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THE METHOD OF COLLECTIVE VARIABLES
IN THE THEORY OF NONLINEAR FLUCTUATIONS
WITH ACCOUNT FOR KINETIC PROCESSES

The set of parameters of the Bogolyubov reduced description, which includes collective vari-
ables, has been optimized for the consistent description of the kinetics and hydrodynamics
of the systems of interacting particles. The contributions from short- and long-range inter-
actions between the particles are separated. The short-range interactions (for example, the
hard-sphere model) are described in the coordinate-momentum space, and the long-range ones
in the space of collective variables. The short-range component is considered to be basic. Using
the method of Zubarev non-equilibrium statistical operator, a system of transport equations
for the non-equilibrium one-particle distribution function, the non-equilibrium average value
for the density of particle interaction energy, and the non-equilibrium distribution function of
collective variables are obtained. The applied method of collective variables allowed both the
structural function and the hydrodynamic velocities of collective variables to be calculated in
approximations higher than the Gaussian one.
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1. Introduction

The research of nonlinear kinetic and hydrodynamic
fluctuations in dense gases, plasma, and liquids
in such fields as turbulence phenomena, dynamics
of phase transitions, chemical reactions, and self-
organizing processes remains a challenging task in the
statistical theory of non-equilibrium processes at both
the kinetic and hydrodynamic description levels [1—-
29]. Non-equilibrium states of those systems are far
from equilibrium, so important are the studies of both
the processes of establishing stationary states with
characteristic lifetimes and the processes of relaxation
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to already known non-equilibrium states, in particu-
lar, those described in the framework of molecular
hydrodynamics [2, 30-32] in the case of liquids and
dense gases. It is important to note that a specific
feature of the research of non-equilibrium phenom-
ena in dense gases, liquids, and dense plasma (dust
plasma) consists in the consistent description of ki-
netic and hydrodynamic processes [33-37], as well as
in the account for characteristic short- and long-range
interactions between the particles in the system.
The development of kinetic equations making al-
lowance for nonlinear hydrodynamic fluctuations [38—
41] is an important problem in the theory of transport
processes in dense gases and liquids. In particular,
this problem arises, when describing low-frequency
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anomalies in the kinetic equations and the related
“long tails” of correlation functions [1, 42, 43|. In
works [33, 44, 45], a consistent description of kinetic
and hydrodynamic processes in dense gases and lig-
uids based on the non-equilibrium statistical method
of Zubarev operator [8,9] was proposed. In particular,
this approach was applied to obtain, from the chain of
BBGKY equations, the kinetic equation of the revised
Enskog theory [45,46] for the system of hard spheres
and the Enskog—Landau kinetic equation for the one-
component system of charged hard spheres. In work
[33], non-Markovian transport equations were ob-
tained for the non-equilibrium one-particle distribu-
tion function and the non-equilibrium value of the
average potential energy of particle interaction. La-
ter [34, 36], those equations were used to study the
temporal correlation functions and the spectrum of
collective excitations for weakly non-equilibrium pro-
cesses in liquids. The approach of works [33, 44, 45]
can evidently be applied to describe both weakly and
strongly non-equilibrium systems.

At the same time, for the description of kinetic pro-
cesses and nonlinear hydrodynamic fluctuations to be
consistent, it is convenient to reformulate the theory
in a way that would make it possible to obtain a set of
equations for the non-equilibrium one-particle distri-
bution function and the distribution functional for the
hydrodynamic variables (particle concentrations, mo-
menta, and energies). The idea of such an approach
was formulated in works [47, 48]. In works [49, 50|,
we developed this approach and used the method of
collective variables [51] to consistently describe the
kinetic and hydrodynamic processes that are charac-
terized by nonlinear fluctuations of particle concen-
trations, their momenta, and total energy

In this work, unlike works [49, 50], we introduce
only the Fourier component of the particle concen-
tration as a collective variable for the description of
collective dynamic processes in the system, because
it is related to the momentum density via a conti-
nuity equation, and the long-range part of the po-
tential energy of particle interaction is also expressed
in its term. In this case, the densities of the kinetic
energy and the short-range part of the particle in-
teraction potential are described in the coordinate-
momentum space.

In Section 2, we obtain the non-equilibrium statisti-
cal operator for a non-equilibrium system state, when
the parameters of the reduced description are the
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non-equilibrium one-particle distribution function,
the non-equilibrium average value of the interaction
potential energy density, and the non-equilibrium dis-
tribution function of the particle concentration (the
collective variable).

In Section 3, we consider one of the methods to cal-
culate the structural functions for the distributions of
particle concentration and hydrodynamic particle ve-
locities (in the approximation higher than the Gaus-
sian one), which enter the generalized Fokker—Planck
equation for the non-equilibrium distribution func-
tion of collective variables. In so doing, we separate
the contributions from short- and long-range interac-
tions between the particles. As a result, short-range
interactions (for example, the hard-sphere model)
can be described in the coordinate-momentum space,
whereas long-range ones in the space of collective
variables. Furthermore, the short-range component
is considered as the basic one, which can be de-
scribed using a chain of BBGKY equations for non-
equilibrium distribution functions, in particular, in
the case of the hard-sphere model [35].

2. Non-Equilibrium Distribution
Function in the Method of Zubarev
Non-Equilibrium Statistical Operator

For a consistent description of kinetic and hydrody-
namic fluctuations in classical dense gases and liquids,
it is necessary to select parameters for the reduced de-
scription of one-particle and collective processes. Un-
like to what was done in works [49,50], now we choose
the non-equilibrium one-particle distribution func-
tion fi(x;t) = (f1(x))?, the non-equilibrium average
value of the particle interaction energy H'™(r,t) =
= (H™(r))!, and the non-equilibrium distribution
function f(p;t) = (6(p — p))* of collective variables
corresponding to the particle concentration to play
the role of such parameters. The microscopic phase
density of the particle number, 721 (), and the micro-
scopic density of the potential energy of interaction
between the particles in the system, Hmt (r), are given
by the following expressions:

N N
ny(z) = 25(50—%‘) = 25(r—rj)5(p—pj)’ (2.1)
. 1 &
H”‘t(r)=§ > ®(Iryl) 6 (r =), (2.2)
=1
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where z; = (r;, p;) are the coordinates and momenta
of the particles in the phase space, and N is the total
particle number in the system volume V. The micro-
scopic phase distribution of collective variables p is
written as follows:

Fp)=0(p—p) =[] 6(hx — po), (2.3)
where k
N
pre=» ek (2.4)
j=1

is the Fourier component of the particle concentra-
tion, and pyx is the corresponding collective vari-
able. In the potential of pair interaction between the
particles, ®(|r;;|) = ®(|r; — r;|), let us separate the
short-range, ®*(|r;;|), and long-range, ®'°"2(|r;;|),
contributions:

®([ry;|) = @ (Jryy]) + @15 (Jry )

Accordingly, the non-equilibrium value of the poten-
tial energy density for interacting particles has the
form

(M ) = (@) o S w)eie
X (</3q+kﬁ—k>t - <pq>t)a ak

where v(k) is the Fourier component of the long-range
part of the particle interaction potential. The non-
equilibrium particle scattering function (pq+kp—x)" =
= F(q, k;t) is related to the non-equilibrium dynamic
structural factor S(q,k;w), which can be directly
measured in neutron scattering processes.
The non-equilibrium average values (f(x))¢,
(H™(r))t, and (6(p — p))t are calculated using
the non-equilibrium N-particle distribution function
o(xV; t), which satisfies the Liouville equation. In ac-
cordance with the concept of reduced description of
non-equilibrium state, this function is a functional,

o(@™Nit) = o(., filz;t),  (H™ (1)), f(pit),...).
To find the non-equilibrium distribution function
o(zN;t), we use the Zubarev method [48, 52|, where
the general solution of the Liouville equation that
takes the projecting procedure into account can be
presented in the form

¢

o(xN;t) = g, (aN;t) — / dt’ e =D, (£,1') x

—0o0
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X (1 7Pq(t/))7iLNQq(xN;t/)7 (25)
where € — +0 after the thermodynamic limit transi-
tion, which selects retarded solutions of the Liouville
equation with the operator iLy, and

t

T,(t, ') = exp,. (— /dt’ (1- Pq(t’))z’LN>

t

is the generalized operator of time evolution, where
the Kawasaki-Ganton projection operator P,(t) is
taken into account. The structure of P,(¢) depends
on the relevant distribution function g, (z;t). In the
Zubarev method, the latter is determined from the
extremum of information entropy at the fixed values
of the reduced description parameters — in our case,
these are fi(z;t), (H™(r))t, and f(p;t) — and pro-
vided the preservation of the normalization condition

/dFNQq(ivN;t) =1, (2.6)
where

dz)N dzq,...,dz
der(N)! _ ldn i N), dz = drdp.

Hence, the relevant distribution function can be writ-
ten in the form

04(xN;t) = exp [ —®(t) — /drﬁ(r; t) H™(r) —

- [an@one - [wreoie| @D

where dp =[], dpk, ®(t) is the Massier-Planck func-
tional, which is determined from the normalization
condition for the relevant distribution function

D(t) = ln/dI‘N exp [— /drﬁ(r;t) H™ (r) —
- [t - [areoie)

The Lagrange multipliers v(x;t), 8(r;t) and F(p;t)
are determined from the self-consistency conditions
filz;t) = (@) = (A (),

(H™ (x)" = (H™ (),

Flpit) = (3(p — p)) = (5(p — p))",

(2.8)
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where (...)! = [dlx ... 04(z";t). To reveal the inter-
nal structure of the non- equllibrium distribution func-
tion o(zN;t), let us exclude the function F(p;t) from
the relevant distribution function. For this purpose,
let us apply the self-consistency conditions (2.8). As

a result, we get

Ql;infhyd(:r,N; t)M (2.9)

N
i) = ;
2a(@:1) W (p;t) lp=p

where
W(p;t)

<f(p) = / Ty g2 (2, 1) f ()

/dFN e—<I>(f) [ drB(r;t) H™ (r) — [ day (z;t) i () >

(2.10)

is the non-equilibrium structural function for the dis-
tribution of collective variables, which is the Jacobian
of the transition f (p) into the space of collective vari-
ables pk. In so doing, the averaging in Eq. (2.10) is
performed with the relevant distribution function

kin—hyd (IL’N; t) = exp

Oq
—/drﬁ(r;t)ﬁi“t(r) —/dm(w;t)ﬁl(w)},

which was constructed in works [33, 34, 36] while
consistently describing the kinetic and hydrodynamic
processes in systems of interacting particles. The rel-
evant distribution function (2.9) corresponds to the
Gibbs entropy

S(t) = —(In g ("3 1))g = (1) +

—|—/dr5(r;t)<fli“t(r)>t +/dx7(x;t)<ﬁ1(x)>t+

+ / dpf(p;t)In VJ;,((p; ,tt)),

which, together with self-consistency conditions (2.8),
can be considered as the entropy of a non-equilibrium
state.

To obtain an explicit form for the non-equilibrium
distribution function according to Eq. (2.5), it is nec-
essary to apply the Liouville and Kawasaki-Ganton
operators to the function g,(z"™;t). According to
Eq. (2.9), the Kawasaki-Ganton projection operator
has the following structure:

Nt/dFNQ—i—/d 89‘1

_ (I)(t) —

(2.11)

(2.12)

X [/dFan(:c)Q/ - (ﬁl(;p)>t/dFNQ/]+

L 004(x™5 1) frint (2 o/
o ey | T

— (T (p / dFNQ}

“f d”?aiévﬁ))t)) | i -

~ s | drNg']+
o f e e e
[/dFan r)o — (i (x /dFNQ/:|

Dog(x™;t) f(pst) W (p;t)
/dr/d f(pt) Wi(p;t) o <H1nt(r)> x

X [/dFNHint(r)g’— (Hint(r))t/dFNg’}. (2.13)

+

First, let us apply the Liouville operator to the rel-
evant distribution function (2.9). As a result, we ob-
tain

iLNgq(:EN;t) = —/da:'y(x;t)ﬁl(gc)gq(gglv; t) —

- / drf(r; ) A () 0q (2N ) +

o fpit) } kin—hyd (N
+ |iL ’ MW (2o t), 2.14
[ NW(p; ) lp=p 9q ( ) ( )
where 7y (x) = iLy#y(x) and ﬁim(r) = iLyH™(r).

Using the relation

iLnf(p) =iLn flp) = [8 f
k

e (P)ﬁk]7

where px = iLy px, the last term in Eq. (2.14) can be
rewritten in the form

s
- [ v

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 8

f(P;t))’ _J nginfhyd(xN;t) _

Wip;t
T

(2.15)
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In this expression, we introduced a new relevant dis-
tribution function or (z™, p;t) with the microscopic
distribution of collective variables

(e i) = N GO (2
which is related to g,(z™;t) via the relation
0q(a™;t) = /dpf(p; tor(z™, p;t) (2.17)
and is normalized,

/dFNQL(xN,p; t)=1. (2.18)

Using relation (2.16), the average values calculated
using the relevant distribution functions, can be ex-
pressed as follows:

_ / dp(..)% F(pi)

() = /dFN...QL(a:N,p;t).

Now, taking Eqgs. (2.15) and (2.16) into account, the
result of the Liouville operator action on g,(zV;t)
looks like

(2.19)

Nit) =
/dp/dxv z;t)n(z)or (z, pit) f(pst) —

—/dp/drﬁ(r;t)ﬁi“t(r)QL(wN,p;t)f(p; t)+
9 f(p:t)

+/dpzk: [f)kW(p; D G W (1)

Substituting this expression into Eq. (2.5), we obtain
the non-equilibrium distribution function in the form

ZLNQq

oL(z™, pit). (2.20)

(xNit) = /dpf(p; Hor(a™, pit) +

t
+/dp/dr / At'ef T OT, (1, ') (1 — Py (1)) x
— 00

X ™ (r)or (2, s 1) f(ps ) B(r; ') —

¢
f/dp/dx / At'e“ =D, (¢, 1) x
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(1*P(’))i (@)or (@™, p;t) f(pst')y(w;t') —

/de/dt’“*f

; 0 ; /
X [ﬁkW(p; t/)aTk V‘If/((pp, t,)>] o (z, p;t'),

Making use of it, we get the corresponding general-
ized transport equations for the reduced description
parameters:

[;Jr p 8} fi(zst) — /dx g@(\r—ﬂ)
0 0
X[f)p op’ /dr/dpx
t
X /dt'ee(t'*t) it (v, pit, ) f(pst) B ;1) —
/dm /dp/ dt’ et
t
X f(p;t")y(2';t') — da [ dt'ec® =1 x
X/ 4
;0 it

W(p;t')’
9, - int
i)’ =

/dr /dpx
/ dt'e Iy (v, pit, ) [ (ps ) B H) —
/da? /dp / At e @ =it (p o pit, 1) x
X f(p;t)y(z';t) Z/dp/dt’”_t
9 f(p; )
X QG (r K, pit,t , 2.23
{ ko )apk} W(p;t') 223)
1)
= —u,(k;t — [ dr' x
) Zk:(;pkvp( 25 k/
t
X/dp' / dt'e“ g, (r' k, p, st 1) x

/,/700 I i ’ ’
< (o3 t)B('st) Xk:&pk/dx /dpx

(t,1)(1 = Py(t)) x

(2.21)

}ggxa? t)

(@, 2, pit,t') x

(2.22)

Hmt
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t
x /dt’eﬁ(t (@ k,p, o't ) f(p's )y (s ) +

— 00 .
/ )
+ d / / dt/ee(t 7t)7 X
; / P . dpx Oor

0 flpst)

dpq W(p'st') (2:24)

< (k,q,p,p';t,t)

The generalized transport equations (2.22)—(2.24)
contain the relevant particle pair distribution func-
tion

ga(z, 2’3 t) :/dFN72Q(xN§t) =

= /dpgzL(x,x’;p; t).f(p3t), (2.25)
where gf (z,2'; p;t) = [dln_s0r (2N, p;t) is the rel-
evant particle L-pair distribution function.

The generalized transfer kernels

bap(t,t) = (Tn(O)Ty(t, ) I5(t"))e, o, 8= {n, H, p},
(2.26)
entering the transfer equation describe non-Marko-

vian processes; they are non-equilibrium correlation
functions. They are built on generalized fluxes

In(w;t) = (1= P(1)) i (), (2.27)
[t (rst) = (1 — P(t)) H™(r), (2.28)
Ik t) = (1 - P(t)) px, (2.29)

where P(t) is the generalized Mori operator related to
the Kawasaki—-Ganton projection operator P,(t) via
the relationship

Py(t)a(z)oq(x™;t) = 0q(z™ ;) P(t)a(x).

It is important to note that the average values in
Eq. (2.26) are calculated using the distribution func-
tion or (v, p;t) [Eq. (2.16)]. Therefore, the transfer
kernels are functions of the collective variables py.

In Eq. (2.24), the functions v,(k;t) are fluxes in
the space of collective variables. They are called hy-
drodynamic velocities and defined as follows:
v,(k;t) = /dFN pror (N, p;t) = (p)t. (2.30)

The presented system of transport equations
(2.22)—(2.24) gives a consistent description of ki-
netic and hydrodynamic processes in classical liquids
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and dense gases that accounts for long-term fluctua-
tions. This system of equations is not closed with re-
spect to the Lagrange parameters S(r;t) and y(z;t),
which are determined from the corresponding self-
consistency conditions. It should be noted that if the
kinetic processes and the contribution of the aver-
age potential energy are neglected, we obtain the fol-
lowing generalized (non-Markovian) Fokker—Planck
equation for the non-equilibrium distribution func-
tion of collective variables (this equation can also
be obtained using the Zwanzig projection operator
method or the Zubarev method [52]):

0 1)
af(ﬂ; t) = Zk: Mfkvp(k;t)f(p; t)+

t
e(t' — d
+Z/dp’/dt’e(t t)mx
K
a S

0 it
X ¢pp (k7 q, p, pl;ta tl) m VW (231)
One of the main problems in the analysis of trans-
port equations (2.22)—(2.24) and transfer kernels
(2.26) is the calculation of the structural function of
collective variables, W(p;t), and the hydrodynamic
velocities v, (k;t).

3. Calculation of Structural
Function W (p;t) and Hydrodynamic
Velocities v,(k;t) Using the Method
of Collective Variables

Let us calculate the structural function W(p;t) and
the hydrodynamic velocities v,(k;t) in the frame-
work of the method of collective variables [49-51, 54,
55]. First, we should calculate the structural func-
tion W(p;t) for collective variables in the case where
the interaction between the particles is described by
the short-range potential ®*"(|r;;|) — e.g., the hard-
sphere potential — at short distances, and by a certain
long-range potential ®'°"&(|r;;|) beyond them. Accor-
dingly, let us separate short- and long-range interac-
tions between the particles in the Liouville operator,

iLy =iL% + T + i\,

where iL}; is the Liouville operator for N non-
interacting particles, T is the scattering operator

of the system in the case of the hard-sphere model
[35, 38,41, 45], and iLﬂ‘\),“g is the potential part of the

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 8
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Liouville operator with the long-range interaction po-
tential between the particles.

At the next stage, we apply the integral represen-
tation for the d-function and present f(p) in the form

Fo) = [ awep {- i St~ o}

Using the cumulant expansion [49,50, 55| for W (p; t),
we obtain

- / dUn g (@5 0)f(p) =

= /dwexp {— inwkﬁk—
- 52 Z Z B
_ % Z Mo (ky, ko; t)wklwkz} exp {Z D, (w; t)},

(3.1)

)(ParkpP—k — Pq) —

k1,k2 n23
(3.2)
where
Pk = Pk — (P)iin—sn:  dw = Hidwiduy,
Wk = Wy, — Wi, W_k = Wy,
and (—im)
—im)"
D, (w;t) X
x> Mk, K ) Wi, i, - (3.3)
ki, kn

The non-equilibrium cumulative averages of the nth
order

A t,c

mn(kla ceey kn; t) = <ﬁk1a ey pkn)kinfsh (34)

where the superscript ¢ means the cumulative av-
erage, are calculated using the relevant distribution
function and the short-range interaction potential be-
tween the particles,

i) = e {- 2(0) -
—/drﬁ(r;t)f[Sh(r) /dx’y(fl?;t)ﬁl(l’)}a

It is important to note that contributions from short-
and long-range interactions in Eq. (3.2) are sepa-
rated. Short-range interactions are taken into account

(3.5)

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 8

in the relevant distribution (3.5), which can be con-
sidered as basic, and long-range interactions are pre-
sented in terms of collective variables,

ot = 555

X (Pq+kp—k - Pq)-

For further calculations, the structural function
W (p;t) is presented in the form

Wi(p;t) = Wg(p;t) / dw exp {— iy Wi —
k

7T2
_ 7 Z m2(k1,k2;t)b.)klb.)k2} X
ki,k2

1
|BQ+

2!

1+ B
(++ 3

1
o B+ A+ B"—|— ) (3.6)

where

Walpst) = oxp (- i3 30 6-a(t)v (09
q k

X (Patkp—x — Pq)> (3.7)

and B =3 .. Dp(w;t). If the series expansion of the
exponent exp{) -4 Dy(w;t)} in Eq. (3.6) is confined
to the first term, which is equal to unity, we obtain
the Gaussian approximation for W(p;t),

W (p;t) = Ws(p; ) / dw exp {m > wwp —
k

71.2
TS Ml st s (33)

ki, ko

where the non-equilibrium
density average has the form

cumulative density-

My (ky, koit) = <pAk1pAk2>f<7icr’17$h =

= <ﬁkﬁ—k>f<in—sh - <[)k>f<in—sh<ﬁ—k>f<in—sh'

To integrate over w in Eq. (3.8), it is necessary to
transform the expression in the exponent into the
quadratic diagonal form in wy. In this regard, it is
necessary to determine the eigenvalues by solving the
equation

det 9512(1(1,1{2;15)

— E(k;t)| =0, (3.9)
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where E(k;t) is a diagonal matrix. Taking this cir-
cumstance into account, we get

W (p;t) = Wa(p;t) / di exp {— iy Pl —

7T2 §

-5 > E(k; t)wk@k}.
k

The integrand in Eq. (3.10) is a quadratic function
of @k. Therefore, integrating over wy, we obtain the
following expression for the structural function in the
Gaussian approximation, W (p;t):

Wp(ps;t) x

xexp{ ZE (k; t) prp— k}

(3.10)

W (p;t) =

X exp {— 3 zk:ln 7 det E(k; t)}, (3.11)
or, in terms of the variables py,
W (p;t) = Z(t)Ws(p;t) x

1 = _
X exp { 3 Zk: E(k;t) px p_k}, (3.12)
where

Z(t) = exp {— % > Inm det E(k; t)}.
k

The structural function in the Gaussian approxi-
mation, W¢(p;t), makes it possible to calculate the
complete structural function (3.2) in higher approxi-
mations in the Gaussian momenta [49, 50]:

= Ws(p; )W (p; 1) x

x exp{ S (Bl t>>c}, (3.13)
n>3

here

_ 1

WG(p;t) = exp{ izk: (k; t) prp— k} (3.14)

and (D,,(p;t)) can be approximately represented as

follows:

(Ds(pst))a = (Da(pt))a,

(Da(p;t))e = (Da(p3t))c,
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(De(p: ) = (De(pi D) — 5(Dslps )%
(Ds(ps ) = (Ds(ps ) — (Da(pi ) (D(p: 1))
— L (Da(pi)
. 1 _
{Dulpite = g ) kzk M,y (K1, ooy K3 t) X
1 e
x (’LT()” 5ﬁk1...(5ﬁkn w (p’ t)’

where (D, (p;t))¢ are the nth renormalized non-
equilibrium cumulative averages for the variables py
of higher orders.

The method used for the calculation of the struc-
tural function W(p;t) can be applied for approx-
imate calculations of the hydrodynamic velocities
v, (k; t). According to their definition (2.30), the gen-
eral formula for the hydrodynamic velocities can be
written in the form

it) = [ dnpedi @0 fe). )
Additionally, let us introduce the function
W(p, \;t) = /dFN 1T X Medic ¢

x g @0 /(o). (3.16)
so that
v, (k;t) = i) InWi(p, \; t) N (3.17)

We will calculate the function W(p, A;t) using the
calculation results obtained for the structural func-
tion W (p;t). For this purpose, W(p, A;t) should be
rewritten as follows:

W(p, \;t) = /dFN/dwexp {— iWZAkﬁk}x
X exp {— i Zwk(ﬁk - Pk)}@lfé? Ny, (3.18)
k

Now, let us take averaging (3.18) with ok ~"(z"; )

into account and use the cumulative expansion. Then,

W(pv )‘; t) = Wﬁ(f); >‘; t) / dw exp {_ i’”zwkﬁk +
k

2D

n>1

(w;t) + Dy, ()\;t)Jan(w,/\;t)]}, (3.19)
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where

Ws(p, \jt) = Wg(pst) exp { —im Z Aki)k},
k

Dy wit) = &)

n!
X E Dﬁn(kl,...,kn;t)wkl...wk”,
ki,...kn

(—im)"
|

D, (\t) = X

n.
X Z MWD (Ky, .o K3 ) A, - A, »
ki,....kn

Dy(w, \it) = (_“f) x

n:
< 3 mP g,
ki,...kn

kn;t)wkl ... Wk ...)\k?17 (320)

n—1

and the cumulants have the following structure:

My (K1, ooy s 1) = (Phey s +o0s Pl Vi

MY (K, ey ki 8) = (Pl s o0 e s

M (k1 kenit) = nf(n =)+ (G —n+1)d_1,,]

N N X A t,c
X <pk1a ey pkn_ja ey pkn—ﬁ—l? ey pkn>kin—sh'

Let us firstly consider the Gaussian approximation
for W(p, A\;t), i.e., we retain only the terms with
n = 2, which are linear in A, in the exponent in
the integrand,

WO (o, Xit) = Wap, Xit) [ dwesp {mzwkﬁk -
k

2
™
=5 D Mok koi )i wie, —
ki ,ko

7.(.2
-5 S P (ki ko ) wie, AkQ}.
ki, ko

(3.21)

Transforming the expression in the exponent to a di-
agonal quadratic form in the variables wy, as was done
for W(p;t), and integrating over the new variables wy,
we obtain

W (p, \;t) = Wa(p, A\ t) x
™ NS B (ks )b
X exXp _7¥ ( 7t)k7k_

1 _
~3 Z In7det E(k; t)},
Kk
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(3.22)

where )
im

bk = pr + 5 mtgz)(k; t) Ak

Here, the cumulants ,‘Jﬁgz)(k; t) have the following

structure:

2 A A X A~
9:n(2 )(k7 t) = <pkp*k>f(infsh - <pk>f(infsh<p*k>tkinfsh'
(3.23)

Since \;rk = —ik - Vi, where vy = Zjvzl vje*“” is the
Fourier component of the microscopic particle veloc-
ity density, then

ms? (k; t) =
= —ik- (<{’kﬁ*k>f<infsh - <‘A/k>f<infsh<ﬁ*k>lt<infsh)

is the wvelocity-density cross-correlation function
for the system with the short-range interaction
Ql(;in—sh (l‘N; t)

Next, we calculate the hydrodynamic velocities
v,(k;t) in the Gaussian approximation according to
the formula

0
kit) = ——— InW%p, \; =
UP( at) a(—lﬂ')\k) nW (pa)‘at) Ax=0
— (AN LT @) 1. 4) 5
- <pk>kin—sh - 2 E (k7 t) mQ (k? t) Pk- (324)

This expression contains two terms. The former is re-
lated to the Fourier component of the particle velocity
density averaged using the distribution function with
short-range interaction of™ *"(zN:t): (pi)lin_an =
= —ik - (V)L s, The latter is related to the rela-

tionship between the correlation functions £~ (k;t)

and 93?%2) (k; ), and is linear in the collective variables
of particle concentration py(t) = px — (Pr)tiy_an- Ac-
cording to Egs. (3.17) and (3.19), in approximations
higher than the Gaussian one, v,(k;t) is a function
of the collective variables pyx of the second, third,
and higher orders, which is important from the view-
point of calculating the contributions of fluctuations
to the generalized transfer coefficients and the tem-
poral correlation functions [56,57]. In particular, go-
ing beyond the Gaussian approximation can be done
by taking the correlations ‘.mi(f)(kh ko, k3;t) into ac-
count. Then, for W(p, A;t), we obtain

Wip.Xit) = Wapit) [ dox
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X exp {mzwkpk ~r Sl

- 7 Z M (k1 ks t)wie, wie, —
ki,kao

2
s
-3 > M (k1 ko £) wie, Mey —
ki ks

w2 [—ir
— ? (3) Z m:(f) (kh kg, k3; t)wkl wk2 )\k3}.
k1,ka ks
(3.25)

In the exponent on the right-hand side of this
expression, we have a quadratic dependence on
Wk, Wk, - This expression can be rewritten in the form

W(p7 >‘; t) = WB (p’ t) €xp {_ i Z<ﬁk>£,ii—shAk} X
k
X /dw exp {i7r Z wibk —
k

72 _

— Z Mo (ky, ko t)wi, wk2}, (3.26)
ki, ko
where the notation
Mo (ki, kost) = Ma(ky, kos t) +
—m
+ (3) kz 931:(32) (kl, kg, kg; t) )\k3 (327)
3

was introduced.
Next, after diagonalizing W (p, A;t) in accordance
with

det ‘9312(k1,k2,>\;t) — Bk )| =0, (3.28)

and integrating over w, we finally get

Wi(p, Ast) = Wa(p;t) x
X exp {_ ZTI'Z pk km sh)\k

- % ST ETH (kA ) bich i

—_

(3.29)

l\D

7ZIn7rdetE Kk, \; t)}
k

Note that E~!(k,\;t) depends on the parameter
Ak. Now, we can calculate the hydrodynamic velocity
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v,(k;t) taking into account the third-order correla-
tions im:(f)(kl, ko, ks;t). As a result, we obtain

0
vp(kst) = (i) InW(p, A;t) N
71’2

= () binsn — = BN (k1) M (I 8) e —

w2 0
© 2 O(—imh)
10
2 9(—imA)

ke, A5 ) a0k Pk —

In7det E(k, A; t)|x.—0- (3.30)

As one can see, v,(k;t) is a quadratic function of the
collective variables pxp_x in this approximation.

In the general case, by applying the method used
for calculating W (p;t), we obtain the following result
for W(p, \;t):

W(p, X;t) = Wa(p, A;t) W (p, A\ t) x

<o {3 (Dalpstla + (D (o b))

n>3

where )
_ s _
WG(p,/\;t) = exp {— 5 Ek FE 1(k; t) bb_x —

1 _
~3 Z In7det E(k; t)}
k

(Dn(p;t))c can be approximately given as follows:
(Ds(p;t))a = (Ds(p;t))a,

(Da(pit))c = (Da(pit))c

(Ds(p: ) = (Do(pi ) — 5{Ds(p: )%

(Ds(p;t))c = (Ds(p;t))c —

(3.32)

Dyl ) Ds (it — 5{Dalpi )2,
(Dups ) Wctp, | Z N, (ki1 . ki 1)
W (st

" Gim)" Sbre, .. Obi

and (D( ) (p;
follows:

~ (2
(D (p; 1)) e,
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t))e can also be approximately given as

= (D (p;t
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(D (p: ) = (D2 (p: 1)),
(D (1)) = (DL (p: 1)) — = (DS (ps 1))
(D (pst))e = (D (pit)) 6 —

)

_ 1
D2 (p:t _
(D (pst))a WD) X
X M (ky, ... k3 £ Mg, ) X
ki,....kn
1 sn

WE(p:t),

X

(im)™ Oby, ... by,
where (D, (p;t))a, (DSLQ) (p;t))c are the mth renor-
malized non-equilibrium cumulant averages for the
variables gy of higher orders.

4. Conclusions

In the framework of the Zubarev non-equilibrium sta-
tistical operator method, a system of transfer equa-
tions that consistently describe kinetic and hydrody-
namic fluctuations in a system of interacting parti-
cles is obtained for the non-equilibrium one-particle
distribution function fi(x;t) = (R1(x))!, the non-
equilibrium average value of the particle interaction
energy density H™ (r,t) = (H™(r))!, and the non-
equilibrium distribution function of collective vari-
ables f(p;t) = (6(p—p))t. The separation of contribu-
tions from short- and long-range interactions between
the particles brought about the situation, when short-
range interactions (for example, the model of hard
spheres) are described in the coordinate-momentum
space, and long-range ones in the space of collec-
tive variables of particle concentration. In this case,
the short-range component is considered as a basic
one with the distribution ggin*Sh(xN;t), and it is
described by a chain of BBGKY equations for non-
equilibrium particle distribution functions, e.g., in the
model of hard spheres [35].

The applied method of collective variables [46, 54,
55] made it possible to calculate both the structural
function and the hydrodynamic velocities in terms of
collective variables in approximations higher than the
Gaussian one. In particular, on the basis of Eq. (3.19),
in the approximation next after the Gaussian one,
the hydrodynamic velocities (3.17) are proportional
to pxpk and pkpk px, and the transport kernels in
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the Fokker—Planck equation are fourth-order correla-
tion functions of the variables py.

It is worth to note that, in the Gaussian approxi-
mation for W (k;t) and v,(k;t), the FokkerPlanck
equation gives rise to transport equations for (py)!
whose structure is the same as in the case of general-
ized diffusion, but the averaging is carried out using
the distribution function

or(z™, pit) = og ™ (2™ t)WJ;((Z); nk

The proposed approach makes it possible to go be-
yond the Gaussian approximation for W(k;t) and
v,(k;t), and therefore for the transfer kernels in
the Fokker—Planck equation. This circumstance al-
lows one to obtain a nonlinear system of equations for
(px)t. Tt is important to note that the kinetic equa-
tion (2.22) [49, 50] contains a generalized integral of
the Fokker—Planck type with the generalized coef-
ficients of diffusion and friction in the phase space
(r,p,t), where the region of |r| variation is limited
by the values |k|;yldr corresponding to collective non-
linear hydrodynamic processes. This means that, in
the regions limited by |k|;yldr, the processes are de-
scribed by the generalized diffusion and friction coeffi-
cients, and, at small |k\;yldr, they are described by the
generalized coefficients in the space of collective vari-
ables. In the following works, we will investigate the
transport equations (2.22)—(2.24) in fluctuation ap-
proximations that are higher than the Gaussian one.
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Translated from Ukrainian by O.I. Voitenko

1.P. Oznoscvruti, M.B. Toxapuyk, 11.A. [aywark

METO/ KOJIEKTUBHUX 3MIHHUX
B TEOPII HEJITHIMHUX ®JIVKTYALIN
3 YPAXYBAHHSIM KIHETUYHUX IIPOIIECIB

st y3ro/iKeHOro omnucy KiHEeTUKH Ta TiJpPOJUHAMIKU CHCTEM
B3aEMO/IIIOYHMX YaCTUHOK ONTHUMI30BaHO Habip IapaMeTpiB CKO-
podeHoro omnwucy 3rigHo 3 BorosobosuM, mo mepenbadae 3a-
JIy4eHHsI KOJIEKTUBHUX 3MIiHHUX. lIpw npoMy pO3IiIsioThCs
BHECKHU BiJl KODOTKOCSI?KHUX 1 JTAJIEKOCSI>KHUAX B3a€MOJIN MixK
vacTuHKaMu. KopoTkocskHI B3aemonil (HAIPUKJIAL, MOJENb
TBepAUX cPepP) ONUCYIOTHCA B KOOPAMHATHO-IMITYJICHOMY IIPO-
cTOpi, & JaJeKOCsXKHI — y IPOCTOPi KoaeKTuBHUX 3MinHux. Ko-
POTKOCSI?)KHa CKJIaJI0Ba PO3IJISAIA€ThCs K Oa3ucHa. Bukopu-
CTOBYIOYH METOZ, HEPIBHOBa’KHOT'O CTATHCTHUTIHOIO OIIEPATOpa
3ybapeBa, MU OTPUMAJIA CUCTEMY DIBHIHDb MEPEHOCY JJIs He-
PIBHOBasKHOI OJHOYACTUHKOBOI (DYHKIIIT PO3IO/Iily, HEpIBHOBA~
2KHOT'O CEPEeIHBOTO 3HAYEHHSI I'yCTUHH €Hepril B3aeMo/il JacTu-
HOK Ta HEPIBHOBAXKHOI (DYHKIIIT PO3IIO/Iijly KOJEKTUBHUX 3MiH-
HUX. 3aCTOCOBAHUN METOJI KOJIEKTUBHUX 3MIHHUX JIaB MOKJIV-
BiCTh po3paxyBaTu y BUIIUX HAOIMKEHHSAX, HIXK TaycoBe, siK
CTPYKTYPHY (PYHKIIIO, Tak i rifpoauHaMivHi IIBHIKOCTI KOJIe-
KTHBHUX 3MIiHHHUX.

Kato4wo6i cao6a: IpocTa piguHa, HeJliHiHI diaykTyariil, He-
PIBHOBaKHMIl CTAaTHUCTUYHHUI omneparop, (DYHKIis PO3IOILILY,
piBusinaa Pokkepa—Ilnanka.
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