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CONTACT INTERACTIONS
IN ONE-DIMENSIONAL QUANTUM MECHANICS:
A FAMILY OF GENERALIZED §-POTENTIALS'!

A “one-point” approximation is proposed to investigate the transmission of electrons through
the extra thin heterostructures composed of two parallel plane layers. The typical example is the
bilayer for which the squeezed potential profile is the derivative of Dirac’s delta function. The
Schrédinger equation with this singular one-dimensional profile produces a family of contact
(point) interactions each of which (called a “distributional” §' -potential) depends on the way of
reqularization. The discrepancies widely discussed so far in the literature regarding the family
of delta derivative potentials are eliminated using a two-scale power-connecting parametrization
of the bilayer potential that enables one to extend the family of distributional &' -potentials to
a whole class of “generalized” &' -potentials. In a squeezed limit of the bilayer structure to zero
thickness, the resonant tunneling through this structure is shown to occur in the form of sharp
peaks located on the sets of Lebesgue’s measure zero (called resonance sets). A four-dimensional
parameter space is introduced for the representation of these sets. The transmission on the

complement sets in the parameter space is shown to be completely opaque.
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1. Introduction

Starting with the pioneering work by Berezin and
Faddeev [1], various exactly solvable models described
by the Schréodinger operators with singular zero-
range potentials have been studied within the the-
ory of self-adjoint extensions of symmetric opera-
tors. These models are specified by the potentials de-
fined on the sets consisting of isolated points. The-
refore in the literature, they are usually referred
to as “contact” or “point” interactions (see books
[2-4] for details and references). A whole body of
works (see, e.g., [5-11], a few to mention), includ-
ing the very recent studies [12-19] with references
therein, has been published. There, the one-dimen-
sional Schrodinger operators were defined via distri-
butions and corresponding two-sided boundary con-
ditions (BCs) at the points of singularity. Alterna-
tively, besides this “point” approach, one can real-
ize various families of point interactions (PIs) from
the Schrodinger equation with regular finite-range
potentials in a squeezed limit [20-35]. We refer
the “squeezing” approach as a “point” approxima-
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tion of realistic finite-range systems (e.g., ultrathin
layered sheets). The advantage of both the distribu-
tional and squeezing approaches is the possibility to
get the resolvents of these operators in an explicit
form, to find their spectra, and to compute scatter-
ing coeflicients.

In the present paper, we are dealing with the sta-
tionary Schrédinger equation in one dimension

=" (x) + V(2)p(z) = E(x), (1)

where V(z) is a real-valued function defined on the
line —oco < x < oo, being either a regular func-
tion or a distribution. There exists a one-to-one cor-
respondence between the full set of self-adjoint ex-
tensions of the one-dimensional kinetic energy op-
erator and the two families of BCs: non-separated
and separated. The non-separated extensions describe
non-trivial four-parameter Pls subject to the BCs at
x = £ 0 on the wave function 1(z) and its derivative

1 This work is based on the results presented at the XI Bolyai—
Gauss—Lobachevskii (BGL-2019) Conference: Non-Euclide-
an, Noncommutative Geometry and Quantum Physics.

1021



A.V. Zolotaryuk

¥'(z) given by the connection matrix A of the form [7]

Y(+0)\ _  (¥(=0) iy [ A1 A2
(¢/(+0)> B A(W(_O))’ A=e <)\21 )\22) 2)
Here, x € [0, m) and the A-elements are finite real
parameters fulfilling the condition A1 Aog — A12Ao1 =
= 1. In the case where some of the A-elements are in-
finite, the corresponding PI is separated, being com-
pletely opaque for an incident particle. For instance,
if the diagonal elements A;; and A9y are finite, but
one of the off-diagonal elements is infinite, we have
either the Dirichlet BCs 9(£0) = 0 (if Ag; is infinite
and A3 = 0) or the Neumann BCs ¢/'(+0) = 0 (if
A12 is infinite and Ay; = 0).

Some particular examples of Eq. (1) and the cor-
responding A-matrix (2) are important in applica-
tions. One of the representations of this matrix to be
considered in the present paper is

0 0
A= (a 0_1>, 0, o € R. (3)

The particular case § = 1 corresponds to the sim-
plest and most widespread PI called a §-potential. In
this case, the potential in Eq. (1) is defined by Dirac’s
delta function é(z), i.e., V(x) = ad(z), where « is
a strength constant (or intensity). The wave func-
tion (x) for this interaction is continuous at the
origin x = 0, whereas its derivative undergoes a
jump a. As derived in [23-31], if the potential part
in Eq. (1) is the derivative of the delta function i.e.,
V(z) =~y (x), 0'(x) := dé(x)/dx, with v € R being
a strength constant, we have 6 # 1. Extending a bit
the classification suggested by Brasche and Nizhnik
[15], we call any PI described by the A-matrix of the
form (3) with 8 # 1 (even if a # 0) a “generalized”
d’-potential. Concerning the particular case of a delta
derivative potential v0'(z) in Eq. (1), we refer the re-
sulting PI as a “distributional” ¢’-potential (also even
if o #0).

On the other hand, as historically adopted in the
literature (see, e.g., [3]), the PI, for which the deriva-
tive ¢’(z) is continuous at the origin, but ¢ (z) dis-
continuous, is called a d¢’-interaction. Its more gen-
eralized (two-parameter) version [36] is described by
the connection matrix of the form

A:(36ﬁ> 0, 8ER (4)
1022

Different aspects of the ¢’-interaction with = 1 in
(4) have been investigated in a series of publications
(see, e.g., [9-11, 20-22, 37-39]). Note that the term
“§’-interaction” is somewhat misleading, because the
form of A-matrix (4) differs from representation (3)
that really corresponds to a delta derivative poten-
tial in Eq. (1). Therefore, the terms “4’-potential” and
“4’-interaction” describe the two completely different
situations (for details, see [15]).

2. Resonant Tunneling
Through a Distributional §’-Potential

Consider Eq. (1) with the delta derivative potential
V(z) = ~¢'(x) treated through the regularization
Al(x) — §'(x) in the sense of distributions. Accor-
ding to Seba’s theorem [20], for any regular function
V(&) such that

Al(x) = e ?V(x/e) = §'(x) as € =0, (5)

the corresponding PI is separated, and the BCs
¥(£0) = 0 hold true. This result means that the
zero transmission occurs for all v € R, asserting that
the delta derivative potential acts as a fully reflecting
wall.

Later on, Patil [40] computed the scattering coeffi-
cients for Eq. (1), using the limits

0z +e)—d(x—e) L) (©)

2e

for the potential V(z) = vd¢'(z), v € R, and

O0(x+e)—20(x)+d(x—¢)
-2

— 8" (x) (7)

for the potential V(z) = gé”(x), g € R. As a result,
he found that both these potentials are fully reflect-
ing, in fact supporting Seba’s theorem in the case of
the delta derivative potential.

However, using another approximation to the dis-
tribution ¢’(x), namely, the piecewise constant func-
tion
e?2 for —e<2<0,

—e 2 for 0<z<e, (8)
0 for e < |z| < o0,

AL(z) =

as the simplest regularization being a particular ex-
ample of (5), Christiansen et al. [23] observed that
the distributional §’-potential is not a fully reflected
interaction. It has been found a countable set of val-
ues 7 € R, where the transmission is non-zero. The
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connection matrix in this case is of the form (3) with
the element 6 being finite, while the element « di-
verges in general except for the discrete values of +,
where o = 0. These values form one of the resonance
sets I'g for the family of distributional ¢’-potentials:

Ty = {v | tany/y = tanh,/~}. (9)

On this set, the connection matrix (3) takes the dis-
crete values with the elements

a=0 and 6 =cosh\/y/cos\/7, €Ty

Beyond the set T’y (v ¢ Tg), the transmission is
zero, and the BCs are of the Dirichlet type: (£0) =
= 0. Since potential (8) is a piecewise constant func-
tion, the transmission amplitude 7; can be computed
explicitly as a function of . In the limit as & — 0, its
form consists of the countable set of sharp peaks that
converge pointwise to a discrete (resonance) set on
the ~-line (see Fig. 1 computed numerically in [32]).

The existence of a resonance set has rigorously been
proven by Golovaty and Man’ko [26] for the whole
class of regularizing functions A’ (z) defined by regu-
larization (5). Moreover, the boundary-value problem
for finding this set and the algorithm for computing
the element 6 have been formulated. The gap in the
proof of Seba’s theorem has been found by Golovaty
and Hryniv [27]. It has been shown that the resonance
set 'y depends on the regularizing sequence AL(z). A
similar dependence has been established in the case
of the potential V(z) = ¢d”(x) [41]. Therefore, the
family of regularizing sequences serves as a hidden pa-
rameter in Eq. (1) with the derivatives of §(z). Thus,
contrary to the case with the potential V() = ad(x),
the differential equations with coefficients in the form
of the derivatives of (x) do not make a physical sense,
if they are used without any additional information.

The existence of the non-empty resonance sets on
which the transmission is non-zero contradicts Patil’s
result [40] appeared to be correct. Using approx-
imation (6), he obtained zero transmission for all
~ € R. This mismatch can be explained, if, for
the regularization of §'(z), we use the same bar-
rier as well as defined by Egs. (8), but separated
by a distance r. One can calculate then the trans-
mission 7:(r) as a function of ¢ and r and com-
pare both the repeated limits which appear to be
not the same. Indeed, lim._,glim, o 7-(r) — 0 al-
most everywhere, while lim,_,o lim._,o 7:(r) — 0 ev-

(10)
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Fig. 1. Transmission amplitude 7: as a function of the
strength constant ~ calculated at two values: ¢ = 0.01 (1),
€ = 0.001 (2). The calculation has been done at E = 0.01 eV
and m* = 0.1me (me, the electron mass) in the system, where
m2/2m* =1

erywhere. This means that the relative rate of squeez-
ing the barrier-well thickness ¢ and the distance r
plays the crucial role in realizing Pls.

Thus, starting from the same regular potential
V(z) = vAL(z), two families: (i) the non-resonant
PIs with Ty = 0 and (ii) the resonant-tunneling PIs
with non-empty sets I'g = {v,, }nez on which the limit
transmission 7 is non-zero can be realized [31]. This
is an important result saying that different regular-
1zations of the ¢’-distribution produce different solu-
tions of Eq. (1) with the potentials V(z) = ~vd'(x)
or V(z) = g6”(x), contrary to the delta potential
V(z) = ad(z).

3. Resonant Tunneling vs Kurasov’s Theory

Another mismatch appears, if we note that the wave
function ¢ (z) in Eq. (1) with the potential V(z) =
~d’(z) must be discontinuous at the origin z = 0. In
this case, the product & (x)y(z) is ambiguous and
should be defined properly. To this end, Griffiths [5]
and Kurasov [6] suggested to generalize the product
0" (x)(z) = ¥(0)d (z) — ¢'(0)d(x), valid for any con-
tinuous function ¥ (x) and its continuous derivative,
using the following “symmetrically averaged” repre-
sentation:

5/(33)1#(33) — wal(“;) —

Y'(=0) + ¢'(+0)
- 5 o(x).

This representation can be generalized to an “asym-
metric” one-parameter form as suggested in [28].

1023
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Differentiating twice the wave function written
in the form v¢(z) = (—0)exp(—ikz)O(—z) +
Y(+0) exp(ikx)O(x), k = VE , where O(z) is the step
function, and taking the relation exp(+ikz)d’'(z) =
= ¢'(z) Fikd(z) into account, one finds [12, 28]

V(@) = = k*P(x) + [ (+0) — ' (-0)] 6(x) +
+[¥(+0) = ¢(=0)] &'(2). (12)

Using next both relations (11) and (12) in Eq. (1), we
find that the connection matrix for this equation with
the potential V(x) = ¢’ (x) takes the form (3) with

a=0 and 6= m,

2—9

This is a particular result of the general theory of dis-
tributions developed by Kurasov [6] on test functions
discontinuous at x = 0.

Thus, the A-matrix derived within the approach
based on representation (11) continuosly depends on
the strength constant v as shown in (13), while
the “resonant-tunneling” A-matrix with elements (10)
takes discrete values in the y-space. Both these rep-
resentations will be treated below within a unique
scheme using a two-scale squeezing procedure for a
two-layer structure.

v #££2. (13)

4. Squeezed Limit of a Bilayer Structure

It is fascinating that both the controversial represen-
tations (10) and (13) can be obtained within a unique
procedure exploiting the very simple physical exam-
ple of a planar heterostructure consisting of two layers
separated by a distance, where the thicknesses of the
layers and the distance between them squeeze simul-
taneously to zero. The electron motion in the systems
of this type is usually confined in the longitudinal di-
rection (say, along the z-axis); the latter is perpendic-
ular to the transverse planes, where the electron mo-
tion is free. The three-dimensional Schréodinger equa-
tion of such a structure can be separated into longitu-
dinal and transverse parts and finally reduced to the
one-dimensional form (1).

4.1. Bilayer potential and its two-scale
power-connecting parametrization

Let us consider the potential in Eq. (1) in the form

Vi for 0 <z <,
0 forly<z<ly+r,
Vo forliy +r<z<ly+r+ls,

V(z) = (14)

1024

where V; € R, j = 1,2, and » > 0. This potential is
a piecewise constant function. Therefore, Eq. (1) ad-
mits an explicit solution which can be represented via
the transfer matrix A as follows:

¥(x2) —A ¥(x1) A= /:\11 /:\12
V' (22) Y (z1) )’ A21 Az )’
where x1 = 0 and zo = l1 + r + l5. Its elements are
;\11 = [COS(k’lll) COS(leg) —
— (k1/ks) sin(k1ly) sin(kals)| cos(kr) —
— (/Cl/k) Sil’l(klll) COS(leQ) +
+ (k/kg) COS(lﬁll) sin (k‘2l2)} S1n(kr),
M2 = [(1/k1) sin(k1ly) cos(kalz) +
+ (1/k2) cos(kily) sin(kals) | cos(kr) +
+ [(1/k) cos(k1ly) cos(kalz) —
— (k/kykz) sin(k1ly) sin(ksl2)] sin(kr),
5\21 = — [k‘l sin(klll) COS(lez) +
+ kg cos(k1ly) sin(kalz)] cos(kr) —
— [k cos(k1ly) cos(kala) —
— (k1ka/k) sin(kql1) sin(kalo)] sin(kr),
A2z = [cos(kyly) cos(kalz) —
— (ko/k1) sin(k1ly) sin(kals)| cos(kr) —
— [(k/k‘l) sin(klll) COS(leQ) +
+ (k2 /k) cos(k1l1) sin(ksl2)] sin(kr), (19)
where k = VE and kj = /E—=V;, 7 =1,2. Here,
detA = 1 and k;’s may be either real or imagi-
nary. The notations with the overhead bars have been
introduced for the finite-range quantities.
In order to accomplish explicitly the zero-thickness
limit of the bilayer structure specified by elements
(16)—(19), we introduce a squeezing parameter € — 0

and the power parametrization connected with this
parameter as follows:

(15)

(17)

(20)

where a; € R, ¢,v,7 > 0 (j = 1,2). Then the lay-
ers are described by the parameters from the four-
dimensional space M := {v, 7} x {a1,az2}. In the fol-
lowing instead of the bars, we provide the quantities
by the subscript ¢, replacing V(z) — Vo(z), A — A,
and Nij = Aije, 4,5 = 1,2.

Vj:ajs*”, llilgil:€, T:CET,
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4.2. Existence sets for point interactions

It follows from the explicit form of the matrix ele-
ments (16)—(19), in which the parameters are defined
by Egs. (20), that, in the limit as ¢ — 0, we have
A2, — 0, while the other elements may be finite
or even divergent. Note that the connecting-power
parametrization (20) differs from that used in many
publications (see, e.g., [9-11, 21, 22, 36-39]), where
the limit of A1 ¢ is finite and non-zero realizing the ¢’-
interaction. Our following purpose is to find those sets
on the quadrant Q44 = {0 < v < 00,0 <7 < 0},
where the diagonal elements Aj; . and Mg . are fi-
nite and non-zero as € — 0. We denote their limiting
values by 6 and 6!, respectively. The existence of
finite # and /! is a necessary condition for realiz-
ing Pls, even if the element Ay; . diverges. If this
off-diagonal element is finite or zero (being # and 6!
finite), the limiting PIs are non-separated with the A-
matrix (3). Otherwise, in the case of the divergence,
the Pls are separated, obeying the BCs ¢(£0) = 0
and acting as fully reflecting walls.

Both the limiting matrix elements # and o found
from the analysis of the ¢ — 0 limit of the matrix
elements (16) and (18) parametrized by Egs. (20) ap-
pear to be set functions in the M-space. Performing
first the limiting procedure at each {v,7}-point, we
encounter with the following characteristic sets on the
@+ +-quadrant:

Qr:={a1,a2 |0<vr <1, 0<7 <00},

Ls :={a1,a2 |v=1,0< 7 < o0},

L :={a,aa|1<v<2,7=v—-1},

P :={ay,a0 | v =2, 17 =1},

Ly :={a1,a2 |v=2,1< 7 < 0},

Ly :={ay,a2 |v=2,2 < 7T < 00},
Ls:={aj,as |1 <v <2, 7=2w-1)},
Py :={ay,a2 | v =1 =2},

Qs ={an,az | l<v<2,v—1<7 <00},
Q1 :={a,a2|1<v<2,v-1<7<2v—-1)},
Q2 :={a,a2 |1 <v <2 2(r—1) <7< o0}

(21)

which are illustrated by Fig.2. Thus, “moving” on
the Q4-quadrant from left to right, we examine
that, on the strip @, the Pls are trivial describing
the perfect transmission (the A-matrix is the identity
I). Next, on the line L, the transmission is partial,
and the point interactions are of the J-type. The to-
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Fig. 2. Set partition defined by Egs. (21)

tal strength constant of the resulting d-potential is
the algebraic sum of the layer strengths. On the set
Q1 U Ls, there are no constraints on the strengths
ay and as (see Table). On the @, ;-sets displaced to
the right from the Ls, the element Ay . diverges
in general as ¢ — 0. However, on certain subsets
of the {ai,as}-plane (of Lebesgue’s measure zero),
the cancellation of divergences may occur, resulting
in the finite limit of Ag; .. The cancellation effect
takes place on the open set Qg including its boundary
Ls := Lg U Py U Ly, where the potential VZ(z) con-
verges to ¢’ (x) in the sense of distributions under the
condition a; + as = 0. Thus, the region of existence
of the distribution d’(z) is the set Lg x Xg € M,
where

EO = {(11,(12 | ay + ag = 0} (22)
Elements of A-matrix (3) as functions of M-sets
M-sets (% a
Qo X {al,ag} 1 0
Ls x {a1,a2} 1 ai + as
LK X EC —al/ag 0
/ v/—aj sin/—ay
Py x Ec - «/7a; sin\/fa; 0
Py x 26 cosy/—a1/ cosy/—az c+/—aq siny/—aq X
X+/—ag siny/—as
LS X Zo 1 —ca%
Ly x X cosy/—a1/ cos\/—az 0
Q2 x X 1 0
P x T, sinh,/7/ sin /7 0
Py x Ty cosh,/7/ cos\/vy —cysinh,/ysin,/y
Lo x T cosh,/7/ cos\/y 0
1025
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Here, the strength v := a; = — ay is the set function
c for Ly,

y=a14l+c for Py, (23)
1 for L;.

Consequently, in the region QQgULg/, the transmission
can be either zero or non-zero depending on some con-
straints imposed on a; and as. The Ls-line appears
to be a transient set splitting the regions of the “reg-
ular” and “singular” PIs. In its turn, the Ls-line is a
transient set separating the regions of the existence
and non-existence of Pls.

5. A-Matrix for Non-Separated
Point Interactions

There are two ways of the cancellation of divergences
as ¢ — 0 in the singular element Ay . given by
Eq. (18) and parametrized by (20). The first way is
to equate the whole expression (18) to zero, resulting
in @ =0 in A-matrix (3). The second way is realized,
if only the term in front of cos(kr) in (18) equals zero,
retaining the term in front of sin(kr) to be “free”.

5.1. Realizing point interactions as Az1c — 0

Imposing the constraint Ag; . — 0 in Eq.(18), we
find that the non-separated Pls can be realized only
on the line Ly including its limiting point P;. This
realization occurs only on some sets in the {a1,as}-
space forming a family of curves. Thus, on the L k-
line, the existence set consists of two curves given by
Y. :={a1,az2 | a1 + as + cajas = 0}. (24)
Using this relation between a; and as in Egs. (16) and
(19) parametrized by (20), we obtain 0 = —ay/as.
Equating this value and expression (13), we get the
{a1, as}-representation of the strength constant ~ for
Kurasov’s dj-potential: v = 2(a1 + a2)/(a1 — az).
This representation does not coincide with the first
formula in Egs. (23) associated with the distribution
~d'(x), except for the trivial case: ¥£..N3g = {0}. The-
refore, no distributional §’-potentials can exist on the
line L.

However, while approaching the limiting point P,
the situation crucially changes because of the appear-
ance of a countable number of curves

Z/C = {al,ag | A+ Ay = CAlAQ}
1026

(25)

with

Aj = (26)

—a; tany/—aj;, j=1,2,
on which Ao; . — 0 as ¢ — 0. Similarly to [34], we
refer this “furcation” effect as the splitting of the ¢%-
potential defined on the resonance set Lx X X, into
the countable family of generalized §’-potentials de-
fined on the resonance set P; x /. Beyond the reso-
nance sets X. and ¥/, the PIs are separated obeying
the BCs (£ 0) = 0. Using the expressions for these
resonance sets in Eqgs. (16) and (19), in the limit as
e — 0, we get the explicit values for the element 6 in
A-matrix (3), which are written out in Table. Particu-
larly, as derived in [28], the intersection I'; := 3/ NX,
[setting a1 = —ag =7, v = 2 with 7 € (2, 00)] yields
a discrete set

I, = {v | tan\/7y = tanh\/7/(1 + c/7 tanh\/7) (27)

in the y-space. As a result, the elements of A-matrix
(3) also take the discrete values:

a=0 and 6 =sinh\/y/sin/"7, 7€ Tl..

Therefore, the four-dimensional M-representation of
resonance sets allows us to “cover” both the “contin-
uous” and “discrete” representations from a unique
point of view.

(28)

5.2. Realizing point
interactions as A21c — o €R

The second way of the cancellation of divergences oc-
curs on the angular domain Lg U P, U Ly U Q2 result-
ing in the appearance of the resonance sets, where
the set ¥y defined by Eq. (22) is a constituent. Thus,
on the line Lg, the limiting element « in general is
non-zero, and 6 = 1, so that the corresponding PI is
of the delta type. The Lg-line is a transient set (with
partial transmission) separating the regions @ (full
reflection) and @2 (perfect transmission). In the one-
dimensional case, the existence of the point ¢ = 1/2
that separates the whole axis —oco < ¥ < oo into a
non-transparent half-axis and a half-axis of full trans-
parency has been discovered by Seba in [20]. There-
fore, we call this delta PI, realized due to the cancel-
lation of divergences on the resonance set Lg X X,
the dg-potential.

While approaching the limiting set P> U Lo, the set

Yo splits into the countable set
6 = {(l17(l2 | A+ Ay = 0}, (29)
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where A; and A, are defined by Egs. (26). Corres-
pondingly, on the resonance sets Po x 3 and Lg X X,
the A-matrix elements 6 and « can be computed ex-
plicitly, and their values are pointed out in Table. Si-
milarly, the resonance set for the distributional ¢'-
potential is the intersection T'g := 3 N Xg. Setting
a; = —ay = v and v = 2 with 7 — o0, we obtain
expressions (9) and (10).

6. Concluding Remarks

Thus, the whole family of the singular Pls realized
on the set Qg U Ls can be interpreted as the objects
with resonant tunneling through a single-point poten-
tial. This phenomenon emerges from the cancellation
of divergences in the most singular element Ag; . as
¢ — 0. The two-scale parametrization (20) allows us
to resolve the controversy (existing so far in the liter-
ature) between the discrete [see Egs. (9), (10), (27),
(28)] and continuous [see Eqs. (13)] presentations of
A-matrix (3). It is convenient to present the reso-
nance sets in the four-dimensional space M. They are
written out in the Table together with the elements 6
and « of the A-matrix as functions of the resonance
sets. The limiting transmission amplitude 7 is given
in terms of these elements according to the following
formula: 4771 = (0+071)%+(a/k)? (for details, see,
e.g., [31]).

Another key point is the existence of boundary
cluster sets, where two types of splitting the res-
onance sets occur: ¥y = Xj and X, = X..
On these sets, three types of splitting the Pls
are singled out: 0% (Lx xX.) = §(P1 x X)),
(55 (LS X Eo) — (5/(P2 X 26,) and Ip (QQ X Eo) —
= ¢'(La x X)), where Ip denotes the family of PIs
with perfect transmission. On the set [Q1U(L1\ L2)] x
{a1,a2} and beyond the resonance sets listed in the
Table from the third line to the sixth one, the Pls
are fully non-transparent fulfilling the Dirichlet BCs
P(£0) =0.
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KOHTAKTHI B3AEMO/III
B OZIHOBUMIPHIN KBAHTOBII MEXAHILII:
CIM’SI Y3ATAJIBHEHUX §'-IIOTEHIIIAJIIB

Peszmowme

It mocitiiKeHHs IPOXOJ/IPKEHHSI €JIEKTPOHIB 4Yepe3 Ha/[3BU-
9aiffHO TOHKI Ie€TEePOCTPYKTYPH, IO CKJIAJAIOTHCS 3 [BOX Ila-
paJieJIbHUX IIJIOCKHX IIapiB, IPONOHYETHCS BUKOPHUCTOBYBATU
“omHOTOYKOBE” HAOJIMKEHHS. TUIIOBUM IIPUKJIAJOM TAKOl CTPY-
KTypHU € NOABIfiHMII mIap, IO ONHCYETBhCS IOTEHIAIoOM, AKUN
y TPaHWI CTUCHEHHS JIO HYJIbOBOI TOBIIWHHM MAa€ BUIVISJ IIO-
xinnol menbra-dyuknil Jipaka. PiBusuna Illpeniarepa 3 mum
CHUHI'YJISIDHUM OJIHOBMMIDHHMM IOTEHIiaJbHUM IIpOodisieM mmopo-
JIZKY€ CIM'I0 KOHTAKTHUX (TOYKOBUX) B3a€MOZIN, KOXKHA 3 SIKUX
(mazBana “moTenmianom §'-posnominy”) 3aMe:KuTh Bij criocoby
perynspusarnii. BukopucroByoun JgBoMaciITabHY CTEIIeHEBO-
OB sI3yBaHy MMapaMeTPU3aIlii0 TOTEHIaJLy, 1[0 OIUCY€E MOABI-
HUIl m1ap, yCyHyTO BCi po36i>KHOCTI, siKi JOCI HIMPOKO JHUCKY-
TYBaJIUCh y JIiTepaTypi CTOCOBHO B3a€MO/|l i3 MOTEHIiajIOM BU-
sy noxizuol mesbra-dysknil Jdipaka. [Ipu 3acrocoByBan-
Hi JaHOI ITapaMeTpu3allil, CTajJ0 MOYKJIMBUM PO3IIUPUTH CiM’I0
MOTeHIialiB §’-po3noily /10 IJIoro Kiacy “y3arajbaenux” §'-
norenrjiajiiB. I[lokazano, 1m0 B IpaHUIll CTUCHEHHS IIOJBIHOIO
mapy A0 HyJIbOBOI TOBIIMHHU PE30HAHCHE TYHEIIOBAHHS IIPOSIB-
JISIETHCA Y BUIVIAl FOCTPUX IIKiB, SIKi JIOKAJII3yIOTHCS HA MHO-
JKUHaX HyIboBOI Mipu JleGera (Ha3BaHi Pe30HAHCHUME MHOXKHU-
namu). JIy1s IpeACTaBIeH s UX MHOXKHAH BBEJIEHO YOTHPUBU-
MipHUit mpocTtip nmapamerpis. [lokazaHno, 1110 TPOXOZKEHHS eJie-
KTPOHIB Ha KOMILIEMEHTAPHUX MHOXKHHAX Yy I[bOMY IIPOCTOPI €
abCOJIIOTHO BiIOMBAIOYMM.
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