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GENERALIZED UNCERTAINTY
PRINCIPLE IN QUANTUM COSMOLOGY'!

The effects of gravity which manifest themselves when performing the simultaneous measure-
ment of two non-commuting observables in the quantum theory are discussed. Matter and grav-
ity are considered as quantum fields. The Schridinger-type time equation is given for the case
of a finite number of degrees of freedom: one for the matter field and one for geometry. For a
spatially closed system filled with dust and radiation being in definite quantum states, the solu-
tions to the quantum equations are found, and the existence of the minimum measurable length
and the minimum momentum is shown. It appears that the simultaneous measurement of fluc-
tuations of the intrinsic and extrinsic curvatures of the spacelike hypersurface in spacetime
cannot be performed with an accuracy exceeding the Planck constant. Unruh’s and Bronstein’s
uncertainty relations are discussed.
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1. Introduction

The Heisenberg uncertainty principle states that two
observables which do not commute cannot be mea-
sured simultaneously with arbitrary accuracy. This
principle in its standard quantum mechanical form
does not take the effects of gravity into account. At
the same time, the study of the properties of quantum
systems on small scales requires dealing with high
energies. It is expected that, on the scales less than
the Planck one, the classical concepts of space and
time lose their meanings, and a fundamental revision
of their interpretation is needed. How the inclusion
of gravity can contribute to the uncertainty relation
have been debated since the middle 1930s [1,2]. The
interest in the problem was revived since the mid-
dle 1980s, after the existence of a minimum observ-
able length was shown in string theory. The effects
of a spacetime curvature on statistical fluctuations
of two observables corresponding to canonically con-
jugate variables may be clarified in quantum theory
which treats gravity on the same grounds as quan-
tized matter fields.

In this note, we present the results of our inves-
tigations of the fluctuations of the observables that
characterize a quantum gravitational system in itself,
like the intrinsic and extrinsic curvatures of the space-
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like hypersurfaces in spacetime, and the solution to
the problem of minimum length in the framework of
an exactly solvable cosmological model.

A model with a finite number of degrees of free-
dom may provide a reasonable framework for address-
ing the problems of quantum gravity. The homoge-
neous minisuperspace models have been proven to be
successful in classical cosmology. They have predic-
tive power and are consistent with observations. This
gives rise to the hope for that the homogeneous mod-
els could be useful in quantum cosmology as well. For
such models, the quantum theory of gravity with a
well-defined time variable was proposed and studied
in Refs. [3-7].

2. Time Equation and Its Interpretation

Consider the homogeneous isotropic quantum gravi-
tational system. It is described by the Schrédinger-
type time equation in Planck units

—i0p|¥(T)) = H[¥(T)), (1)
where the operator

1 A
H=3 (—ag + Ka® — 2aHy — a43> (2)

1 This work is based on the results presented at the XI Bolyai—
Gauss—Lobachevskii (BGL-2019) Conference: Non-Euclide-
an, Noncommutative Geometry and Quantum Physics.
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can be considered as the effective Hamiltonian which
does not depend on the conformal time T explicitly;
a is the cosmic scale factor which determines the ge-
ometric properties of the system in the case of the
maximally symmetric geometry with the Robertson—
Walker metric, Hy = Hy(a) is a self-adjoint Hamilto-
nian of the matter sector of the system taken in the
form of a uniform scalar field ¢, A is the cosmological
constant, and x = +1,0,—1 is the curvature con-
stant for spatially closed, flat, and open geometries,
respectively.

The commutation relation between a and its con-
jugate momentum 7 = —ih d, takes the form

[av _Z.aa] = 7’ (3)
The general solution of Eq. (1) can be written as

(U(T)) =3 AP T=TIC (Tolug) | fu),  (4)
n,k

where Tj is an arbitrary constant taken as a time ref-
erence point. The state vectors |u) and | f,,(x)) satisfy
the equations

(ug|Hglug) = My(a) dgp, (5)

A
(_62 + K/a2 - QGMk(a/) - a43) |fn(k)> =

Mj(a) is the proper mass-energy of a new effective
matter in the discrete and/or continuous kth state. It
is supposed that the vectors |uy) and |f,x)) form
the complete sets of orthonormalized functions. The
eigenvalue E,, ;) determines the energy density of rel-
ativistic matter, p, = a’4En(k), and n enumerates
discrete and/or continuous states of the system with
matter in the fixed kth state. The coefficient C,
gives the probability |Cy(Tp)|? to find the system in
the nth state of relativistic matter and the kth state
of effective matter at the instant of time Tj.

3. Uncertainty Relation

The uncertainty relation between the scale factor and
its conjugate momentum consistent with the commu-
tation relation (3) has a form

AaAr > g (7)
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where Aa = +/(a?) — (a)? is the root-mean-square
deviations of a and a similar expression for Aw, the
brackets denote the mean values.

For the cosmological system with zero cosmological
constant filled with dust and relativistic matter, the
eigenvalue B, ;) = 2n+1— MZ2, and the state vector
is given by

|fn(k)> = fn(gk) = Nng e—%fi Hn(gk)’ (8)

where & = a — My, H,, is the Hermite polynomial,
Ny is the normalizing constant, and the wave func-
tion is normalized on the interval [—Mj, 00).

With an accuracy of order e~ Mx [3], we have

(@) =n+ 2+ M, ()= M, (9)

2

where the averaging is performed over states
(8). Then, in ordinary physical units,

/ 1
Aa =Ip n—|—§,

where lp = /Gh/(c?) is the Planck length. For the

momentum, we obtain

(10)

(m?) :n+%7 (r)y =0 (11)
and
AW:mpcwnJr%, (12)

where mpe = h/lp is the Planck momentum. As a
consequence, we get the uncertainty product of the
same form as for a harmonic oscillator,

1
AaAm = <n+>h2h.

2 5 (13)

From Egs. (10) and (12), one can see that the fluctu-
ations Aa and Ar take minimum values in a ground
(vacuum) state with n =0,

lp mpcC
V2’ V2

The size of fluctuations increases as the square root
v/n. It is of interest to estimate the size of fluctuations
in a subsystem having the mass-energy of the observ-

able part of our universe [ ~ 10?® cm. The cosmo-
logical parameters Ey ) ~ 1018 <« M,f ~10'22 (ie.
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p ~ 10710 GeV em ™ and py, ~ 1075 GeV em™?) cor-
respond to n ~ 1022 and fluctuations Aa ~ [ ~
~ 10%® cm. In such a description, the observable part
of the universe appears as a gigantic fluctuation
[7] which brings us back to Boltzmann’s specula-
tions about the origin of the observable universe
(cf. Ref. [8]).

Expressions (14) solve the problem of existence of a
minimum observable length and a minimum momen-
tum in the context of the exactly solvable cosmologi-
cal model.

The uncertainty relation (7) establishes, in fact,
a connection between fluctuations of the quantities
which determine the intrinsic and extrinsic curvatures
of the spacelike hypersurface in spacetime. By asso-
ciating the quantum operators to the scalar curva-
ture ®) R and the extrinsic curvature tensor K;; =
= —20®g;;/07, where Pg;; is the 3-metric, and 7
is the proper time, Eq. (7) can be written explicitly
in terms of curvature fluctuations,

ABGR

By >
Br AK YWV > Awh,

(15)

where K = K}, and ®V ~ %Wa?’ is the 3-volume of
the measurement (observed part of the system). The
uncertainty relation (15) demonstrates that the prod-
uct of the relative fluctuation of the scalar curvature
and the fluctuation of the extrinsic curvature in the
observed volume must be greater than the Planck
constant.

The uncertainty relation (7) can be reduced to the
Unruh’s uncertainty relation for fluctuations of the
metric and the Einstein tensor. In contrast to the for-
mal assumption that Einstein’s equations are valid
in the quantum regime as well [9], it was shown in
Ref. [5] that the equations of quantum cosmology
can be reduced to the Einstein—Friedmann equations
which contain the terms of quantum corrections to
the total energy density and pressure. Then the rate
of change of the momentum in time is given by the
equation 7 = f%a2T§‘ + Kk, where T is the trace
of the stress tensor. Considering the fluctuations of
the quantities in spatial directions, in a comoving ref-
erence frame, one can express the 7¥ component of
the stress tensor as Ty = —p, where p is the pres-
sure defined as the force acting on the surface ele-
ment having an area of ~a? in the direction of z. In
that case, the fluctuation of the momentum can be
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estimated as Ar ~ AT%a?§7, where 07 is a time in-
terval, and ATy ~ T7. The metric component g,
can be taken in the form g,, = a®v,s, where v, is
the comoving spatial metric component whose fluc-
tuation can be neglected, A7y, = 0. Then the fluc-
tuations Ag,, and Aa are connected between them-
selves: Agryr/gze = 2Aa/a. As a result, in the rest
frame, relation (7) takes the form

Jza
z >
AGy AT 2 h(ST(?’)V’

(16)
where ®)V ~ a3 is the 3-volume. Introducing the Ein-
stein tensor GZ = 8777 (in units G = ¢ = 1) and
defining the 4-volume DV ~ 674V, we rewrite the
preceding relation in Unruh’s form

8

T >
Agr AG* 2 h—M)V.

(17)
The established connection between Egs. (7) and (17)

may be interpreted as clarifying the physical meaning
of Eq. (17).

4. Concluding Remarks

Let us briefly discuss the uncertainty relation ob-
tained by Bronstein in his pioneering papers [1, 2]. If
one considers the motion of a test body with mass
m = pV, where p is body’s density and V is its vol-
ume, the uncertainty of the momentum of the test
body Ap, is composed of two summands, namely
of the usual quantum mechanical term inversely pro-
portional to an uncertainty in the coordinate, i/Ax,
and a term connected with the gravitational field cre-
ated by the measuring device itself due to the recoil
during the measurement procedure. The second sum-
mand can be brought to the form

A 1/3
b ("1
h he L

(18)

where L ~ V1/3. Using the relation between the un-
certainty of the Christoffel symbol I'}, and the un-
certainty of the momentum Ap,, AT}, ~ Ap,/mT,
where T is the time period of the momentum mea-
surement, one can obtain Bronstein’s original ine-
quality

2/3 1/3
00 |4 cp T
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This was a rough approximation, but allowing one to
estimate the applicability limits of general relativity
[10]. An overview of the current state of the prob-
lem can be found, e.g., in Ref. [11] (and in references
therein).
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V3ATAJIbHEHUN ITPUHIINII
HEBU3HAYEHOCTI ¥ KBAHTOBI KOCMOJIOTTI

Pesmowme

Busuarorbcsa edexTu rpasiTaliil, 1[0 MPOSABJISIIOTHCS IIPU OJHO-
“aCHOMY BUMIPIOBaHHI JBOX HEKOMYTYIOUHUX CIOCTEPEXKYBaHUX
Yy KBaHTOBIl Teopil. MaTepisi Ta rpaBiTallisi pO3IVIsiIalOThC K
KkBaHTOBI nossi. Yacose piBasanHsa Tuny Illlpeninrepa nHaseneno
I BHIIQJKY CKIHYEHHOI KiJIbKOCTi CTyIIeHIB BiJIbHOCTi: omHO-
ro JUIsi MaTepiaJbHOrO IOJIsI Ta OJHOro st reomerpil. Jlnsa
IIPOCTOPOBO 3aMKHEHOI CHCTEMH, 3aIIOBHEHOI ITMJIOM i BUIIpOMi-
HIOBaHHSIM, 1[0 3HAXONATHCH Y BU3SHAYEHNX KBAHTOBUX CTAHAX,
3HANZIEHO PO3B’A3KM KBAHTOBUX PIBHAHL Ta IIOKA3aHO iCHYyBa-
HHA MiHIMaJIbHOI BUMiPIOBAHOI JOBXKHHU Ta MiHIMaJbHOIO iM-
nyabcy. BusiBisierses, 110 ogHOYacHe BUMiIpIOBaHHS QIUIyKTya-
i BHYTPIIIHBOI Ta 30BHIIIHBOI KPUBUHH IIPOCTOPOBO-IOAIOHOT
rineproBepxHi y npocropi-daci He MoxKe OyTH BHKOHAaHE 3 TO-
9HICTIO, 10 mepeBuinye crany Ilnanka. O6roBopooOThCs CIiB-
BiZiHOIIEHHsT HeBU3HAa4YeHOCTI AHpy Ta Bponmreiina.
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