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TOWARDS AN OBSERVABLE TEST
OF NONCOMMUTATIVE QUANTUM MECHANICS 1

The conceptual incompatibility of spacetime in gravity and quantum physics implies the ex-
istence of noncommutative spacetime and geometry on the Planck scale. We present the for-
mulation of a noncommutative quantum mechanics based on the Seiberg–Witten map, and we
study the Aharonov–Bohm effect induced by the noncommutative phase space. We investigate
the existence of the persistent current in a nanoscale ring with an external magnetic field
along the ring axis, and we introduce two observables to probe the signal coming from the non-
commutative phase space. Based on this formulation, we give a value-independent criterion to
demonstrate the existence of the noncommutative phase space.
K e yw o r d s: noncommutative quantum mechanics, Seiberg–Witten map, Aharonov–Bohm
effect, persistent current.

1. Introduction
The concepts of noncommutative spacetime and ge-
ometry in theoretical physics are proposed for set-
tling two fundamental problems in science. The first
is the incompatibility of spacetime in gravity and
quantum physics, while the second is represented by
some puzzles in particle physics and cosmology, like
the singularity, nonlocality, dark energy, and dark
matter problems. A solution to these problems can
be obtained by assuming the finite nature of length
and time (Planck’s scales), which allows us to un-
derstand consistently all phenomena in the physical
world [1–3]. The finite Planck’s length and time units
hint towards the noncommutative spacetime, and to
noncommutative algebra and geometry [1–3]. These
noncommutative concepts are generalized further to
the noncommutative phase space as a generaliza-
tion of the Heisenberg algebra in quantum mechanics
[5, 7]. In Fig. 1, we show the set of noncommutative
spacetimes and their algebras. The use of noncom-
mutative concepts and techniques can be expected to
lead to a solution to the singularity and nonlocality
problems in particle physics, quantum gravity, and
quantum cosmology [1–3].

In fact, noncommutative phase-space phenomena
also arise in condensed matter physics [1–3], like, for
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example, the analogy between the two-dimensional
electron gas in the presence of a magnetic field and
the free-particle system in the noncommutative phase
space [7]. This analogy reveals that the noncommuta-
tive phase space effect can occur beyond the Planck
scale, even though the physics in a noncommutative
space has not been understood completely.

Several techniques have been proposed to imple-
ment the idea of noncommutative phase space [5],
such as the canonical formulation, Bopp shift, Moyal
product, path integration, Weyl–Wigner phase space
[8, 9], and Seiberg–Witten map [6, 10–12]. The non-
commutative phase space generalizes the uncertainty
principle and smears the phase space, leading to some
new physical effects arising from the noncommutative
nature of the phase space, such as the Aharonov–
Bohm effect [13–16], quantum Hall effect [17], mag-
netic monopoles [18], and Berry phase [6].

However, up to now, no direct experimental evi-
dence to detect the effect of a noncommutative space
is known. The main difficulty in directly observing
the phenomena in noncommutative spaces is caused
by that the effects of noncommutative space or phase
space are too weak and are relevant on the Planck
scale only.

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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Fig. 1. Family of noncommutative geometries and their algebras

The present paper is organized as follows. In Sec-
tion 2, we will present the mathematical formula-
tion of the noncommutative phase space and give
the Heisenberg representation of a noncommutative
phase space based on the Seiberg–Witten map [6,10–
12]. The noncommutative algebra yields an effec-
tive magnetic vector potential. In Section 3, we will
present the Aharonov–Bohm effect induced by the
effective magnetic vector potential. In Section 4, we
will study the persistent current in a nanoscale ring
with an external magnetic field along the ring axis in
the noncommutative phase space. The effective mag-
netic vector potential leads equivalently to an effec-
tive magnetic flux in the ring, which drives the ex-
tra persistent current. In Section 5, we introduce two
variables associated to the persistent current in the
ring to probe the signal coming from the noncommu-
tative phase space. We will give a value-independent
criterion to detect the existence of a noncommutative
phase space in Section 6. Since the persistent current
and magnetic flux in mesoscopic rings have been al-
ready used in nanotechnology, it can be expected to
probe the noncommutative phase-space effect by this
scheme. We conclude our results in Section 7.

2. Noncommutative Quantum Mechanics

2.1. General formulation

Even though there are many schemes of noncommu-
tative spacetime or algebra in physics, we focus here
on the so-called noncommutative phase space, which

is a generalization of the Heisenberg noncommutative
phase space,

[𝑥𝜇, 𝑥𝜈 ] = 0, (1a)
[𝑝𝜇, 𝑝𝜈 ] = 0, (1b)
[𝑥𝜇, 𝑝𝜈 ] = 𝑖~𝛿𝜇𝜈 , (1c)

to the noncommutative phase space written as [6,10–
12]

[�̂�𝜇, �̂�𝜈 ] = 𝑖𝜃𝜇𝜈 , (2a)
[𝑝𝜇, 𝑝𝜈 ] = 𝑖𝜂𝜇𝜈 , (2b)
[�̂�𝜇, 𝑝𝜈 ] = 𝑖~Δ𝜇𝜈 , (2c)

where 𝜃𝜇𝜈 and 𝜂𝜇𝜈 are the noncommutative strength
parameters. The hatted operators in Eq. (2) act in
the noncommutative phase space, while the nonhat-
ted operators in Eq. (1) act in the Heisenberg phase
space.

The generalized Schrödinger equation in a noncom-
mutative phase space can be obtained as

𝑖~
𝜕

𝜕𝑡
Ψ(̂︀𝑥, ̂︀𝑦, ̂︀𝑧) = ̂︀𝐻Ψ(̂︀𝑥, ̂︀𝑦, ̂︀𝑧), (3)

where the Hamiltonian in the noncommutative phase
space is written in general as

̂︀𝐻 =
1

2𝑚

(︀̂︀𝑝2𝑥 + ̂︀𝑝2𝑦 + ̂︀𝑝2𝑧)︀+ 𝑉 (̂︀𝑥, ̂︀𝑦, ̂︀𝑧). (4)

Based on the quantization principle, the physical
observables are described by operators in terms of the
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position and momentum operators, ̂︀𝑂 (̂︀𝑥𝑖, ̂︀𝑝𝑖). For ex-
ample, the angular momentum operator in a noncom-
mutative phase space is generalized to ̂︀L = ̂︀r×̂︀p. The
expectation value of observables can be obtained as

⟨ ̂︀𝑂⟩ = ⟨Ψ| ̂︀𝑂|Ψ⟩ = 𝑇𝑟(̂︀𝜌 ̂︀𝑂), (5)

where ̂︀𝜌 = |Ψ ⟩ ⟨ Ψ| is the density matrix in the non-
commutative phase space. In principle, in the non-
commutative QM, we have a formulation similar to
Heisenberg’s QM, but it is given in the noncommu-
tative algebra of Eq. (2). However, to implement the
noncommutative algebra of Eq. (2), we need the op-
erator representations of the position and momen-
tum operators in the noncommutative algebra of
Eq. (2). There are many methods to implement this
noncommutative algebra [5]. Seiberg and Witten pro-
posed a map between the noncommutative algebra
and Heisenberg’s noncommutative algebra, [6,10–12],
which provides an efficient way to implement the non-
commutative QM.

2.2. Heisenbereg’s representation
of the noncommutative quantum mechanics

The Seiberg–Witten (SW) map provides an efficient
way to map the operators in the noncommutative
phase space to the Heisenberg’s algebra. The basic
idea of the Seiberg–Witten (SW) map is that the
quantum objects can be represented in the noncom-
mutative phase space with the help of a map that
maps the noncommutative algebra into the Heisen-
berg algebra, so that we can still work with the Hei-
senberg algebra even in the noncommutative phase
space. However, the noncommutative effects emerge
as a result of the use of the SW map.

The SW map can be expressed as [6, 10–12](︃ ̂︀𝑋̂︀𝑃
)︃

=

(︂
𝐴 𝐵
𝐶 𝐷

)︂(︂
𝑋
𝑃

)︂
, (6)

where ̂︀𝑋⊤ = (̂︀𝑥, ̂︀𝑦, ̂︀𝑧)⊤, ̂︀𝑃⊤ = (̂︀𝑝𝑥, ̂︀𝑝𝑦, ̂︀𝑝𝑧)⊤, 𝑋⊤ =

= (𝑥, 𝑦, 𝑧)
⊤ and 𝑃⊤ = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)

⊤. The coefficients
𝐴, 𝐵, 𝐶, and 𝐷 satisfy the conditions

𝐴𝐷⊤ −𝐵𝐶⊤ = Δ, (7a)

𝐴𝐵⊤ −𝐵𝐴⊤ =
Θ

~
, (7b)

𝐶𝐷⊤ −𝐷𝐶⊤ =
̃︀Θ
~
, (7c)

where Δ = (𝛿𝑖𝑗) is the unit matrix in the approxi-
mation 𝜃𝜂/~2 → 0, which sets the diagonal elements
to be 1; Θ = (𝜃𝑖𝑗) and ̃︀Θ = (𝜂𝑖𝑗) , where 𝜃𝑗𝑖 = −𝜃𝑖𝑗
and 𝜂𝑗𝑖 = −𝜂𝑖𝑗 are antisymmetric. The transforma-
tion matrices can be obtained as

𝐴 = 𝐷 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠; 𝐵 =

⎛⎝ 0 −𝜃/2~ −𝜃/2~
𝜃/2~ 0 −𝜃/2~
𝜃/2~ 𝜃/2~ 0

⎞⎠;
𝐶 =

⎛⎝ 0 𝜂/2~ 𝜂/2~
−𝜂/2~ 0 𝜂/2~
−𝜂/2~ −𝜂/2~ 0

⎞⎠.
(8)

By substituting the matrix representations of the co-
efficients in (8), the SW map can be expressed as⎛⎝̂︀𝑥̂︀𝑦̂︀𝑧
⎞⎠ =

⎛⎝𝑥− 𝜃
2~ (𝑝𝑦 + 𝑝𝑧)

𝑦 + 𝜃
2~ (𝑝𝑥 − 𝑝𝑧)

𝑧 + 𝜃
2~ (𝑝𝑥 + 𝑝𝑦)

⎞⎠, (9a)

⎛⎝̂︀𝑝𝑥̂︀𝑝𝑦̂︀𝑝𝑧
⎞⎠ =

⎛⎝𝑝𝑥 + 𝜂
2~ (𝑦 + 𝑧)

𝑝𝑦 − 𝜂
2~ (𝑥− 𝑧)

𝑝𝑧 − 𝜂
2~ (𝑥+ 𝑦)

⎞⎠. (9b)

This representation of the coordinate and momentum
operators can be regarded as a Heisenberg-type repre-
sentation of the noncommutative QM. Any operator
in the noncommutative phase space can be mapped
to Heisenbereg’s representation, ̂︀𝑂 (̂︀𝑟, ̂︀𝑝) → 𝑂 (𝑟, 𝑝)
by the SW map.

The Heisenberg representation of the momentum
operators in the noncommutative phase space can be
rewritten as

̂︀p = p+ 𝑞 ̃︀A, (10)

where

̃︀A =

⎛⎝ 𝜂
2𝑞~ (𝑦 + 𝑧)

− 𝜂
2𝑞~ (𝑥− 𝑧)

− 𝜂
2𝑞~ (𝑥+ 𝑦)

⎞⎠ (11)

is the effective magnetic vector potential.
Based on the SW map given by Eqs. (6) and (9), the

external potential 𝑉 (̂︀r) can be expanded in a Taylor
series in r. By noticing that 𝑝𝑦𝑝𝑥 − 𝑝𝑥𝑝𝑦 = 0 in the
Heisenberg algebra, in the first-order approximation,
the potential in the noncommutative phase space is
given by [19]

𝑉 (̂︀r, 𝑡) ≈ 𝑉 (r, 𝑡) +𝒪

[︃(︂
𝜃

~

)︂2]︃
≈ 𝑉 (r, 𝑡). (12)
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Fig. 2. Aharonov–Bohm effect

Similarly, the wave function in the noncommutative
phase space can be also expanded in Taylor series in
r. In the first-order approximation, the wave function
can be expressed approximately as

Ψ(̂︀r, 𝑡) ≈ 𝜓(r, 𝑡) +𝒪

[︃(︂
𝜃(𝜀)

~

)︂2]︃
≈ 𝜓(r, 𝑡). (13)

The Hamiltonian in the noncommutative phase
space can be mapped to the Heisenberg algebra by

̂︀𝐻 =
1

2𝑚

(︁
p+ 𝑞 ̃︀A)︁2 + 𝑉 (r, 𝑡), (14)

where ̂︀𝐻 is the Hamiltonian in the Heisenberg QM
(or, equivalently, as the representation).

Consequently, we can use the standard quantum
mechanical formulation to study the noncommuta-
tive effects in the Heisenberg representation of the
noncommutative QM.

It should be remarked that the SW map provides
an efficient way to reveal the basic physics of the
noncommutative QM even though it is not unitary
and not canonical.

3. Aharonov–Bohm Effect
in a Noncommutative Phase Space

Let us consider a two-dimensional free electronic
system in a noncommutative phase space with the
Hamiltonian given by

̂︀𝐻 =
1

2𝑚
(p+ 𝑒̃︀A)2, (15)

wherẽ︀A =
𝜂

2𝑒~

(︂
𝑦

−𝑥

)︂
(16)

is the effective magnetic vector potential. The solu-
tion of the stationary Schrödinger equation can be
expressed as

𝜓(r) = 𝜓0(r) exp

⎛⎝− 𝑖𝑒
~

∫︁
𝒞

̃︀A(r′) 𝑑ℓ

⎞⎠. (17)

Suppose that an electron moves along two semicir-
cles that meet together at a point 𝑃 on the circle. We
denote the radius of the circle by 𝑅. By using the po-
lar coordinate system, the effective magnetic vector
potential is expressed as

̃︀A =
𝜂𝑅

2𝑒~

(︂
sin𝜙

− cos𝜙

)︂
. (18)

The effective magnetic flux is given by

Φ𝜂 =

∮︁
𝐶

̃︀A(r′) 𝑑ℓ = −𝑆𝜂
𝑒~
, (19)

where 𝑆 = 𝜋𝑅2 is the area of the ring. Supposing that
𝜂 = ~2𝜅2𝜂, we have Φ𝜂 = −𝑆𝜅2𝜂𝜑0, where 𝜑0 = ℎ/𝑒 is
the magnetic flux quantum.

Thus, the wave function at the point 𝑃 can be ex-
pressed as

𝜓(r𝑃 ) = 𝑒−𝑖𝑆𝜅2
𝜂/2
(︁
𝜓𝐶1
0 (r𝑃 ) + 𝜓𝐶2

0 (r𝑃 )𝑒
𝑖𝑆𝜅2

𝜂

)︁
. (20)

The probability density at the point 𝑃 can be ex-
pressed as

𝜌(r𝑃 ) = 𝜚(r𝑃 )(1 + 2𝜆 cos(𝑆𝜅2𝜂 + ̃︀𝜙)), (21)

where

𝜚(r𝑃 ) = 𝜌𝐶1(r𝑃 ) + 𝜌𝐶2(r𝑃 ), (22)

𝜆 =

√︀
𝜌𝐶1(r𝑃 )𝜌𝐶2(r𝑃 )

𝜚(r𝑃 )
, (23)

tan ̃︀𝜙 =
𝜓𝐶1
0 (r𝑃 )

*𝜓𝐶2
0 (r𝑃 )

𝜓𝐶1
0 (r𝑃 )𝜓

𝐶2
0 (r𝑃 )*

. (24)

It can be seen that the presence of the noncommu-
tative parameter 𝜅𝜂 yields an effective magnetic flux
on the two-dimensional closed path, which induces
the Aharonov–Bohm effect (see Fig. 2).

4. Persistent Currents in Nanorings
in the Noncommutative Phase Space

Let us consider a nanoring system in the noncom-
mutative phase space with an external magnetic field
along the ring axis. The Hamiltonian is written aŝ︀𝐻 =

1

2𝑚

[︁
p+ 𝑒(̃︀A+A)

]︁2
, (25)

where ̃︀A is the effective magnetic vector potential in-
duced by the noncommutative phase space and A is
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the external magnetic vector potential. We assume
that the magnetic field is homogeneous inside the
ring. Hence, the electron states depend only on the
total magnetic flux in the ring. In the polar coordi-
nate system, 𝑥 = 𝑅 cos𝜙, 𝑦 = 𝑅 sin𝜙, the Hamilto-
nian in the noncommutative phase space is written
as [14]

̂︀𝐻 = − ~2

2𝑚𝑅2

[︂
𝜕

𝜕𝜙
+ 𝑖

(︂
𝜑

𝜑0
− 𝜑𝜂
𝜑0

)︂]︂2
− 3~2

8𝑚𝑅2

𝜑2𝜂
𝜑20
, (26)

where 𝜑𝜂 = 2𝜋𝑅2𝜂
𝑒~ is the effective magnetic flux com-

ing from the noncommutative phase space, 𝜑0 = ℎ
𝑒 is

the flux quanta (𝑒 < 0), and 𝜑 is the external mag-
netic flux in the ring (see Fig. 2). For the sake of
convenience, we introduce the dimensionless magnetic
flux, 𝑓𝜂 ≡ 𝜑𝜂

𝜑0
and 𝑓 = 𝜑

𝜑0
. Then the Hamiltonian of

the quantum ring can be rewritten as

̂︀𝐻 = −𝜀0
[︂
𝜕

𝜕𝜙
+ 𝑖 (𝑓 − 𝑓𝜂)

]︂2
− 3𝜀0

4
𝑓2𝜂 , (27)

where 𝜀0 ≡ ~2

2𝑚𝑅2 . The energy can be obtained as [14]

𝐸𝑛 = 𝜀0 (𝑛+ 𝑓 − 𝑓𝜂)
2 − 3𝜀0

4
𝑓2𝜂 , (28)

where 𝑛 = 0,±1,±2, ... .
It can be seen that the effective magnetic flux in-

duced by the noncommutative space modifies the en-
ergy levels. We note that 𝑛 = 0,±1,±2, .., and the
energies in Eq. (28) are invariant under the transfor-
mation 𝑓 − 𝑓𝜂 → 𝑓 − 𝑓𝜂 + 1. Hence, we can consider
only the domain of 𝑓 − 𝑓𝜂 within

[︀
− 1

2 ,
1
2

]︀
(the first

Brillouin flux zone) [20,21]. Suppose there are 𝑁 elec-
trons in the ring, and they occupy the energy levels
at zero temperature. By observing that 𝑁 = 2𝑘 + 1
for the odd-electron ring, the ground-state energy is
𝐸𝑔 =

∑︀±𝑘
𝑛=0,±1,±2,...𝐸𝑛. For the even-electron ring,

𝑁 = 2𝑘, 𝐸𝑔 =
(︁∑︀𝑘−1

𝑛=0,1,2,... +
∑︀−𝑘

𝑛=−1,−2,...

)︁
𝐸𝑛, the

ground-state energy of the ring is obtained as [14]

𝐸𝑔(𝑓) = 𝜀0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁3 −𝑁

12
+𝑁

[︂
(𝑓 − 𝑓𝜂)

2 − 3

4
𝑓2𝜂

]︂
,

for 𝑁 = 2𝑘 + 1,

𝑁3 + 2𝑁

12
−𝑁(𝑓 − 𝑓𝜂)+

+ 𝑁

[︂
(𝑓 − 𝑓𝜂)

2 − 3

4
𝑓2𝜂

]︂
, for 𝑁 = 2𝑘.

(29)

Fig. 3. Persistent current in the nanoring

Moreover, the ground-state energy is symmetric
for 𝑓 − 𝑓𝜂 = 0. Hence, we can restrict our attention
to a half of the first Brillouin flux zone,

[︀
0, 12

]︀
. The

persistent current in the ground state is defined by
𝐽(𝑓) = −𝜕𝐸𝑔

𝜕𝜑 , and it can be obtained as [14]

𝐽(𝑓) = 𝐽0

⎧⎪⎪⎨⎪⎪⎩
−2𝑁𝑓

(︂
1− 𝑓𝜂

𝑓

)︂
, for 𝑁 = 2𝑘 + 1,

𝑁 − 2𝑁𝑓

(︂
1− 𝑓𝜂

𝑓

)︂
, for 𝑁 = 2𝑘,

(30)

where 𝐽0 = 𝑒
ℎ𝜀0. The persistent current depends

on both the external magnetic flux and the effec-
tive magnetic flux induced by the noncommutative
phase space (Fig. 3). This relationship between the
persistent current and the magnetic flux in Eq. (30)
provides a way to detect the noncommutative phase
space effect.

5. Signals from Noncommutative Phase Space

In order to detect the effects of the noncommutative
phase space experimentally, we introduce two vari-
ables defined by [14]

𝜆(𝑓) :=
𝜕

𝜕𝑓

(︂
𝐽

𝑓

)︂
, for 𝑁 = 2𝑘 + 1, (31)

𝜎(𝑓) :=
𝜕

𝜕𝑓

(︂
𝐽 −𝑁𝐽0

𝑓

)︂
, for 𝑁 = 2𝑘. (32)

These variables can provide two signatures to detect
the effects of the noncommutative phase space exper-
imentally. Thus, we get

𝜆(𝑓) = −2𝑁𝐽0
𝑓𝜂
𝑓2
, for 𝑁 = 2𝑘 + 1, (33)

𝜎(𝑓) = −2𝑁𝐽0
𝑓𝜂
𝑓2
, for 𝑁 = 2𝑘. (34)

It can be seen that if the noncommutative phase
space does exist, both 𝜆 and 𝜎 are proportional to −1

𝑓2 ,
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which diverges in the limit of small external magnetic
fluxes.

For a given parameter 𝜂 ≤ 1.76× 10−61 kg2m2s−2

[6, 12], and a mesoscopic ring with the radius 𝑅 =

= 1 𝜇m, 𝑓𝜂 ≤ 2𝜋𝑅2𝜂
𝑒~ℎ/𝑒 = 𝑅2𝜂

~2 = 1.5828 × 10−5. Sup-
pose that the effective electron number in the ring is
about 𝑁 ∼ 104÷105. Then both 𝜆(𝑓) and 𝜎(𝑓) are
proportional to −2𝐽0𝑠𝜂/𝑓

2, where 𝑠𝜂 ≡ 𝑁𝑓𝜂 ≈ 1 is
the signal from the noncommutative phase space.

Based on this result, we propose a criterion to di-
rectly detect the existence of the noncommutative
phase space.

Criterion: if, by varying the external magnetic
flux 𝑓 𝜆, 𝜎 becomes divergent with decreasing 𝑓 , then
this effect yields the existence of the noncommutative
phase space.

6. Experimental Scheme for Detecting a
Noncommutative-Phase-Space Effect

The persistent current in the nano-sized ring inspires
us to propose an experimental scheme to probe ex-
plicitly the existence of the noncommutative phase
space via a specific signal.

Experimental Scheme: The experimental
scheme includes the following steps:

1) Setting up an experimental system containing a
nano-sized ring with an external magnetic field.

2) Measuring the persistent current 𝐽 versus the
external magnetic flux 𝑓 .

3) Calculating 𝜆 and 𝜎 based on the experimental
data of the persistent current and the external mag-
netic flux.

4) Plotting 𝜆 and 𝜎 versus 𝑓 .
When we observe that 𝜆 or 𝜎 diverges as 𝑓 ap-

proaches zero, we capture the signal coming from the
existence of the noncommutative phase space.

It should be remarked that the criterion is based
on the divergent behaviors of 𝜆 and 𝜎 as the exter-
nal magnetic flux decreases, a behavior which does
not depend on the numerical values of 𝜆 and 𝜎. This
result should be meaningful and valid for all qualita-
tive levels, because we do not know actually the exact
values of these parameters. In other words, the diver-
gent behavior 1/𝑓2 of 𝜆 or 𝜎 from the experimental
data provides a way to predict the values of the non-
commutative parameter 𝜂. In practice, we can plot
log 𝜆 ∼ log 𝑓 such that we can verify the divergent
behavior 1/𝑓2 as a linear relation.

The persistent current in mesoscopic rings has
been studied both theoretically and experimentally
in the past two decades [22–24]. Buttiker first pre-
dicted that a persistent current occurs in mesoscopic
rings and oscillates with an AB flux [22]. The am-
plitude of the persistent current reaches the value
(10−2÷2)𝑒𝑣F/2𝜋𝑅, where 𝑣F is the electronic velocity
at the Fermi level. The experimental results of an iso-
lated Au ring and GaAs/Al𝑥Ga1−𝑥As in the diffusive
region at low temperatures agrees with the theoretical
predictions [23–25]. However, they did not study the
effect of the noncommutative phase space. Actually,
nanotechnology provides an efficient way to probe
the effects coming from the noncommutative phase
space. We strongly suggest to rerun the persistent-
current experiment to turn out more precise data on
the persistent current versus the external magnetic
flux, by which we can plot the relation between (𝜆, 𝜎)
and 𝑓 and prove the existence of the noncommutative
phase space.

On the other hand, Carroll et al. studied the non-
commutative field theory and Lorentz violation. They
gave an upper bound of the noncommutative parame-
ter, 𝜂 ≤ (10 TeV)−2 [26]. Falomir et al. also proposed
a scheme to explore the spatial noncommutativity of
the scattering differential cross-section by the AB ef-
fect [27]. It relies on the particle physics experiment
involving energies between 200 and 300 GeV for 𝜂 ≤
(10 TeV)−2 and estimating the typical order of the
cross-section for neutrino events 10−3 [27]. Obviously,
those experimental schemes are much more difficult to
be implemented than this scheme, because the experi-
mental scheme proposed in the present paper involves
eV energy scales and nanoscale physics.

In fact, up to now, there has not been any di-
rect experimental evidence to prove the existence
of noncommutative space and phase space. Hence
it should be worth studying and exploring differ-
ent aspects and different energy scales, even though
the concept of noncommutativity originates from the
Planck scale physics. Actually, many phenomena in
condensed matter physics contain the characteristics
of a noncommutative space in nonrelativistic quan-
tum mechanics, such as the analogy between the Lan-
dau levels of a two-dimensional electron gas in the
presence of a magnetic field and the free electron
in the two-dimensional noncommutative phase space
[8,9,28], as well as the quantum Hall effect [29]. Hence
it should be expected that some possibilities to cap-
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ture the signal of noncommutativity may exist espe-
cially in the nanoscale condensed matter physics.

7. Conclusions

The conceptual incompatibility of spacetime in grav-
ity and quantum physics inspires to propose the exis-
tence of a noncommutative spacetime and a noncom-
mutative geometry for the understanding of the fun-
damental physics behind gravitational and quantum
behaviors. The physical spacetime territory extends
from 10−35 m and 10−44 s (Planck scale) to 1061ℓ𝑝
(Universe scale). Even if the noncommutative space-
time and geometry appear on the Planck and/or Uni-
verse scales, this influences the macroscopic physical
behavior. However, up to now, there have not been
any direct observational evidences to indicate the ex-
istence of noncommutative spacetime effects.

In the present paper, we have presented the for-
mulation of the noncommutative quantum mechanics
based on the Seiberg–Witten map, and we have stud-
ied the effects of the noncommutative phase space
on the Aharonov–Bohm effect and on the persistent
current in a nano-sized ring. We propose an experi-
mental scheme to prove the existence of a noncom-
mutative phase space by using a nano-sized quantum
ring. We have introduced two variables 𝜆 and 𝜎 as in-
dicators for the detection of the effects coming from
the noncommutative phase space, based on the rela-
tion between the persistent current and the external
magnetic flux in the ring. The divergent behavior of
(𝜆, 𝜎) versus 𝑓 provides a value-independent method
for the experimental measurement of the effects of
the noncommutative phase space. This method can
be expected to give answer to the question whether
the noncommutative phase space does exist in nature.
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Шi-ДонгЛiянг, Т.Харко

НА ШЛЯХУ ДО ЕКСПЕРИМЕНТАЛЬНОЇ ПЕРЕВIРКИ
НЕКОМУТАТИВНОЇ КВАНТОВОЇ МЕХАНIКИ

Р е з ю м е

Концептуальна несумiснiсть простору-часу в теорiї гравi-
тацiї та квантовiй фiзицi означає iснування некомутатив-
них простору-часу та геометрiї на планкiвських вiдстанях.
Ми представляємо формулювання некомутативної кванто-
вої механiки на основi вiдображення Зайберга–Вiттена i ви-
вчаємо ефект Ааронова–Бома, породжений некомутатив-
ним фазовим простором. Дослiджено iснування постiйно-
го струму в нанорозмiрному кiльцi iз зовнiшнiм магнiтним
полем вздовж осi кiльця i введено двi спостережуванi для
зондування сигналу, що надходить з некомутативного фа-
зового простору. На основi цього формулювання дано неза-
лежний вiд величин критерiй для пiдтвердження iснування
некомутативного фазового простору.
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