛾*(𝑡)𝛾(𝑡)⟩2

⟨𝛾*(𝑡)𝛾(𝑡)⟩
, (46)

where 𝛾 = 1√
2
(𝛼1(𝑡) + 𝛼2(𝑡)). Hence, employing

Eqs. (10) and (11), one obtains

𝑄 = �̄� +
⟨𝛼1(𝑡)𝛼2(𝑡)⟩2

�̄�
. (47)

It is well known that the negativity of Mandel’s
parameter refers to a sub-Poissonian character of the
photon statistics that essentially refers to a nonclassi-
cal property. Since the mean number of photon pairs
and ⟨𝛼1(𝑡)𝛼2(𝑡)⟩2 are positive, Mandel’s 𝑄-factor in
this case is definitely greater than 0. This ensures
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Fig. 7. (Color online) Plot of Mandel’s parameter 𝑄 versus 𝜂

and the linear gain coefficient 𝐴 for 𝜅 = 0.8

Fig. 8. (Color online) Plots of Mandel’s parameter 𝑄 versus
𝜂 for 𝜅 = 0.8 and the linear gain coefficient 𝐴 = 10, 25 and 100

that the generated radiation demonstrates the super-
Poissonian photon statistics while exhibiting the non-
classical properties such as squeezing and entangle-
ment.

Figure 7 shows Mandel’s 𝑄-factor described by
Eq. (47) versus 𝜂 for 𝐴 = 10 and 𝜅 = 0.8. This figure
indicates that Mandel’s 𝑄-factor for the given system
is definitely positive. This implies that the generated
laser light demonstrates the super-Poissonian photon
statistics. From this plot, we see that Mandel’s 𝑄-
factor increases with the linear gain coefficient at the
minimum atomic coherence, 𝜂, which is the maximum
squeezing occurring point.

The result presented in Fig. 8 indicates that Man-
del’s 𝑄-factor increases for small values of the atomic
coherence 𝜂 and for the cavity damping constant,

𝜅 = 0.8 and the linear gain coefficient, 𝐴 = 10. The
result in this figure indicates that the linear gain
coefficient (rate of atomic injection) increases with
Mandel’s 𝑄-factor at the minimum atomic coherence,
𝜂. In these two figures, we observe that the value of
Mandel’s 𝑄-factor is positive.

5.3. Photon number correlations

The normalized second-order correlation function for
the two-mode light can be expressed as [36]

𝑔
(2)
(𝑛1,𝑛2)

(0) =
⟨�̂�†1�̂�

†
2�̂�1�̂�2⟩

⟨�̂�†1�̂�1⟩⟨�̂�
†
2�̂�2⟩

. (48)

We realize that the operators in (48) are in the normal
order. Therefore, the second-order correlation func-
tion can be expressed in terms of the 𝑐-number vari-
ables associated with the normal ordering as

𝑔
(2)
(𝑎1,𝑎)2

(0) = 1 +
⟨𝛼1(𝑡)𝛼2(𝑡)⟩2

⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩
. (49)

We see from Fig. 9 that the correlation of the pho-
ton number inccreases with the injected atomic coher-
ence. Moreover, as shown in Fig. 2, the squeezing is
maximum in a vicinity of 𝜂 = 0.74 for 𝐴 = 10, where
the correlation of the photon number is a little above
2. We also found that, for 𝜂 very close to 1, the cor-
relation of the photon number would be significantly
larger, since the mean photon number of the light in
mode 𝑎1 is very close to zero, when initially almost
all atoms occupy the lower level.

Furthermore, Fig. 10 shows the plots of the lin-
ear gain coefficient described by Eq. (49) versus 𝜂
and 𝐴 for 𝜅 = 0.8. It is not difficult to see from
this figure that the normalized second-order corre-
lation function increases significantly with the linear
gain coefficient and the atomic coherence, 𝜂. Howe-
ver, we have found that the degree of squeezing in-
creases with the linear gain coefficient. Hence, we in-
fer from these results that the correlation between
the photon numbers tends to be minimum in regions,
where the squeezing is maximum.

5.4. Intensity difference fluctuations

The intensity-difference fluctuations allow us to in-
vestigate how the difference between the mean pho-
ton numbers of the two radiations deviates from each
other. This study is based on the assumption that
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Fig. 9. (Color online) Plots of Mandel’s parameter 𝑄 versus
𝜂 for 𝜅 = 0.8 and the linear gain coefficient 𝐴 = 10

Fig. 10. (Color online) Plot of the photon number correlation
function 𝑔

(2)
(𝑛1,𝑛2)

versus 𝜂 and the linear gain coefficient 𝐴 for
𝜅 = 0.8

there is a difference between the mean photon num-
bers of the two radiations due to the disparity of the
absorption-emission mechanism among the involved
atomic energy levels. Therefore, the variance of the
intensity-difference can be defined as

Δ𝐼2𝐷 = ⟨𝐼2𝐷⟩ − ⟨𝐼𝐷⟩2, (50)

where the intensity difference is

𝐼𝐷 = �̂�†1�̂�1 − �̂�†2�̂�2. (51)

Hence, making use of Eq. (51), the 𝑐-number variance
of the intensity-difference takes the form

Δ𝐼2𝐷 = ⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩[1+⟨𝛼*

1(𝑡)𝛼1(𝑡)⟩]+⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩×

× [1 + ⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩]− 2⟨𝛼1(𝑡)𝛼2(𝑡)⟩2. (52)

Fig. 11. (Color online) Plots of the variance of the intensity-
difference Δ𝐼2𝐷 versus 𝜂 and the linear gain coefficient 𝐴 for
𝜅 = 0.8
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Fig. 12. (Color online) Plots of the variance of the intensity-
difference per mean photon number Δ𝐼

′
𝐷 versus 𝜂 for 𝜅 = 0.8

and the linear gain coefficient 𝐴 = 10

On the other hand, the variance of the intensity dif-
ference per mean photon number can be described as

Δ𝐼
′

𝐷 =

√︂
Δ𝐼2𝐷
�̄�

. (53)

It is not difficult to see from Fig. 11 that the vari-
ance of the intensity difference increases with the lin-
ear gain coefficient. But, unlike the correlation be-
tween the photon number, it decreases with the in-
jected atomic coherence. In particular, the variance
of the intensity difference is found to be zero, when
𝜂 = 1 for all values of the linear gain coefficient, since
there is no possibility for the emission of photons
of both modes, when the atoms are initially present
on the lower level. In the same way, the variance of
the intensity difference turns out to be zero, when
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𝐴 = 0 for all values of 𝜂, since there is no radiation
in the cavity. In relation to the previous discussions,
one can infer that the variance of the intensity differ-
ence would be relatively larger in a region, where the
squeezing and entanglement are significant.

Moreover, as shown in Fig. 12, the variance of the
intensity difference per mean photon number is found
to be less than 1 except for values of 𝜂 and 𝐴 very
close to zero. We observe that Δ𝐼

′2 decreases with the
injected atomic coherence except near 𝜂 = 1, where
the mean photon number approaches zero.

6. Conclusions

In this study, we have analyzed the squeezing, entan-
glement, and statistical properties of the light pro-
duced by a nondegenerate three-level cascade laser
coupled to a two-mode vacuum reservoir in the lin-
ear and adiabatic approximation schemes in the good
cavity limit. Moreover, we apply the master equation
describing the dynamics of the optical system. Emp-
loying the solutions for the 𝑐-number cavity mode
variables along with the correlation property of noise
forces associated with a normal ordering, we ob-
tained the quadrature squeezing, photon entangle-
ment, mean number of photon pairs, Mandels 𝑄-
factor, second-order correlation functions, and the
variance of the intensity difference of the two-mode
cavity light.

It is found that the two-mode cavity radiation ex-
hibits squeezing properties under certain conditions
pertaining to the injected atomic coherence, where
the degree of squeezing increases with the linear gain
coefficient. In particular, the squeezing property ex-
ists, if the atoms are initially prepared in such a way
that there are more atoms on the bottom level, than
on the upper level. A relatively better squeezing is
found, when a sufficiently large number of atoms is
injected into the cavity and when the atoms are ini-
tially prepared with a nearly 50-% probability to be
on the top level.

We also found that there is a significant entangle-
ment between the states of the light generated in the
cavity of a nondegenerate three-level cascade laser
due to the strong correlation between the radiation
emitted, when the atom decays from the top level
to the bottom level via the intermediate level. Ge-
nerally, we have found that the degree of entangle-
ment for the two-mode cavity light is directly related
to the two-mode squeezing. Whenever there is squeez-

ing in the two-mode light, there exists the entangle-
ment in the system. The results we have obtained in-
dicate that the entanglement is stronger, when the
degree of squeezing is larger. Here, the linear gain co-
efficient increases with the degree of squeezing. Mo-
reover, we have found that a considerable degree of
entanglement of light for very small values of the lin-
ear gain coefficient regardless of how atoms are ini-
tially prepared.

Furthermore, our calculation of the photon num-
ber correlation shows that if the correlation between
the states of the emitted light is stronger, the cor-
relation between the photon numbers tends to be
smaller. Contrary to this fact, the variance of the in-
tensity difference is found to be relatively larger in
a region, where the squeezing and entanglement are
significant. We also found that the linear gain coeffi-
cient enhance the mean photon number over the laser
system. Therefore, the increase in the mean photon
number is observed in a region, where the degrees
of two-mode squeezing and entanglement are signifi-
cant making the system under consideration a viable
source of intense squeezed, as well as entangled, light.

1. S. Qamar, M. Al-Amri, M.S. Zubairy, Entanglement in a
bright light source via Raman-driven coherence. Phys. Rev.
A 79, 013831 (2009).

2. J. Anwar, M.S. Zubairy. Quantum-statistical properties of
noise in a phase-sensitive linear amplifier. Phys. Rev. A 49,
481 (1994).

3. N.A. Ansari, J.G. Banacloche, M.S. Zubairy. Phase-
sensitive amplification in a three-level atomic system. Phys.
Rev. A 41, 5179 (1990).

4. H. Xiong, M.O. Scully, M.S. Zubairy. Correlated sponta-
neous emission laser as an entanglement amplifier. Phys.
Rev. Lett. 94, 023601 (2005).

5. C.A. Blockley, D.F. Walls. Intensity fluctuations in a fre-
quency down-conversion process with three-level atoms.
Phys. Rev. 43, 5049 (1991).

6. N. Lu, F.X. Zhao, J. Bergou. Nonlinear theory of a two-
photon correlated-spontaneous-emission laser: A coher-
ently pumped two-level-two-photon laser. Phys. Rev. A 39,
5189 (1989).

7. E. Alebachew. Enhanced squeezing and entanglement in
a nondegenerate three-level cascade laser with injected
squeezed light. Opt. Commun. 280, 133 (2007).

8. T. Abebe. The quantum analysis of non-degenerate three-
level laser with spontaneous emission and noiseless vacuum
reservoir. Ukr. J. Phys. 63, 969 (2018).

9. B. Teklu. Parametric oscillation with the cavity mode
driven by coherent light and coupled to a squeezed vac-
uum reservoir. Opt. Commun. 261, 310 (2006).

560 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 7



Generation of Entangled Light

10. T. Abebe. Enhancement of squeezing and entanglement in
a non-degenerate three-level cascade laser with coherently
driven cavity. Ukr. J. Phys. 63, 733 (2018).

11. T. Abebe. Coherently driven nondegenerate three-level
laser with noiseless vacuum reservoir. Bulg. J. Phys. 45,
357 (2018).

12. T. Abebe, N. Gemechu. Two-level atom with squeezed light
from optical parametric oscillators. Ukr. J. Phys. 63, 600
(2018).

13. Ch. Gashu, T. Abebe. Externally induced entanglement
amplification in a coherently pumped emission of laser
with parametric amplifier and coupled to squeezed vacuum
reservoir. Phys. Scr. 95, 075105 (2020).

14. T. Abebe, N. Gemechu, Ch. Gashu, K. Shogile, S. Haile-
mariam, Sh. Adisu. The quantum analysis of nonlinear op-
tical parametric processes with thermal reservoirs. Int. J.
Opt. 2020, 7198091 (2020).

15. T. Abebe, N. Gemechu, K. Shogile, S. Hailemariam,
Ch. Gashu, Sh. Adisu. Entanglement quantification using
various inseparability criteria for correlated photons. Rom.
J. Phys. 65, 107 (2020).

16. A. Einstein, B. Podolsky, R. Rosen. Can quantum mechan-
ical description of physical reality be considered complete?
Phys. Rev. 47, 777 (1935).

17. J.S. Bell. On the Einstein–Podolsky–Rosen paradox.
Physics 1, 195 (1964).

18. J.M. Liu, B.S. Shi, X.F. Fan, J. Li, G.C. Guo. Wigner
function description of continuous variable entanglement
swapping. J. Opt. B: Quant. Semiclass. Opt. 3, 189 (2001).

19. S.L. Braunstein, H.J. Kimble. Dense coding for continuous
variables. Phys. Rev. A 61. 042302 (2000).

20. S. Lloyd, S.L. Braunstein. Quantum computation over con-
tinuous variables. Phys. Rev. Lett. 82, 1784 (1999).

21. S.L. Braunstein. Quantum error correction for communi-
cation with linear optics. Nature 394, 47 (1998).

22. T.C. Ralph. Continuous variable quantum cryptography.
Phys.Rev. A 61, 010302 (2000).

23. T. Jennewein, C. Simon, G. Weihs, H. Wein-furter, A. Zei-
linger. Quantum cryptography with entangled photons.
Phys. Rev. Lett. 84, 4729 (2000).

24. C.H. Bennett, D.P. DiVincenzo. Quantum information and
computation. Nature 404, 247 (2000).

25. S. Barzanjeh, S. Pirandola, C. Weedbrook. Continuous-
variable dense coding by optomechanical cavities. Phys.
Rev. A 88, 042331 (2013).

26. N. Ganguly, S. Adhikari, A.S. Majumdar, J. Chatterjee.
Entanglement witness operator for quantum teleportation.
Phys. Rev. Lett. 107, 270501 (2011).

27. C. Branciard, N. Brunner, H. Buhrman, R. Cleve, N. Gisin,
S. Portmann, D. Rosset, M. Szegedy. Classical simulation
of entanglement swapping with bounded communication.
Phys. Rev. Lett. 109, 100401 (2012).

28. T. Kitagawa, A. Aspect, M. Greiner, E. Demler. Phase-
sensitive measurements of order parameters for ultra-

cold atoms through two-particle interferometry. Phys. Rev.
Lett. 106, 115302 (2011).

29. S. Koike, H. Takahashi, H. Yonezawa, N. Takei,
S.L. Braunstein, T. Aoki, A. Furusawa. Phys. Rev. Lett.
96, 060504 (2006).

30. R.T. Thew, W.J. Munro. Entanglement manipulation and
concentration. Phys. Rev. A 63, 030302(R)(2001).

31. T. Kishore, P. Anirban, S. Biswajit, J. Peřina. Higher-order
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ГЕНЕРАЦIЯ ЗАПЛУТАНОГО
СВIТЛА НЕВИРОДЖЕНИМ ТРИРIВНЕВИМ
ЛАЗЕРОМ, З’ЄДНАНИМ З ДВОМОДОВИМ
ВАКУУМНИМ РЕЗЕРВУАРОМ

Вивчаються квантовi властивостi невиродженого трирiвне-
вого каскадного лазера, з’єднаного з двомодовим вакуум-
ним резервуаром iз застосуванням вiдповiдного основного
рiвняння i стохастичних диференцiйних рiвнянь, асоцiйова-
них з нормальним упорядкуванням. Зокрема, дослiджено
посилення стиснення i заплутаностi фотонiв двомодового
резервуара. Показано, що обидвi моди сильно заплутанi, i
ступiнь заплутаностi безпосередньо пов’язаний з двомодо-
вим стисненням. Бiльш того, стиснення i заплутанiсть зро-
стають зi збiльшенням швидкостi атомного накачування.

Ключ о в i с л о в а: атомна когерентнiсть, квадратурне сти-
снення, заплутанiсть, середнє число фотонiв.
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