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RELATIVISTIC EQUATIONS
FOR ARBITRARY SPIN, ESPECIALLY
FOR THE SPIN s = 2!

The further approbation of the equation for the particles of arbitrary spin introduced recently
in our papers is under consideration. The comparison with the known equations suggested by
Bhabha, Pauli-Fierz, Bargmann—Wigner, Rarita—Schwinger (for spin s = 8/2) and other au-
thors is discussed. The advantages of the new equations are considered briefly. The advantage
of the new equation is the absence of redundant components. The important partial case of spin
s = 2 is considered in details. The 10-component Dirac-like wave equation for the spin s = (2,2)
particle-antiparticle doublet is suggested. The Poincaré invariance is proved. The three-level
consideration (relativistic canonical quantum mechanics, canonical Foldy—Wouthuysen-type
field theory, and locally covariant field theory) is presented. The procedure of our synthesis
of arbitrary spin covariant particle equations is demonstrated on the example of spin s = (2,2)
doublet.

Keywords: Dirac equation, relativistic quantum mechanics, arbitrary spin, graviton, spin
(2,2) particle-antiparticle doublet.

1. Introduction

Recently, the equation for a particle-antiparticle dou-
blet of arbitrary spin without redundant components
was suggested [1] (see also [2]). The reason for our
interest follows from difficulties of the known ap-
proaches of other authors.

The start of an arbitrary spin consideration was
given in [3]. Today, the Pauli-Fierz [4], Bhabha [5],
and Bargmann-Wigner [6] equations and their con-
temporary modifications (see, e. g. [7]) are most often
considered. A more detailed review can be found in
[8]. Here, in [1] and [2], only the approach started in
[9] and [10] is the basis for the further application.

Note only some general deficiencies of the known
equations in the case of an arbitrary spin. The con-
sideration of the partial cases, when the substitution
of a fixed value of spin is fulfilled, is not successful in
all cases. For example, for the spin s > 1, the avail-
able equations have the redundant components and
should be complemented by some additional condi-
tions. Indeed, the known Pauli-Fierz [4] and Rarita—
Schwinger [11] equations for the spin s =3/2 (and
their confirmation in [12]) should be essentially com-
plemented by the additional conditions. The main
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difficulty in the models of an arbitrary spin is the in-
teraction between the fields of higher-spin [13]. Even
the quantization of higher-spin fields generated the
questions [14]. These and other deficiencies of the
known equations for higher-spin are under consider-
ation till recent years (see, e.g., [15]) (a brief review
of deficiencies can be found in [16] or in [17]). It gives
the place for our investigation.

Our program of synthesis of arbitrary spin equa-
tions is based on a step-by-step transition as follows:
relativistic canonical quantum mechanics — canoni-
cal Foldy—Wouthuysen-type field theory — locally co-
variant field theory. This gives a possibility to start
from the quantum mechanical equations without re-
dundant components and to finish without such com-
ponents, which determines our perspectives.

The equation for the particle-antiparticle doublet
of arbitrary spin is given by

[i00 — T9n(Tan - P+ m)] ¥(z) = 0,

where z € M(1
and M(1,3) =

,3), M_8/8x“ ) )
(T2 @) = (= tx= (o

1 This work is based on the results presented at the XI Bolyai—
Gauss—Lobachevskii (BGL-2019) Conference: Non-Euclide-
an, Noncommutative Geometry and Quantum Physics.

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11



Relativistic Equations for Arbitrary Spin

is the Minkowski space-time, and the 2N-component
function ¥ (x) belongs to the rigged Hilbert space

S3,2N = S(R3) % CQN C H3’2N C S372N*. (2)

Note that, due to a special role of the time vari-
able 20 = t € (2*) (in the obvious analogy with
non-relativistic theory), one can use the quantum-
mechanical rigged Hilbert space (2) in the general
consideration. Here, the Schwartz test function space
S32N is the core (i.e., it is dense both in H*?N and
in the space S*2N* of the 2N-component Schwartz
generalized functions), and H*?N is the quantum-
mechanical Hilbert space of 2N-component functions
over R® € M(1,3). The space S*2N* is conjugate to
the Schwartz test functions space S*2N by the corre-
sponding topology (see, e.g., [18]).

In order to finish with notations, assumptions,
and definitions, let us note that the system of units
h = ¢ = 1 is chosen here, the metric tensor in the
Minkowski space-time M(1,3) is given by

gHV = Guv :glle? (gllj) :dla’g(1571771771)7 (3)

Ty = gux*, and the summation over the twice re-
peated indices is implied.
The T" matrices in (1) are taken in the form
In O ;o =L
0 -In| N7 |-zl o0

0 _ 3 _
Fon =oon =

(4)

Further, there is a degree of freedom in the choice
of Y, matrices in (4). This freedom started from the
case of 4x 4 %7 matrices, which can be chosen in both
forms

al 0
0 ol

: (5)

where {O'j } are the standard Pauli matrices, and

0 Iy 2_‘0 —ily I, 0

3 _
L o)™ ila 0 ’24_0—12'

(6)

Below, the consideration of the partial spin s =
= (2,2) case is presented.

2. Spin s = (2, 2) Particle-Antiparticle
Bosonic Doublet in the Relativistic Canonical
Quantum Mechanics

The corresponding Schrédinger—Foldy equation is
given by

(idy — @) f(x) =0, f = column|f*, f%,..., f1), (7)
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where the pseudodifferential operator @ is given by
W=vV-A+m2 (8)

In (7), the 10-component wave function is the di-
rect sum of the particle and antiparticle wave func-
tions. According to the quantum-mechanical tradi-
tion, the antiparticle wave function is put into the
bottom part of the 10-column.

Therefore, the general solution of the Schrédinger—
Foldy equation (7) has the form

f(z) = (27:)3/2 / e %A (k) d, (9)

where A= 1,10 and da are the orts of the 10-
component Cartesian basis. Hence, the space of the
states of a spin s = (2,2) particle-antiparticle dou-
blet is the rigged Hilbert space S c H*10 ¢
C S310% e, it is the direct sum of two spaces
33,5 C H3’5 C S3’5*.

Thus, in the model under consideration, informa-
tion about the positive and equal masses of the parti-
cle and antiparticle is inserted. Further, information
about that the observer sees the antiparticle as the
mirror reflection of the particle is also inserted, see
formula (10) below. Therefore, the charge of the an-
tiparticle should be opposite in sign to that of the
particle (in the case of the existence of the charge),
and the spin projection of the antiparticle should
be opposite in sign to the spin projection of the
particle.

Therefore, according to these principles, the corre-
sponding SU(2)-spin generators are taken in the form

_ |85 0
0= 10 _sy0)° (10)
where the 5 x 5-matrices s5 are given by
02 0 0 0
1120 V60 0
st = 3 0v6 0 6 0|,
00 V60 2
00 0 2 0
0 —-20 0 0
;120 —v6 0 0
s? = 3 0 v6 0 -6 0 |,
00 V6 0 -2
00 0 2 0
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2000 0
0100 0

s=10000 0 (11)
000 -10
0000 -2

and Cl5 is the 5 x 5 diagonal matrix operator of
complex conjugation. It is easy to verify that, for
operators (10), the commutation relations [s7, s‘] =
= ie?"s" of the SU(2)-algebra are valid. The Casimir
operator for this reducible representation of the
SU(2)-algebra is given by s? = 6139 = 2(2+ 1) I,
where I is the 10 x 10 unit matrix.

Solution (9) is associated with the stationary com-
plete set P, s> = s, of the momentum and spin
projection operators of the spin s = (2,2) bosonic
particle-antiparticle doublet. The equations for the
momentum operator eigenvalues have the form

pe *d, = ke **d,, A =T,10, (12)
and the equations for the spin projection operator s3,

(10) eigenvalues are given by

s30dy = 2dy, s3,dy = dg, s3,ds = 0, s3,dy = —dy,
S?Od5 = 72(15, S?Odﬁ = 72d6, Si’od7 = 7d7, (13)

3 3 3
810d8 = O, 310d9 = dg, 810d10 = 2d10.

Therefore, the functions g'(k), ¢%(k), ¢°(k), g*(k),
g°(k) in solution (9) are the momentum-spin ampli-
tudes of the particle (boson) with the momentum p
and spin projection eigenvalues (+2, +1, 0, -1, —2),
respectively, and the functions ¢%(k), ¢7(k), ¢%(k),
g% (k), g'%(k) are the momentum-spin amplitudes of
the antiparticle with the momentum p and spin pro-
jection eigenvalues (-2, -1, 0, +1, +2), respectively.
The Schrodinger—Foldy equation (7) and the set {f}
of its solutions (9) are invariant with respect to the
reducible unitary bosonic representation (a,w) —
Ula,w) = exp(—ia’F —ia- B — 56" Gu)  (14)
of the Poincaré group P. The corresponding 10 x 10
matrix-differential generators are given by

~

0 =W = —A+m27 ﬁz =0y, (15)

Jen = TgDp — TpPr + Sin = My + Sep,

sénﬁn
w+m

bS]

§z>, (16)

Joe = —Jeo = the — 5 {ze, 0} — (
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whereas the spin s = (2,2) SU(2) generators s =
= (s') = sy are given in (10).

The validity of this assertion is verified by three
following steps. (i) The calculation of that the P-
generators (15) and (16) commute with the op-
erator iy — @ of the Schrodinger-Foldy equation
(7). (ii) The verification of that the P-generators (15)
and (16) satisfy the commutation relations of the Lie
algebra of the Poincaré group P. (iii) The proof of
that generators (15) and (16) realize the spin s(s+1)
irreducible representation of this group [or the spin
2s(s + 1) reducible representation in the case of dou-
blet|. Therefore, the Bargmann—Wigner classification
on the basis of calculations of the corresponding
Casimir operators should be given. These three steps
can be made by direct non-cumbersome calculations.

The corresponding Casimir operators have the form

(17)
(18)

p2 :ﬁLﬁu = m21107
W = whw, = m?s; = 2(2+ 1) m?1,0,

where I1g is the 10 x 10 unit matrix.

Hence, a brief consideration of the relativistic
canonical quantum mechanics foundations of the
particle-antiparticle doublet with the mass m > 0
and the spin s = (2,2) has been given above. In the
limit m = 0, this model describes the partial case of a
graviton-antigraviton doublet. The hypothesis about
the massive graviton and other tiny problems of the
gravity are not the subject of this consideration.

3. Spin s = (2, 2) Particle-Antiparticle
Bosonic Doublet in the Foldy—Wouthuysen
Canonical Field Representation

Thus, the Schrodinger—Foldy equation (7) and its so-
lution (9) are linked with the canonical field theory
equation

(i0 — Tho@)¢(x) =0, ; (19)

and its solution
1

3

(2m)2

¢($) _ /dgk [e—ikmgA(k)dA + eikmg*B(k)dB}
(20)

(A = 1,5, B = 6,10) by the operator v;5 = v}LO =
= 10,

(21)

| vovio = Lio,
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(the orts are Cartesian), C'is the operator of the com-
plex conjugation, and I5 is the 5 x 5 unit matrix.

The operator v1g (21) transforms an arbitrary op-
erator gqm of the 10-component relativistic canonical
quantum mechanics (considered in the previous sec-
tion) into the corresponding operator §.r of the canon-
ical field theory and wvice versa. Operator (21) gives a
link between solutions (9) and (20) as well. Note that
this transition is valid only for the operators taken in
anti-Hermitian (prime) form. The mathematical cor-
rectness of such choice of operators and the physical
interpretation are explained in [19] and [20]. The re-
turn to the Hermitian operators is very easy.

The spin operators of the canonical field theory
found from the corresponding quantum mechanical
SU(2) spin (10) on the basis of transformation (21)
satisfy the commutation relations [s, s¢] = igffms"
and have the form

S50

| (22)

S10 =

where the 5 x 5 spin s = 2 SU(2) generators are given
n (11). The corresponding Casimir operator is given
by s3, = 6119 = 2(2 + 1)I10, where I is the 10 x 10
unit matrix.

The stationary complete set of operators is given
by the operators p, s3, = s, of the momentum and
spin projection. The equations for the eigenvectors
and eigenvalues of the operators p and s3, = s, from
(22) have the form

ﬁe—ikdi — ke—ikach7 ﬁeikde — —kei’mdB,

S?Odl = 2d1, S?Odg = dg, S?Odg = 0, S:i’od4 = —d4,
(23)

s"fod5 = —2ds, S?Odfi = 2ds, 5§0d7 =dr,

s3pds = 0, s3pdg = —do, s3pd10 = —2d0,

and determine the interpretation of the amplitudes
in the general solution (20). Note that the direct
quantum-mechanical interpretation of the amplitudes
g2 (k), ¢B(k) in solution (20) should be taken from
the quantum-mechanical equations (12), (13) and is
given in the section above.

The relativistic invariance of the canonical field
equation (19) follows from the corresponding in-
variance of the Schrodinger—Foldy equation (7) and
transformation (21) (for the anti-Hermitian opera-
tors). The explicit form of the corresponding genera-
tors follows from of the explicit form generators (15)
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and (16) with the spin matrices (10) after transfor-
mation (21).

Thus, the canonical field equation (19) and the set
{¢} of its solutions (20) are invariant with respect
to the reducible unitary bosonic representation (14)
of the Poincaré group P, whose Hermitian 10 x 10
matrix-differential generators are given by

P’ =T%0=T%V-A+m2, p'=—idy,

e In

J = atp" — a"pt + sl =+ s, (24)

-~ 1 . s10 X p)°
3 = =5 = 2% - irgo {ze’w} + F(l)oi( OlAJO+ nI,)L)
where the spin s = (2,2) SU(2) generators sjg = (s4%)
have the form (22) and I'{, matrix is given in (19).

The proof is similar to that given in the previ-
ous subsection. The corresponding Casimir operators
have the eigenvalues similar to (17) and (18).

Thus, due to the eigenvalues in Egs. (23), positive-
and negative-frequency forms of solution (20), and
the Bargmann—Wigner analysis of the Casimir oper-
ators, one can come to a conclusion that Eq. (19)
describes the canonical field (the bosonic particle-
antiparticle doublet) with the spins s = (2,2) and
m > 0. The transition to the m = 0 limit leads to the
canonical field equation for the graviton-antigraviton
field [if the graviton is massless (7)].

4. Equation for a Spin s = (2, 2)
Particle-Antiparticle Bosonic Doublet
in the Locally Covariant Field Representation

The final transition to the locally covariant field
model is performed by the inverse Foldy—Wouthuy-
sen-type transformation. The corresponding field
equation has the form

it — pP® —myt =0,

Z'ao,po _ p3¢7 + ip2,¢)10 _pld)lo _ mwQ — 0,
i00p® — p*® +ip*y? — p'y? —map® =0,
i0oYp* + p*¢® — ip*y® — p'y® —myt =0,
100 + P10 —ip*Y" — ptYT — my® =0,

i000® — PPt + mypS =0, (25)
i0oY)" — pPY? + ip*Y® — p'Y® + myp” =0,
i0op® — p*?® + ip*yY*t — plt +myp® =0,
00?4+ PPyt — ip*y® — pry® + my? = 0,
10010 4 phuP — iph? — g+ myt® = 0,
—ip*Yt —plypt =0, —ip*y® —p'yY° =0,
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or the Dirac-like form

[i0o — TR(Ts - P +m)] ¥(z) =0,

(i0y — o'p® — o®m)x = 0, (p1 + ipz)x =0,
where v = column (¢!, 1?2, ..., %),

(26)

L I D PR N [ ¥/
X = 0], I's = Iy = j )
L S0 LT =% 0
and Y} are the 4 x 4 Pauli matrices
L0 Ll @ 0 - s |0
X1 = I5 0’247i12 0 ) = 0 —Iy|

The forms (25) and (26) are linked by the ordinary
linear transformation.

5. Brief Discussions

It is easy to see that our equations do not coin-
cide with known approaches. Indeed, the Rarita—
Schwinger equation [11] for spin s =3/2 contains
16 components, whereas our equation (1) for spin
s = (3/2,3/2) particle-antiparticle doublet contains 8
components. The Bargmann—Wigner equation [6] has
12 components in the partial case s = 3/2. Bhabha
himself [21] analyzed the partial case s = 3/2 for his
equation [5]. He found [21] that, in this case, his equa-
tion [5] coincides with the Rarita—Schwinger equa-
tion, i.e., has 16 components, etc.

The important partial example of the spin s =2
case is considered in details. The 10-component Di-
rac-like wave equation for the spin s = (2,2) par-
ticle-antiparticle doublet is suggested. The Poinca-
ré invariance is proved. The three-level consideration
(relativistic canonical quantum mechanics, canonical
Foldy—Wouthuysen-type field theory, and locally co-
variant field theory) is presented.
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PEJIATUBICTCBKI PIBHAHHSA
JJId JOBIJIBHOT'O CIIIHY, SOKPEMA
JJIs1 CIITHY s = 2

Peszmowme

IIpomoBxkeHo ampobarfio 3aIpOIOHOBAHOTO HAMU DPIBHSIHHS
JJ1s1 YaCTUHOK JOBljIbHOTO cuiny. [IpoBeeno nopiBHsiHHS 3 Bi-
nomuMu piBHAHHsMEU Baba, [Tayni—®ipua, Baprmana—Biraepa,
Papitu-IIBinrepa (misa cuiny s = 3/2) Ta immmux asropis. ITo-
Ka3aHOo, II[0 IIEPEBAr0I0 HOBOTI'O PDiBHSIHHS € BiJICYTHICTh Y HBOMY
3alBUX KOMIIOHEHT. /leTaIbHO PO3IVISTHYTO BarKJIMBUM 4aCTUH-
HUN BUOQJOK cHiny s = 2. 3anponoHoBano 10-KOMIOHEHTHE
mipakorno/ibHe XBUJIbOBE DIBHsIHHSA it jIy0Jiera YacTUHKA-
aHTHYACTHHKa cuinis s = (2,2). Joseneno itoro Ilyankape in-
BapiaHTHICTH. AHaJIi3 BUKOHAHO Ha TPHOX PIBHSIX: PEJIATUBICT-
CbKa KaHOHIYHAa KBAaHTOBAa MeXaHiKa, KAHOHIUHA TeOpis II0JIs
Tury Posgi-BayrxaiiceHa, JIOKaJIbHO KOBapiaHTHa TeOpis Io-
ssi. Ha nmpuxinani ny6iera s = (2,2) IPOIEMOHCTPOBAHO CXe-
My CHHTE3Y PEeJIATHUBICTCHKUX IIOJIbOBUX PIiBHSAHB JOBIJILHOIO
criny.
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