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A SOLUTION TO THE SOCCER
BALL PROBLEM FOR GENERALIZED
UNCERTAINTY RELATIONS'

We propose a new method for generating generalized uncertainty relations (GURSs) including
the generalized uncertainty principle (GUP), extended uncertainty principle (EUP), and ex-
tended generalized uncertainty principle (EGUP), previously proposed in the quantum gravity
literature, without modifying the Heisenberg algebra. Our approach is compatible with the equiv-
alence principle, and with local Poincaré invariance in the relativistic limit, thus circumventing
many of the problems associated with GURs derived from modified commutation relations. In
particular, it does not require the existence of a nonlinear additional law for momenta. This
allows sensible multi-particle states to be constructed in which the total momentum is macro-
scopic, even if the momentum of an individual particle is bounded by the Planck momentum,
thus providing a resolution of the “soccer ball problem” that plagues current approaches to
GURs.
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1. Introduction

Gedanken experiments imply the existence of GURs
in the quantum gravity regime, including the GUP,
EUP and EGUP [1-4]. However, in the absence of
a complete quantum gravity theory, it remains an
open problem how to derive such relations, more rig-
orously, from an underlying quantum formalism. To
date, most attempts invoke modified commutation
relations, but these remain plagued by theoretical
difficulties, including the so-called “soccer ball prob-
lem” [5] and violation of the equivalence princi-
ple (EP) [6].

Here, we propose an alternative scheme in which
vectors in an infinite-dimensional Hilbert space, |gx),
are associated with points, x, in the classical back-
ground. This allows us to construct quantum super-
positions of geometries, as expected in any candi-
date theory of quantum gravity. We then show that
the probability distribution associated with the total
quantum state, including contributions from canon-
ical quantum matter and the quantum state of the
geometry, naturally gives rise to both the GUP and
the EUP. These may then be combined to form the
EGUP.
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Crucially, in this approach, the Heisenberg alge-
bra is unaffected apart from a rescaling of the form
h — B+, where 5 ~ hx 107! is a function of G, ¢, h
and A. Thus, we show that higher-order dispersion re-
lations and/or modifications of Euclidean symmetry,
which lead to modifications of the canonical position-
momentum commutator, are not required to imple-
ment GURs [7]. Our approach therefore avoids com-
mon problems associated with GURs derived from
modified commutators, including both the soccer ball
problem and violation of the EP. (Strictly, these prob-
lems are not solved, but circumvented, since they
never arise in the first place.)

2. Generalized Uncertainty
Relations (GURs)

2.1. Recap of Heisenberg’s
uncertainty principle (HUP)

The HUP contains the essence of canonical quantum
mechanics (QM) and is a fundamental consequence
of wave-particle duality. It can be introduced heuris-
tically using the Heisenberg microscope thought ex-
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periment [8], yielding
ArApZh 1)

or derived from the quantum formalism using the
position-momentum commutator,

[#,p] = ih 1, (2)
together with the Schrédinger—Robertson relation [9],

AyO1 AyOy > Z|(][O, Oa]|¥)] , (3)

y
2

where A, O = \/(¢|Oz|w> — (1h|O)2?, giving
h
Aw:l? Awp Z 5 . (4)

Note that, here, Ayx and Ayp are well defined, as
standard deviations of the probability distribution
dP(x)1p) = |¢|*>dx, as opposed to Az and Ap in the
heuristic example (1).

2.2. Types of GUR and their physical
interpretations: GUP, EUP and EGUP

The standard GUP takes the form

h G
Ax 2 3D + ac—gAp, (5)
where « is a numerical constant, assumed to be of
order unity. It can be derived heuristically by modi-
fying the Heisenberg thought experiment to include
the gravitational interaction between the massive par-
ticle and the probing photon [1—4]. This implies the
existence of a minimum length scale,of the order of
the Planck length, Ip; := \/hG/c® ~ 10733 cm. The
EUP takes the form

h
Ap 2, AL + nhAAz. (6)
Here, A ~ 107°¢ cm is the cosmological constant [10]
and 7 is a numerical constant, also assumed to be
of order one. Equation (6) can be obtained, heuristi-
cally, by considering the Heisenberg microscope ex-
periment in the presence of dark energy: that is, by
assuming the existence of a minimum spatial curva-
ture of order ~A, as opposed to asymptotically flat
space [3,4]. This implies the existence of a minimum
momentum scale, of the order of the de Sitter mo-

mentum ~mgge, where mqag := (h/c)\/A/3.
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Using either the GUP or EUP alone breaks po-
sition-momentum symmetry in the uncertainty rela-
tions, but both may be derived as separate limits of
the EGUP,

ArApZ o +a(Apf +i(Ar), @

which restores it [3,4]. Here, & and 7] are appropriate
dimensionful constants, which may be obtained by
comparison with Egs. (5) and (6). Thus, Eq. (7) may
be expected to combine the effects of both canoni-
cal (Newtonian) gravity and repulsion due to dark
energy.

Clearly, a more rigorous version of the EGUP, with
Az and Ap replaced by Ayz and Ayp, respectively,
can be derived from the quantum formalism by intro-
ducing the modified commutation relation [11]

[&,p] = ih(1 + az? + 7p?). (8)

Equation (7) then follows directly from the Schrédin-
ger-Robertson relation (3).

2.3. The soccer ball problem
and violation of the equivalence principle

Recall that, in the position space representation, the
momentum operator may be identified with the shift-
isometry generator of Euclidean space, up to a factor

p=—ih— =: hk =: hczr 9)

Similarly, in the momentum space representation, the
position operator may be identified with the shift-
isometry generator of Euclidean momentum space
(up to k). Thus, the Heisenberg algebra is the Lie al-
gebra of the shift-isometry subgroup of the Galilean
symmetry group. It may be obtained, rigorously, by
combining Euclidean symmetries with the de Broglie
relations,

p=rlk, E="hw, (10)

or, equivalently, with the Hilbert space structure of
canonical QM [9]. Therefore, modifying the canonical
position-momentum commutator is equivalent to:

a) modifying the symmetry group of the classical
background space

b) introducing higher-order dispersion relations for
quantum matter waves, i.e., the Fourier modes of the
wave function ¥(z), or

¢) both.
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However, it is straightforward to show that (a) im-
plies violation of Poincaré symmetry in the relativis-
tic limit, leading to the so-called “soccer ball problem”
for multi-particle states [5]. Furthermore, any defor-
mation of the canonical commutator implies the exis-
tence of a mass-dependent gravitational acceleration,
thus violating the equivalence principle. This is true
regardless of whether such deformations arise from
(a) or (b), or (c) (both) [6].

Thus, the price paid to obtain the “correct” quan-
tum gravity phenomenology using modified commu-
tation relations, i.e., that expected from heuristic
model-independent arguments, is extremely high: we
are required to violate of founding principle of classi-
cal gravity!

Theoretically, the EP may indeed be violated in
the quantum gravity regime [12]. However, any such
violation must be compatible with the construction
of macroscopic multi-particle states, with the corre-
spondence principle [8], and with the emergence of the
classical world in the limit & — 0. This is clearly prob-
lematic for any canonical quantization scheme based
on modified commutators, due to the correspondence
limh_,O[OAl,OAl]/(ih) = {01, 03}. Below, we consider
an alternative mechanism for generating GURs, based
on quantum superpositions of geometries, which does
not imply a significant modification of the Heisenberg
algebra.

3. Quantum Superpositions of Geometries
3.1. Why do we need them?

If quantum particles are to act as sources of the gravi-
tational field, which is described by space-time curva-
ture (i.e. geometry), then superpositions of position
eigenstates should give rise to superpositions of ge-
ometries. In short, combining the principles of general
relativity, including gravity as space-time curvature,
and the principles of quantum mechanics, including
the principle of quantum superposition, implies the
existence of space-time superpositions. In the non-
relativistic limit, it is reasonable to expect that these
can be approximated by superpositions of spatial ge-
ometries, with a common absolute time parameter.

3.2. How do we get them?

Here, we provide a concrete model that realizes such
geometric superpositions by “smearing” the classical
background space [7]. The basic idea is to replace each
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point “x” in the classical geometry by a superposition
of all points. For each classical point, we obtain one
whole copy of the classical space, i.e., a superposition
of geometries, as desired.

3.1.1. The smearing map in position space

Since, in canonical QM, the classical point “x” may be
identified (heuristically) with a Dirac delta, or, equiv-
alently, the ket |x), this is most naturally realized by
the map

1x) = [x) @ [gx), (11)
where
lgx) == | g(x' = x)|x)d"x’". (12)

Here, d is the number of spatial dimensions and
g(x’ — x) is any normalized function. For simplicity,
however, we may imagine g as a Gaussian.

Thus, we can visualize the smeared geometry as-
sociated with a classical d-dimensional universe (x)
as a 2d-dimensional hyper-plane in which each point
(x,x’) is associated with a complex number g(x’ —
x). The map from the classical to the quantum phase
space is then as follows:

x & [x), dix o [x)di%, () e .®. (13)

We interpret g(x’ — x) as the quantum probabil-
ity amplitude for the transition x — x’ [7]. Hence,
if |g(x)|? is peaked at the origin, the most probable
value is x’ = x. However, transitions to values within
one standard deviation, o4, are relatively likely, giv-
ing rise to quantum fluctuations of the background
geometry. We naturally associate the standard devi-
ation of g with the Planck scale, o4 o~ lpi.

The choice of smearing function g(x’ — x) and the
map (11) uniquely define the position space repre-
sentation of the smeared-space formalism. It follows
that the canonical QM state, |¢) = [(x)[x)d?x, is
mapped according to |¢) — |¥), where

|W) = //g(x' —x)(x)[x) @ |x)d¥xd¥x’.  (14)

Since, in the smeared geometry, an observed value
“x" does not determine which point(s) underwent
the transition x — x’, we must sum over all pos-
sibilities by integrating the joint probability density
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|U(x,x")]? := |g(x’ — x)|?1)(x)|? over dx, yielding

dP(x'|¥)
dx’?

= (lgI* = [9*) (). (15)

Since the variance of a convolution is equal to the sum

of the variances of the individual probability distribu-

tions, we then have

(Awa’™) = (Aga”) + (Aga’')2. (16)
It is straightforward to show that the generalized

position-measurement operator, X*, given by

X [t @ bt = L0d, (1)

yields the correct statistics, ie.  (AgX?%)? =
(T[(XH)2|W) — (U] XT)2 = (Aya’)? + (07)2, where
o, = Aga’". Setting o}, = Ip; for all i, using the HUP
(4), and Taylor expanding (16) to first order, we then
obtain the GUP:

h 2G

AvX 2 g+ 5 A

1
P (18)

3.1.2. The smearing map in momentum space

In the momentum space representation, we define
an exactly analogous formalism. Thus, the canonical

QM state |¢) = [ 4(p)[p)d’p maps to

) = //Ew(p’ —p)¢n(p)lpp)d’pdp’,  (19)
where §g(p’ —p) is interpreted as the quantum proba-
bility amplitude for the transition p — p’ in momen-
tum space. (The meaning of the index § will be made
clear soon.) Here, |pp’) is a basis vector in the en-
larged Hilbert space, labelled by the values p and p’,
but is not a simple tensor product state. Consistency
then requires that

1 ipx L(p'— x' —x
(X [pp) 1= e fPX AP0 (o)

and

gs(p’ - x' —x)e
gs(Pp" —p) -—\/m/g( )

hold, with S # A, in addition to the usual re-

lations (x|p) = eP* and Pu(p) = anh

(PP ) iyt

1
V2rh

x [ 1h(x) e~ #P* dx [7].
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In canonical QM, the momentum space representa-
tion of the wave function is the Fourier transform of
the position space representation, ¥ (x), transformed
at the scale h. This follows directly from the canon-
ical de Broglie relations plus the basis-independence
of |¢). In the smeared-space formalism, gz(p’ — p) is
the Fourier transform of g(x’ —x), transformed at the
scale 8. This follows directly from the basis indepen-
dence of |¥), which implies modified de Broglie rela-
tions for matter waves propagating on the smeared-
space background, p’ = ik + (k" — k) [7].

Thus, analogues of Eqgs. (15)—(16) also hold for the
momentum space representation of the smeared-state
|¥), so that, defining the generalized momentum op-
erator as P; := [ [pjlpp’)(pp'|d?pd?p’, we imme-
diately obtain (Ag P?)y = (U|(P?)y|¥) — (U|P;|¥)2 =
= (Ayp)? +(G4i)?, where 64 = Agp't. Setting G4 =
= (1/2)mgqgc for all ¢, using the HUP (4), and Taylor
expanding to first order, we obtain the EUP:

ho RA
>
DuP 2 gx+ gy

wl’/. (21)
The transformation scale for the smearing function g
can then be written as 8 = (2/d)o} Gy, so that, for
d =3 (our observed universe), [ = 2h\/pa/pp1 =~
~ h x 107%1, where pp; := ¢°/(hG?) ~ 109 g-cm™3
is the Planck density and pp := Ac?/(87G) ~
~ 1073 g-cm™3 is the observed dark energy den-
sity [7].

3.3. Implications: resolution
of the soccer ball problem and restoration
of the equivalence principle

It is straightforward to show that in the smeared-
space formalism (outlined above) the generalized po-
sition-momentum commutator takes the same basic
form as in canonical QM, but with a tiny rescaling of
Planck’s constant such that A — A+ 3, i.e.,
(X', Pj] = i(h+ B)8'; 1. (22)
Defining the Hamiltonian as H := P2/(2m), where P
is the absolute value of the generalized momentum,
and the smeared-space potential as Vi=ioV , by
analogy with X? := 1 ® #//, we may construct the
Heisenberg equation for the smeared-state |¥). This
takes the same basic form as the canonical Heisenberg
equation, but with iz — hi+ 3. The equation of motion
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for X* is then

dXi i

. [ oH P
dt  (h+B) m

) j]ailjj_ma

S0 P

(23)

so that the acceleration of the position expectation
value is independent of the particle mass, as in canon-
ical QM. Clearly, this is not the case for modified
commutators of the form (8). Hence, although such
modifications yield both the GUP and the EUP, they
are fundamentally incompatible with the EP. By con-
trast, the smeared-space formalism yields both the
GUP and EUP without violating the EP.

In [7], it was also shown how to construct multi-
particle states in the smeared-space background. As a
general operator O may be written as a function of the
operators Xt and Pj, such states are compatible with
the correspondence limpg_0[O1,01]/(i(h + B)) =
= {0,053} in the macroscopic limit. By contrast,
implementing a canonical quantization scheme with
modified commutation relations, and requiring the
correspondence principle to hold, implies an equiv-
alent modification of the canonical Poisson brack-
ets. This implies violation of Galilean invariance, even
for macroscopic systems, and, hence, violation of
Poincaré invariance in the relativistic limit.

Furthermore, if modifications of the canonical com-
mutators are assumed to arise from nonlinear cor-
rections to p(k) in the relativistic regime, it is un-
clear whether one should require the physical mo-
mentum p, or wave number k (also known as the
pseudo-momentum), to transform under the Poincaré
group. However, in either case, the Lorentz transfor-
mations become nonlinear functions of the relevant
quantity [12]. Thus, if the nonlinear momentum com-
position function has a maximum at the Planck mo-
mentum, corresponding to a minimum length of or-
der ~ Ip;, the sum of momenta can never exceed
this maximum value. It is therefore unclear whether
mutli-particle states with macroscopic momentum
can be constructed in models with modified com-
mutation relations, and the problem of reproducing
a sensible multi-particle limit is known as the soc-
cer ball problem’ [5]. In the smeared-space formal-
ism, this problem does not arise, since we obtain
GURs without modifying the fundamental symme-
tries of canonical QM and their associated Lie al-
gebras, i.e., commutation relations, except for the
rescaling h — i + (.
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4. Conclusions

We have proposed an alternative model of quantum
gravity phenomenology in the non-relativistic regime
in which GURs, including the GUP, EUP and EGUP,
previously proposed in the quantum gravity litera-
ture, arise from quantum superpositions of the spa-
tial background. Crucially, our approach leaves the
commutation relations of canonical QM unchanged,
except for a simple rescaling of the form A — i+ .
Thus, we have shown how GURs may be obtained
within a well-defined quantum formalism without as-
suming modified commutation relations, which are
known to lead to theoretical difficulties including the
soccer ball problem and violation of the EP.
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M. TTotrc. Jletix

PO3B’A30K ITPOBJIEMUI
“SOCCER BALL” J1JId Y3ATAJIbHEHUX
CHIBBIIHOIIIEHBb HEBM3HAYEHOCTI

Peszowme

Mu mponoHyeMo HOBUIT METOJ, OTPUMAHHSI y3araJbHEHUX CIIiB-
BigHomeHs HeBusHadeHocrelt (YCH), Bkio4Ho i3 y3aranbHe-
HYUM IPUHOUIOM HeBusHadeHocrel (YIIH), posmuperny npus-
nunom HesusHadenocreir (PITH) ta posmmupenuMm ysaranbHe-
HUM OpuHIMIOM HeBusHadenocreil (PVIIH), panime sampo-
[IOHOBAHUM y JliTepaTypi 3 KBaHTOBOI rpasitamil, 6e3 mogu-
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dikamil anrebpu laitzenbepra. Ham minxin cymicuumit sk i3
MPUHIUIIOM €KBiBaJIEHTHOCTi, TaK i 3 JIOKaJIbHOIO iHBapiaH-
TaicTio [lyankape B peasiTuBiCTCHKi#M rpanuni, TO6TO OMHHAE
6araro npobsieMm, noB’sizaHux 3 orpuManusaMm YCH i3 momu-
dikoBaHmx KOMyTamiifHux croiBBigHoIeHs. [Ipn npomy He Bu-
Mara€TrbCd iCHyBaHHSI HEJIHIHOIO JOJATKOBOI'O 3aKOHY IS
momeHTiB. lle mosBossie GynyBaTn GaraTOYaCTHHKOBI CTaHM,
B AKX CyMapHHI IMIIyJIbC MAKPOCKOIIYHMII, HaBIiTh HAKIIO
IMITyJIbC OKpeMOl YaCTUHKHU obmexkeHui immyibcoM llnanka,
[0 TAKUM YMHOM 3abe3ledye po3B’si3aHHsI mpobsemu ‘“soccer
ball”, sika € Cepilo3HOIO IMEPENIKOAOI0 JJIsl ICHYIOYHNX ITiIXO/IiB
no YCH.
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