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GALAXY ROTATION CURVES
IN THE 𝜇-DEFORMATION-BASED
APPROACH TO DARK MATTER 1

We elaborate further the 𝜇-deformation-based approach to the modeling of dark matter, in
addition to the earlier proposed use of 𝜇-deformed thermodynamics. Herein, we construct
𝜇-deformed analogs of the Lane–Emden equation (for density profiles) and find their solu-
tions. Using these, we plot the rotation curves for a number of galaxies. Different curves
describing the chosen galaxies are labeled by respective (different) values of the deformation
parameter 𝜇. As a result, the use of 𝜇-deformation leads to the improved agreement with obser-
vational data. For all the considered galaxies, the obtained rotation curves (labeled by 𝜇) agree
better with data, as compared to the well-known Bose–Einstein condensate model results of
T. Harko. Besides, for five of the eight cases of galaxies, we find a better picture for rotation
curves, than the corresponding Navarro–Frenk–White (NFW) curves. The possible physical
meaning of the parameter 𝜇 basic for this version of 𝜇-deformation is briefly discussed.
K e yw o r d s: dark matter, 𝜇-deformation, deformed Lane–Emden equation, galaxy rotation
curves.

1. Introduction
The model of dark matter as a Bose–Einstein conden-
sate (BEC) of scalar particles arose as an alternative
to the cold dark matter (CDM) paradigm. It provides
a possibility to resolve several tensions, which CDM
faces on the small scales, such as the core-cusp prob-
lem and the overabundance of the small-scale struc-
tures [1]. We should mention, however, that the BEC
model is not unique in this aspect, and models like
warm dark matter (warm DM), self-interacting DM
are also able to solve CDM problems on the small
scales.

The BEC model considers the ultralight DM galaxy
halo as a stable “core” solution of the nonlinear
Schrödinger (or Gross–Pitaevsky) equation, with the
classical Poisson equation for the gravitational po-
tential of the DM halo surrounded by a DM enve-
lope that mimics the CDM halo on the larger dis-
tances from the center of a galaxy [2]. The analysis of
the luminous matter kinematics in galaxies, like, say,
the kinematics of dwarf spheroidal galaxies, indicates
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that the coherent state core can represent all required
DM in dwarf galaxies, but only some smaller fraction
of DM in bigger galaxies [3].

The DM particles within the considered model are
ultralight scalar ones with mass 𝑚∼(1−10)×10−22 eV
that is in a good agreement with most observations
(except for only the Lyman-𝛼 forest). Scalar parti-
cles with such extremely small mass 2 can be consid-
ered as axion-like particles, so that their mass is pro-
tected against a radiative correction by the nonexact
shift symmetry 𝜑 → 𝜑 + 𝐶. It is usually based on
a free scalar field with the 𝜑4 self-interaction poten-
tial [2].

There exist, however, different extensions of this
model, some of which introduce a more complex
(than 𝜑4) self-interacting potential. Another interest-
ing way is to consider a non-minimal coupling of the
condensate to the gravity, e.g., through potentials

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.

2 Note that in some works, see, e.g., [4], the role of Bose-
condensed particles of dark matter is played by gravitons of
tiny mass, bound from the above by 𝑚𝑔 ∼ 10−26 eV.
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𝐺𝜇𝜈∇𝜇𝜑∇𝜈𝜑 and ∇𝜇𝜑∇𝜇𝜑𝑅 (here, 𝐺𝜇𝜈 – Einstein
tensor, 𝑅 – scalar curvature) [5, 6].

A completely different direction is constituted by
the DM models based on a non-standard statistics,
like a condensate of particles obeying the infinite
statistics [7] and also our preceding work, in which
we have proposed the model of dark matter viewed
as the condensate of a gas obeying the 𝜇-deformed
thermostatistics [8].

2. Bose Condensate Dark Matter Model:
Gross–Pitaevsky and Lane–Emden Equations

The BEC DM model suggests that DM consists of
ultralight bosons of the mass 10−22 eV, so their de
Broglie wavelength is of astronomical scale (kpc). Wi-
thin this model, the galaxy DM halo is represented
by a halo of such particles, most of which are in
the ground state, thus forming a non-relativistic self-
gravitating Bose–Einstein condensate. If only par-
ticles in the ground state are taken into account,
such condensate halo can be described by the Gross–
Pitaevsky equation. Here, we give a brief overview
of the BEC halo description through the Gross–
Pitaevsky equation (see [9] for a more detailed dis-
cussion)

− ~2

2𝑚
∇2Ψ(r)+𝑉 (r)Ψ(r)+

4𝜋~2𝑎
𝑚

|Ψ(r)|2Ψ(r) = �̃�Ψ(r).

(1)

Herein, Ψ(r) is the wave function of the ground
state, �̃� denotes the chemical potential, the term
∝ |Ψ(r)|2Ψ(r) is responsible for the self-scattering of
condensate particles, and 𝑉 (r) represents any exter-
nal potential that will be, in the considered case, the
Newtonian gravitational potential of a DM halo that
obeys the Poisson equation:

∇2𝑉 (r) = 4𝜋𝐺𝜌(r). (2)

Particles in the condensate state are suggested to
be non-relativistic with almost zero temperature. So,
the Thomas–Fermi approximation, where the ki-
netic term of the equation is neglected, is applicable
here. The corresponding equation can be rewritten by
introducing the density of particles

𝜌(r) = 𝑚|Ψ(r)|2

instead of the wave-function, and takes a simpler
form:
𝜌(r) =

𝑚2

4𝜋~2𝑎
(�̃�−𝑚𝑉 (r)).

Then, similarly to [9], we apply the Laplace opera-
tor to the latter equation and use (2), which leads to

Δ𝑟𝜌(𝑟) + 𝑘2𝜌(𝑟) = 0 with 𝑘2 ≡ 𝐺𝑚3

~2𝑎
, (3)

where 𝑎 is the scattering length. Thus, we get the
Lane–Emden equation with polytropic index 𝑛 = 1.
This equation admits a simple analytical solution for
the DM halo density within the BEC DM model:

𝜌(𝑟) = 𝜌𝑐
sin 𝑘𝑟

𝑘𝑟
. (4)

The solution contains two free parameters: 𝜌𝑐 = 𝜌(0),
which is the density at the DM halo center, and the
parameter 𝑘 related to the total halo radius 𝑅 as
𝑘 = 𝜋/𝑅.

It should be mentioned that this solution involves
only particles in the ground state. However, in a
more realistic description, other states should also
be considered. It is known that the ultralight DM
halo consists of the static core (which allows one to
solve core/cusp problem) surrounded by an envelope,
which mimics the CDM behavior on the larger scales
[2]. Solution (4) is responsible only for the core part of
a galaxy DM halo. So we expect that it will provide a
good explanation of observations on the scales smaller
than the core size and, at the same time, will prob-
ably meet some tensions with observations of more
distant regions of galaxies.

It is also worth to mention that the same approxi-
mate equation can be obtained from the Klein–Gor-
don equation for a scalar field, what makes these mod-
els closely connected.

3. Deformation of the Lane–Emden Equation

Since a 𝜇-deformed analog of the Gross–Pitaevsky
equation is not available at present (and constitutes
a non-trivial problem), we concentrate on performing
a 𝜇-deformation of the Lane–Emden equation.

3.1. Elements of 𝜇-calculus

Since our approach exploits the so-called 𝜇-calculus,
let us first sketch it briefly (more detailed introduc-
tion to the 𝜇-calculus and its application to deformed
models is given in [8, 10]). The basic notion of this
approach is the 𝜇-bracket (with 𝑋 being a number or
an operator):

[𝑋]𝜇 =
𝑋

1 + 𝜇𝑋
, 𝜇 ≥ 0.
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Obviously, [𝑋]𝜇 → 𝑋 if 𝜇 → 0. Using the 𝜇-bracket,
we define a 𝜇-deformed (or 𝜇-) derivative such that

𝒟(𝜇)
𝑥 𝑥𝑛 = [𝑛]𝜇𝑥

𝑛−1. (5)

The 𝜇-derivative does not satisfy 3 the Leibnitz rule,
i.e.

𝒟𝜇(𝑓 · 𝑔) ̸= 𝑓 · (𝒟𝜇𝑔) + (𝒟𝜇𝑓) · 𝑔.

Note that the above action (5) implies the follow-
ing presentation of the 𝜇-derivative in terms of usual
derivative in the form of a formal power series

𝒟(𝜇)
𝑥 ≡

[︂
𝑑

𝑑𝑥

]︂
𝜇

=
𝑑
𝑑𝑥

1 + 𝜇 𝑑
𝑑𝑥

=

=
𝑑

𝑑𝑥

(︁
1− 𝜇

𝑑

𝑑𝑥
+ 𝜇2 𝑑

𝑑𝑥

𝑑

𝑑𝑥
− ...

)︁
(6)

that incorporates all higher orders of the derivative
𝑑
𝑑𝑥 . This fact is of basic importance.

Now, one can introduce a deformation in the the-
ory of interest, merely by replacing each derivative in
equations by its deformed analog.

The 𝜇-bracket is used to gain deformed versions of
known functions. Say, the 𝜇-deformed exponent is

exp𝜇 𝑥 =

∞∑︁
𝑛=0

𝑥𝑛

[𝑛]𝜇!
.

Then we define the deformed sine and cosine func-
tions:

sin𝜇 𝑥 =
1

2𝑖

(︀
exp𝜇(𝑖𝑥)− exp𝜇(−𝑖𝑥)

)︀
=

=

∞∑︁
𝑛=0

(−1)𝑛
𝑥2𝑛+1

[2𝑛+ 1]𝜇!
,

cos𝜇(𝑥) =
1

2

(︀
exp𝜇(𝑖𝑥) + exp𝜇 = (−𝑖𝑥)

)︀
=

=

∞∑︁
𝑛=0

(−1)𝑛
𝑥2𝑛

[2𝑛]𝜇!
.

Here the 𝜇-factorial means the product

[𝑚]𝜇! = [𝑚]𝜇 [𝑚−1]𝜇...[2]𝜇 [1]𝜇.

3 It is nevertheless possible to introduce a 𝜇-analog of the Leib-
nitz rule, though its definition is rather non-trivial, see [8].

The deformed harmonic functions will arise in the
next sections of the present paper. We have to stress
the fact that the familiar differential relations be-
tween harmonic functions (involving usual derivative)
are not valid in the 𝜇-deformed case: 𝑑

𝑑𝑥 sin𝜇(𝑥) ̸=
cos𝜇(𝑥). However, the deformed counterpart, which
uses the 𝜇-derivative, does hold. Namely,

𝒟𝜇
𝑥 sin𝜇(𝑥) = cos𝜇(𝑥) .

It is clear that the deformed analog of derivative
and deformed functions should reduce to their non-
deformed versions in the limiting case of 𝜇 → 0. It
is a simple matter to restore the non-deformed ver-
sions of equations of underlying theory at any step of
analysis.

3.2. Deforming Laplacian in the LE equation

As already mentioned, the DM halo density in the
BEC DM model could be approximately described
by the Lane–Emden (LE) equation with polytropic
index 𝑛 = 1:

Δ𝑟𝜌(𝑟) + 𝑘2𝜌(𝑟) = 0, (7)

where Δ𝑟 is the radial (thus, 1-dimensional) part of
the spherical Laplace operator, namely

Δ𝑟𝑓(𝑟) =
1

𝑟2
𝑑

𝑑𝑟

(︂
𝑟2

𝑑

𝑑𝑟
𝑓(𝑟)

)︂
.

The latter is also equal to

Δ𝑟𝑓(𝑟) = 𝑓 ′′(𝑟) +
2

𝑟
𝑓(𝑟),

and the LE equation can be written in its more fa-
miliar form:(︂
𝑑2

𝑑𝑟2
+

2

𝑟

𝑑

𝑑𝑟
+ 𝑘2

)︂
𝜌(𝑟) = 0. (8)

In order to deform, we firstly take the LE equation
in the initial form (7) as the starting point. Let us
introduce the deformation in the equation by replac-
ing the derivative with respect to 𝑟 by its 𝜇-deformed
analog. Thus, we get a 𝜇-deformed analog of the LE
equation:
1

𝑟2
𝒟𝜇

𝑟

(︀
𝑟2𝒟𝜇

𝑟 𝜌(𝑟)
)︀
+ 𝑘2𝜌(𝑟) = 0.

The equation could be easily rewritten in terms of the
dimensionless variable 𝑥 = 𝑘𝑟. As a result, we obtain
1

𝑥2
𝒟𝜇

𝑥

(︀
𝑥2𝒟𝜇

𝑥𝜌(𝑥)
)︀
+ 𝜌(𝑥) = 0. (9)
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In addition, we adopt the same initial condition,
which was valid for the solution of the original equa-
tion:
𝜌(0) = 𝜌𝑐, 𝜌′(0) = 0.

In the last relation, the usual or 𝜇-deformed differen-
tiation could be applied. Luckily, as it will become
clear later, this do not affect the result.

We are looking for a solution of Eq. (8) in the form

𝜌(𝑥) = 𝜌𝑐

∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛.

The operators in the equation act on the series as

𝒟𝜇
𝑥 · 𝜌(𝑥) =

∞∑︁
𝑛=1

𝑎𝑛[𝑛]𝜇𝑥
𝑛−1,

𝒟𝜇
𝑥 ·

(︀
𝑥2 𝜌(𝑥)

)︀
=

∞∑︁
𝑛=1

𝑎𝑛[𝑛]𝜇[𝑛+ 1]𝜇𝑥
𝑛.

Then, from the 𝜇-LE equation we infer
∞∑︁

𝑛=1

𝑎𝑛[𝑛]𝜇[𝑛+ 1]𝜇𝑥
𝑛−2 +

∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛 = 0. (10)

The initial conditions imply that

𝜌(0) = 𝜌𝑐 = 𝜌𝑐𝑎0 → 𝑎0 = 1,

𝜌′(0) = 0 = 𝜌𝑐𝑎1 → 𝑎1 = 0.

By changing the summation limits, we have
∞∑︁

𝑛=0

𝑎𝑛+2[𝑛+ 2]𝜇[𝑛+ 3]𝜇𝑥
𝑛 +

∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛 = 0.

Due to this, we relate the coefficients as

𝑎𝑛+2 = −𝑎𝑛
1

[𝑛+ 2]𝜇[𝑛+ 3]𝜇
, 𝑛 = 2𝑚.

Then,
𝑎2𝑛 = (−1)𝑛

1

[2𝑛]𝜇[2𝑛+ 1]𝜇
· ... · 1

[3]𝜇[2]𝜇
=

= (−1)𝑛
1

[2𝑛+ 1]𝜇!
[1]𝜇.

The solution then takes the form

𝜌(𝑘𝑟)=𝜌𝑐 [1]𝜇

∞∑︁
𝑛=0

(−1)𝑛
(𝑘𝑟)2𝑛

[2𝑛+ 1]𝜇!
= 𝜌𝑐 [1]𝜇

sin𝜇(𝑘𝑟)

𝑘𝑟
.

Thus, denoting 𝜌0 = 𝜌𝑐 [1]𝜇, we obtain

𝜌(𝑘𝑟) = 𝜌0
sin𝜇(𝑘𝑟)

𝑘𝑟
(11)

as our main result for the DM density distribution.

3.3. Deforming derivatives in the LE equation

As is known for deformed models, various types of
the equation of deformation can be proposed. Here,
we will present a different version of the 𝜇-deformed
LE equation. We start with the LE equation of the
polytropic index 𝑛 = 1 in its most common form (8),
and introduce a deformation in the equation, by re-
placing the spatial derivatives 𝑑/𝑑𝑟 by its deformed
analog 𝒟𝜇

𝑟 :(︂
𝒟𝜇

𝑟𝒟𝜇
𝑟 +

2

𝑟
𝒟𝜇

𝑟 + 𝑘2
)︂
𝜌(𝑟) = 0. (12)

Again, we are looking for the solution being a power
series:

𝜌(𝑥) = 𝜌𝑐

∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛.

Substituting this in the equation, we have
∞∑︁

𝑛=0

𝑎𝑛+2[𝑛+2]𝜇[𝑛+1]𝜇𝑥
𝑛+2

∞∑︁
𝑛=0

𝑎𝑛+1[𝑛+1]𝜇𝑥
𝑛−1 +

+

∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛 = 0.

Let us take the same initial conditions 𝜌(0) =
𝜌𝑐, 𝜌′(0) = 0. After similar steps as above, we ob-
tain the result 4:

𝜌(𝑟) = 𝜌𝑐

∞∑︁
𝑛=0

(−1)𝑛
(𝑘𝑟)2𝑛

𝑛∏︀
𝑙=1

[2𝑙]𝜇([2𝑙 − 1]𝜇 + 2)
. (13)

4. Galaxy Rotation Curves

Now, let us confront the predictions of our model with
available observational data. We analyze the rotation
curves of low surface brightness (LSB) galaxies, as the
kinematics of luminous matter in the galaxy depends
on the density distribution within the galaxy. We
have chosen those eight LSB galaxies which were an-
alyzed by T. Harko, in order to compare the mod-
els. Since these are DM-dominated, we neglect the
gravitational contribution of baryonic matter.

4 There exists another form of the deformed LE equation also
possessing solution (11): its first term is the same as in
Eq. (12), but the second and third terms are multiplied with
respective functions (of 𝑘, 𝑟, and 𝜇). This will be explored
elsewhere.
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Values of the parameters for the rotation curves of galaxies, in the three models

Galaxy
𝜇-BEC BEC NFW

𝑁points

𝐴, km/s 𝑘, kpc−1 𝜇 𝜒2 𝐴, km/s 𝑘, kpc−1 𝜒2 𝜒2

DDO 53 32.27 0.97 0.180 1.9 33.16 1.09 5.4 7.8 18
HO I 35.51 1.27 0.151 40.2 34.78 1.27 160.1 109.8 22
HO II 40.11 0.40 0.179 31.8 37.93 0.45 66.8 6.4 35
IC 2574 81.37 0.17 0.179 13.7 73.9 0.24 14.2 117.2 50
NGC 2366 64.68 0.37 0.178 41.2 72.72 0.37 126.1 71.9 41
M81dwB 38.35 2.64 0.180 2.5 38.07 3.15 7.9 4.1 13
DDO 154 51.30 0.38 0.156 199.3 53.81 0.38 549.7 76.8 61
DDO 39 87.52 0.27 0.174 168.2 87.96 0.30 343.0 14.3 21

In the case of disk galaxies, where the trajectories
of stars and gas clouds could be assumed circular with
a good accuracy, we can apply the simple relation

𝑚𝑣(𝑟)2 =
𝐺𝑀(𝑟)𝑚

𝑟
.

It arises from virial theorem’s relation between the
kinetic and potential energies 2𝑇 = 𝑉 for a stable
system in the gravitational potential 𝑉 ∝ 𝑟−1. Then
the velocity 𝑣(𝑟) on a circular orbit of radius 𝑟 could
be expressed as

𝑣(𝑟) =

√︂
𝐺𝑀(𝑟)

𝑟
.

This equation provides a tool for studying the density
distribution of matter in the galaxy through observed
rotation curves. We will neglect the gravitational ef-
fect of luminous matter. Thus, only the dark matter
component 𝑀(𝑟) is considered in the previous equa-
tion.

Therefore, to define the velocity 𝑣(𝑟) on any orbit
𝑟, we should calculate the total mass within this orbit

𝑀(𝑟) = 4𝜋

𝑟∫︁
0

𝜌(𝑟′)𝑟′2𝑑𝑟′.

In accordance with the deformed differential relations
with radial coordinate 𝑟, we have to use the deformed
(or 𝜇-) integration 5. As a final result, we obtain
the following expression for the velocity on a circular

5 That means applying the operator (𝐷
(𝜇)
𝑟 )−1 inverse to the

one defined in Eqs. (4), (5).

orbit, by using the “Laplace-deformed” density solu-
tion (11):

𝑣(𝑟) =

⎯⎸⎸⎷4𝜋𝐺𝜌

𝑘2

∞∑︁
𝑛=0

(−1)𝑛(𝑘𝑟)2𝑛+2

[2𝑛+ 1]𝜇! [2𝑛+ 3]𝜇
. (14)

With the notation

𝐴 =

√︂
4𝜋𝐺𝜌0
𝑘2

,

we also present the expression for the rotation ve-
locity based on the “derivative-deformation” solu-
tion (13):

𝑣(𝑟) = 𝐴

⎯⎸⎸⎸⎷ ∞∑︁
𝑛=0

(−1)𝑛(𝑘𝑟)2𝑛+2

[2𝑛+ 3]𝜇
𝑛∏︀

𝑙=1

[2𝑙]𝜇([2𝑙 − 1]𝜇 + 2)
. (15)

We perform the least-square analysis for the same
eight LSB galaxies, which were studied in [9] regard-
ing the classical BEC DM model. The observational
rotation curves of these galaxies were taken from
[11–13].

In the Table and Figure (solid lines present our
curves), we give the results of fitting the rotation
curves of eight LSB galaxies by theoretical curves
within the 𝜇-deformed “Laplace deformation” rota-
tion curve (14), within the BEC DM stemming from
its DM density solution (4), and the Navarro–Frenk–
White profile [12] for CDM:

𝜌NFW(𝑟) =
𝜌0

𝑟
𝑅𝑠

(︁
1 + 𝑟

𝑅𝑠

)︁2 .
The least 𝜒2 value among three studied models for
each of galaxies is denoted by the bold font.
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5. Discussion and Concluding Remarks

We explored, in addition to 𝜇-thermodynamics
used [8] for the modeling of dark matter, the re-
lated approach based on 𝜇-deformed spatial deriva-
tive. Two differing 𝜇-deformed analogs of the Lane–
Emden equation are studied, and their solutions de-
scribing density profiles of DM halos are found. This
allowed us to obtain the plots for the rotation curves
of a number of galaxies. The corresponding curves
for the chosen galaxies involve differing values of
the deformation parameter 𝜇. As seen, nice agree-
ment due to the use of 𝜇-deformation is achieved:
for all considered galaxies, our results show notice-
able improvement as compared to the BEC model
results of [9].

Moreover, the used approach provides somewhat
better picture (agreement) even with respect to the
famous NFW [12] rotation curves, say, in five (of
eight) cases, i.e. the curves for the galaxies DDO 53,
HO I, IC 2574, NGC 2366, and M81dwB.

The importance and strength of the 𝜇-deformation
stems from certain non-locality due to the usage of
the deformed spatial 𝜇-derivative (6), that is an ex-
tended operator built with the usual derivative in its
denominator (that is, all orders of the derivative 𝑑

𝑑𝑟
are present). This feature resembles such well-known
approach as nonlocal modifications of gravity (see,
e.g., [14–18] and references therein). There is a rather
popular viewpoint that the nonlocal gravity theories
are of importance for solving the basic problems of
cosmology – that of dark energy and dark matter.

In view of the success of the 𝜇-deformation-based
description, let us briefly discuss possible physical
sense of the 𝜇-deformation, modifying the (radial)
spatial derivative, and the very parameter 𝜇. Being
very massive but relatively compact (from the view-
point of cosmological scales) objects, the DM halos
can modify (geometry of) the ambient space, and the
employed 𝜇-derivative takes effectively such modifi-
cation into account, with 𝜇 measuring the extent of
modification. This agrees with the noticed important
feature: if we calculate the total mass of the galaxy
DM halo (with fixed proper radius), we find that the
bigger the halo mass, the greater the respective value
of 𝜇 to be taken. At last, let us note that similar con-
clusions can be drawn basing on the formula (15).
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РОТАЦIЙНI КРИВI ГАЛАКТИК
У ПIДХОДI ДО ТЕМНОЇ МАТЕРIЇ
НА ОСНОВI 𝜇-ДЕФОРМАЦIЇ

Р е з ю м е

В рамках 𝜇-деформацiї розвинуто модель темної мате-
рiї, ранiше побудовану у пiдходi, що використовував 𝜇-
деформовану термодинамiку. Введено 𝜇-аналоги рiвнян-
ня Лейна–Емдена (для профiлiв густини) i знайдено йо-
го розв’язки. На їх основi побудовано графiки ротацiй-

них кривих для низки галактик. Кожнiй кривiй, якi опи-
сують вибранi галактики, вiдповiдає своє значення пара-
метра деформацiї 𝜇. Як наслiдок, 𝜇-деформацiя забезпе-
чує покращене узгодження iз спостережуваними даними.
Для всiх розглянутих галактик отриманi ротацiйнi кривi
(маркованi значеннями 𝜇) краще узгоджуються з даними
порiвняно iз результатами вiдомої БЕК-моделi Т. Харко.
Для п’яти з восьми галактик картина для ротацiйних кри-
вих є кращою навiть у порiвняннi з вiдповiдними кривими
Наварро–Френка–Вайта (НФВ). Розглянуто можливий фi-
зичний сенс параметра 𝜇.
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