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SIGNATURES OF NONCOMMUTATIVITY
IN BAR DETECTORS OF GRAVITATIONAL WAVES 1

The comparison between the noncommutative length scale
√
𝜃 and the length variation 𝛿𝐿 =

= ℎ𝐿, detected in the GW detectors, indicates that there is a strong possibility to detect the
noncommutative structure of space in the GW detector setup. Therefore, we explore how the
response of a bar detector gets affected due to the presence of a noncommutative structure of
space keeping terms up to the second order in a gravitational wave perturbation (ℎ) in the
Hamiltonian. Interestingly, the second-order term in ℎ shows a transition between the ground
state and one of the perturbed second excited states that was absent, when the calculation was
restricted only to the first order in ℎ.
K e yw o r d s: gravitational waves, noncommutative (NC), NC quantum field theory, NC quan-
tum mechanics.

1. Introduction

The existence of an uncertainty in the spatial coor-
dinates [1, 2] due to a sharp localization of events in
space at the quantum level is strongly supported by
various gedanken experiments. The standard way to
impose this uncertainty is to postulate the noncom-
mutative (NC) Heisenberg algebra [3]
[�̂�𝑖, �̂�𝑗 ] = 𝑖𝜃𝜖𝑖𝑗 , [�̂�𝑖, 𝑝𝑗 ] = 𝑖~𝛿𝑖𝑗 ,
[𝑝𝑖, 𝑝𝑗 ] = 0; 𝑖, 𝑗 = 1, 2,

(1)

where 𝜃 is the NC parameter, and 𝜖𝑖𝑗 is an antisym-
metric tensor with 𝜖12 = 1. With this granular struc-
ture of space, the NC quantum field theory (NCQFT)
[3, 4], NC quantum mechanics (NCQM) [5–11], and
NC gravity [12–14] have been constructed. A part of
the endeavor has also been spent in finding the or-
der of magnitude of the NC parameter and explor-
ing its connection with observations [15–21]. Studies
in NCQM suggest that the NC parameter associated
with different particles may not be the same [19, 20],
and this upperbound on the length scale could be as
high as

√
𝜃 ∼ 10−20 m÷10−17 m [21].

Length scales of this order appear in a completely
different context. The direct detection of the gravita-
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tional waves (GWs) [22, 23] by the advanced LIGO
detector [24] has opened a new window to observe
variations in length-scales that has never been probed
before. Among the currently operating GW detec-
tors [25–30] (LIGO [31], VIRGO [32], GEO [33], and
TAMA [34]), where the interferometric techniques are
being used, one can detect a length-variation of the
order of 𝛿𝐿

𝐿 ∼ 10−23. Interestingly, the upper bound
on the spatial NC parameter also has a length scale
of this order (

√
𝜃 ≈ 10−20 m).

This motivates us to anticipate that a good possi-
bility of detecting the NC structure of space would
be in the GW detection experiments. It turns out
that the response of a resonant bar detector to GW
can be quantum mechanically described as the GW-
harmonic oscillator (GW-HO) [35] interaction.

To predict the possible presence of an NC struc-
ture of space in GW detection scenarios, we had
studied various aspects of the GW-HO interaction
in the NCQM framework in [36–42]. In those stud-
ies, we have worked out the response of a system
which indicates that the spatial noncommutativity in-
troduces a characteristic shift in the frequency, where

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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the HO will resonate with the GW. In [42], we worked
out the complete perturbative calculation including
both the time-independent and time-dependent in-
teracting Hamiltonians to obtain transition probabil-
ities among the shifted energy levels for a generic
GW wave-form up to the first order in ℎ. Here, we
investigate how the transitions get affected due to
the second-order terms in ℎ. Interestingly, we observe
that there is no contribution from the 𝒪(ℎ2) terms
in the transition probabilities calculated earlier in
[42]. It only gives rise to another transition between
the ground state to one of the perturbed second ex-
ited states of the HO. This transition was absent at
the first order in ℎ in our earlier study.

2. NC HO-GW Interaction

In a resonant bar detector, the phonon mode excita-
tions [35] interacting with the incoming GW behave
themselves like a quantum mechanical forced HO. We
therefore set out to analyze a quantum mechanical
forced HO to explore the theory of interaction of GW
with a resonant bar detector. Here, we consider the
effect of the GW to be constrained in the 2D plane
(taken in the 𝑥 − 𝑦 plane) perpendicular to the GW
propagation direction.

To construct the theoretical framework of our
model, we write the geodesic deviation equation for a
2D HO with mass 𝑚 and intrinsic frequency 𝜛 in a
proper detector frame as

𝑚�̈�𝑗 = −𝑚𝑅𝑗
0𝑘0𝑥

𝑘 −𝑚𝜛2𝑥𝑗 , (2)

where 𝑅𝑗
0𝑘0 = −𝑑Γ𝑗

0𝑘

𝑑𝑡 = −ℎ̈𝑗𝑘/2, 𝑅𝑗
0𝑘0 denotes the

components of the curvature tensor in terms of the
metric perturbation ℎ𝜇𝜈 as 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 ; and
|ℎ𝜇𝜈 | ≪ 1 on the flat Minkowski background 𝜂𝜇𝜈 .

It is to be noted that, here, the transverse-traceless
(TT) gauge has been used to remove the unphysical
degrees of freedom. The TT gauge choice gives only
two physical degrees of freedom, namely, the × and
+ polarizations of the GW. A convenient form of ℎ𝑗𝑘
showing these polarizations reads

ℎ𝑗𝑘 (𝑡) = 2𝑓
(︀
𝜀×𝜎

1
𝑗𝑘 + 𝜀+𝜎

3
𝑗𝑘

)︀
, (3)

where 2𝑓 is the amplitude of the GW, 𝜎1 and 𝜎3 are
the Pauli spin matrices, and the two possible polar-
ization states of the GW, (𝜀×, 𝜀+) are restricted to
follow the condition 𝜀2× + 𝜀2+ = 1 for all 𝑡.

The Lagrangian which leads to the geodesic devia-
tion equation (2) is given by

ℒ =
1

2
𝑚𝑥𝑗

2 −𝑚Γ𝑗
0𝑘�̇�𝑗𝑥

𝑘 − 1

2
𝑚𝜛2𝑥2𝑗 . (4)

This immediately leads to the Hamiltonian

𝐻 =
1

2𝑚

(︁
𝑝𝑗 +𝑚Γ𝑗

0𝑘𝑥
𝑘
)︁2

+
1

2
𝑚𝜛2𝑥2𝑗 . (5)

In this paper, we set out to find the signature of
the spatial noncommutativity considering the effect
of second-order terms in the perturbation ℎ𝑖𝑗 appear-
ing in our model. To carry this out, first, we ele-
vate the phase-space variables

(︀
𝑥𝑗 , 𝑝𝑗

)︀
to operators(︀

�̂�𝑗 , 𝑝𝑗
)︀

and impose the NC Heisenberg algebra. The
NC operators are connected to the operators 𝑋𝑖 and
𝑃𝑖 satisfying the standard (𝜃 = 0) Heisenberg algebra
through

�̂�𝑖 = 𝑋𝑖 −
1

2~
𝜃𝜖𝑖𝑗𝑃𝑗 , 𝑝𝑖 = 𝑃𝑖. (6)

Using this connection, the Hamiltonian in Eq. (5) can
be written in terms of the commutative variables up
to the second order in Γ as

�̂� =

(︂
𝑃𝑗

2

2𝑚
+

1

2
𝑚𝜛2𝑋𝑗

2

)︂
+ Γ𝑗

0𝑘𝑋𝑗𝑃𝑘 −

− 𝑚𝜛2

2~
𝜃𝜖𝑗𝑚𝑋

𝑗𝑃𝑚 − 𝜃

2~
𝜖𝑗𝑚𝑃𝑚𝑃𝑘Γ

𝑗
0𝑘 +

+
𝑚

2
Γ𝑗
0𝑘Γ

𝑗
0𝑙𝑋

𝑘𝑋 𝑙 +𝒪(𝜃Γ2) +𝒪(𝜃2). (7)

The above Hamiltonian in terms of the raising and
lowering operators can be recast as

�̂� = ~𝜛(𝑎†𝑗𝑎𝑗 + 1)− 𝑖~
4
ℎ̇𝑗𝑘(𝑡)(𝑎𝑗𝑎𝑘 − 𝑎†𝑗𝑎

†
𝑘)+

+
𝑚𝜛𝜃

8
𝜖𝑗𝑚ℎ̇𝑗𝑘(𝑡)(𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑎

†
𝑘 + 𝐶.𝐶)+

+
~
4𝜛

ℎ̇𝑗𝑘(𝑡)ℎ̇𝑗𝑙(𝑡)(𝑎𝑘𝑎𝑙 + 𝑎𝑘𝑎
†
𝑙 + 𝑎†𝑘𝑎𝑙 + 𝑎†𝑘𝑎

†
𝑙 )−

− 𝑖

2
𝑚𝜛2𝜃𝜖𝑗𝑘𝑎

†
𝑗𝑎𝑘, (8)

where C.C. means complex conjugate. The raising
and lowering operators in terms of the oscillator fre-
quency 𝜛 are given by

𝑋𝑗 =

√︂
~

2𝑚𝜛
(𝑎𝑗 + 𝑎†𝑗); 𝑃𝑗 =

√︂
~𝑚𝜛
2𝑖

(𝑎𝑗 − 𝑎†𝑗). (9)
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We now write Hamiltonian (8) into three parts as

�̂� = 𝐻0 +𝐻1(𝑡) +𝐻2,

𝐻0 = ~𝜛(𝑎†𝑗𝑎𝑗 + 1),

𝐻1(𝑡) = − 𝑖~
4
ℎ̇𝑗𝑘(𝑡)(𝑎𝑗𝑎𝑘 − 𝑎†𝑗𝑎

†
𝑘)+

+
Λ

4
~𝜖𝑗𝑚ℎ̇𝑗𝑘(𝑡)(𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑎

†
𝑘 + 𝐶.𝐶.)+

+
~
4𝜛

ℎ̇𝑗𝑘(𝑡)ℎ̇𝑗𝑙(𝑡)(𝑎𝑘𝑎𝑙 + 𝑎𝑘𝑎
†
𝑙 + 𝑎†𝑘𝑎𝑙 + 𝑎†𝑘𝑎

†
𝑙 ),

𝐻2 = −𝑖Λ𝜃~𝜖𝑗𝑘𝑎†𝑗𝑎𝑘,

(10)

where Λ = 𝑚𝜛𝜃
2~ , Λ𝜃 = 𝑚𝜛2𝜃

2~ .
The perturbed energy states incorporating the ef-

fect of the time-independent perturbation 𝐻2 was ob-
tained in [42]. Those read

𝜓
(0)
2 = (|2, 0⟩+ |0, 2⟩),

𝜓
(1)
2 = (|2, 0⟩ − |0, 2⟩+ 𝑖

√
2|1, 1⟩),

𝜓
(2)
2 = (|2, 0⟩ − |0, 2⟩ − 𝑖

√
2|1, 1⟩)

(11)

with the the corresponding energy eigenvalues

𝐸
(0)
2 = 3~𝜛,

𝐸
(1)
2 = 3~𝜛(1 + 2

3Λ),

𝐸
(2)
2 = 3~𝜛(1− 2

3Λ).

(12)

Now, we proceed to compute the transition probabili-
ties between the ground state and the perturbed non-
degenerate second excited states of a 2D harmonic
oscillator using time-dependent perturbation theory
incorporating the second order correction in ℎ. The
probability amplitude of the transition from the ini-
tial state |𝑖⟩ to a final state |𝑓⟩, (𝑖 ̸= 𝑓), due to a
perturbation 𝑉 (𝑡), to the lowest order of approxima-
tion in time-dependent perturbation theory is given
by [43]

𝐶𝑖→𝑓 (𝑡→ ∞) = − 𝑖

~

𝑡→+∞∫︁
−∞

𝑑𝑡′𝑒
𝑖
~ (𝐸𝑓−𝐸𝑖)𝑡

′
×

×⟨Φ𝑓 |𝑉 (𝑡′)|Φ𝑖⟩. (13)

Using the above result, we observe that the proba-
bility of transition survives only between the ground
state |0, 0⟩ and the perturbed second excited states
given by Eq. (11), where 𝑉 (𝑡′) is given by

𝑉 (𝑡′) = − 𝑖~
4
ℎ̇𝑗𝑘(𝑡

′)𝑡(𝑎𝑗𝑎𝑘 − 𝑎†𝑗𝑎
†
𝑘)+

+
Λ

4
~𝜖𝑗𝑚ℎ̇𝑗𝑘(𝑡′)(𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑎

†
𝑘 + 𝐶.𝐶.)+

+
~
4𝜛

ℎ̇𝑗𝑘(𝑡
′)ℎ̇𝑗𝑙(𝑡

′)(𝑎𝑘𝑎𝑙 + 𝑎𝑘𝑎
†
𝑙 + 𝑎†𝑘𝑎𝑙 + 𝑎†𝑘𝑎

†
𝑙 ). (14)

Expanding out the above interaction term for 𝑗, 𝑘 =
= 1, 2, we obtain the transition amplitude between
the ground state |0, 0⟩ and the perturbed second ex-
cited states to be

𝐶0→2(0) = − 𝑖𝜛

~
√
2

+∞∫︁
−∞

𝑑𝑡 𝑒2𝑖𝜛𝑡~(ℎ̇211 + ℎ̇212),

𝐶0→2(1) = − 𝑖

~

+∞∫︁
−∞

𝑑𝑡 𝑒2𝑖𝜛(1+Λ)𝑡~[𝑖𝐴(Λ)ℎ̇11(𝑡)−

−𝐵(Λ)ℎ̇12(𝑡)],

𝐶0→2(2) = − 𝑖

~

+∞∫︁
−∞

𝑑𝑡 𝑒2𝑖𝜛(1−Λ)𝑡~[𝑖𝐶(Λ)ℎ̇11(𝑡)−

−𝐷(Λ)ℎ̇12(𝑡)],

(15)

where

𝐴(Λ) =
1√
2
(1 + Λ), 𝐵(Λ) =

1√
2

(︃√︂
3

2
Λ + 1

)︃
,

𝐶(Λ) =
1√
2
(1− Λ), 𝐷(Λ) =

1√
2

(︃√︂
3

2
Λ− 1

)︃
.

(16)

Equation (15) is the main working formula in this
paper. With this general formula (15), we shall com-
pute the corresponding transition probabilities from
the relation

𝑃0→2 = |𝐶0→2|2. (17)

At this stage, we would like to draw attention to some
interesting features about the second-order terms in
ℎ on the results obtained in [42]. The above transi-
tion amplitudes (15) show that 𝐶0→2(1) and 𝐶0→2(2)

contain no contribution from the second-order term
in ℎ. The second-order contribution in ℎ generates
an additional transition between the ground state
and the perturbed second excited state 𝜓

(0)
2 , with-

out altering the results for the transitions between
the ground state and 𝜓(1)

2 or 𝜓(2)
2 .

3. Transition Probabilities
for Different Types of Gravitational Waves

In this section, we calculate the transition proba-
bilities for different templates of gravitational wave-
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forms that are likely to be generated in runaway as-
tronomical events. First, we discuss the simplest sce-
nario of a periodic GW with linear polarization. It
has the form

ℎ𝑗𝑘 (𝑡) = 2𝑓0 cosΩ𝑡
(︀
𝜀×𝜎

1
𝑗𝑘 + 𝜀+𝜎

3
𝑗𝑘

)︀
, (18)

where the amplitude varies sinusoidally with a single
frequency Ω. The transition probabilities in this case
turn out to be

𝑃0→2(0) =32𝜋2𝜛2𝑓40Ω
4(𝜀2+ + 𝜀2×)

2[𝛿(2𝜛 − 2Ω)]2,

𝑃0→2(1) =(𝜋𝑓0Ω)
2
[︀
𝐴(Λ)2𝜀2+ +𝐵(Λ)2𝜀2×

]︀
×

× [𝛿 (2𝜛+ − Ω)]
2
,

𝑃0→2(2) =(𝜋𝑓0Ω)
2
[︀
𝐶(Λ)2𝜀2+ +𝐷(Λ)2𝜀2×

]︀
×

× [𝛿 (2𝜛− − Ω)]
2
,

(19)

where 𝜛+ = 𝜛(1 + Λ) and 𝜛− = 𝜛(1 − Λ). The
restriction on the physical range of frequencies
(0 < 𝜛 <∞) is imposed to drop the delta functions
𝛿 (2𝜛+ +Ω) and 𝛿 (2𝜛− +Ω) that would appear in
Eq. (19). The transition rates, therefore, take the
form

lim
𝑇→∞

1

𝑇
𝑃0→2(1) = 32𝜋2𝜛2𝑓40Ω

4(𝜀+
2 + 𝜀×

2)2×

× 𝛿(2𝜛 − 2Ω),

lim
𝑇→∞

1

𝑇
𝑃0→2(1) = (𝜋𝑓0Ω)

2×

×
[︀
𝐴(Λ)2𝜀+

2 +𝐵(Λ)2𝜀×
2
]︀
𝛿 (2𝜛+ − Ω),

lim
𝑇→∞

1

𝑇
𝑃0→2(2) = (𝜋𝑓0Ω)

2 ×

×
[︀
𝐶(Λ)2𝜀+

2 +𝐷(Λ)2𝜀×
2
]︀
𝛿 (2𝜛− − Ω),

(20)

where we have used the relation

𝛿(𝜛) =

⎡⎢⎣
𝑇
2∫︁

−𝑇
2

𝑑𝑡, 𝑒𝑖𝜛𝑡

⎤⎥⎦ = 𝑇. (21)

Now, looking at the expressions for 𝐴,𝐵,𝐶,𝐷 and
the transition probabilities in Eqs. (19) and (20), it
is easy to see that the transition rates will be peaked
around the frequencies Ω = 2𝜛+ and Ω = 2𝜛− with
unequal strengths. Further, the transition probabili-
ties induced by both the + and × polarizations of the
GW are affected by the spatial noncommutativity. In
other words, the orientations of the GW source and
the detector do not play a crucial role any more to

detect the spatial NC effect. In addition to these two
resonant points already observed in [42], there is an-
other resonant point at Ω = 𝜛 which arises due to the
second-order term in ℎ. It was absent in [42]. This is a
crucial result in this paper. The second-order term in
ℎ gives rise to the transition probability 𝑃0→2(0) . This
is a purely gravity induced effect. It is also obvious
from the expressions for 𝐴,𝐵,𝐶,𝐷 in Eq. (16) that
both linear and quadratic terms in the dimensionless
NC parameter Λ will appear in the transition proba-
bilities (19).

The characteristic NC parameter Λ was estimated
in [40], where the stringent upper bound |𝜃| ≈ 4×
× 10−40m2 [16] for the spatial noncommutativity was
used. For the reference mass and frequency, the values
appropriate for fundamental phonon modes of a bar
detector [39] can be used. This gives

Λ =
𝑚𝜛𝜃

2~
= 1.888

(︂
𝑚

103kg

)︂(︁ 𝜔

1kHz

)︁
. (22)

This is an interesting result, since the estimated size
of the characterestic NC parameter turns out to be of
the order of unity in the case of resonant bar detec-
tors. This gives, in turn, the estimate for the charac-
teristic NC frequency to be in the KHz range.

From the entire discussion so far, we find a very in-
teresting feature that both the + and × polarizations
include the effects of the NC structure of space. The-
refore, the linearly polarized GW from a binary sys-
tem with its orbital plane lying in parallel or perpen-
dicularly to our line of sight can also be an effective
test of the noncommutative structure of space. With
these observations in place, we now move on to com-
pute the transition probabilities for a circularly polar-
ized GW. To proceed, we take the simplest form of a
periodic GW signal with circular polarization, which
can be conveniently expressed as
ℎ𝑗𝑘 (𝑡) = 2𝑓0

[︀
𝜀× (𝑡)𝜎1

𝑗𝑘 + 𝜀+ (𝑡)𝜎3
𝑗𝑘

]︀
, (23)

with 𝜀+ (𝑡) = cosΩ𝑡 and 𝜀× (𝑡) = sinΩ𝑡, and Ω is the
frequency of the GW.

The transition rates in this case become

lim
𝑇→∞

1

𝑇
𝑃0→2(0) = 32𝜋2𝜛2 𝑓40 Ω2 𝛿(2𝜛) = 0,

lim
𝑇→∞

1

𝑇
𝑃0→2(1) =

(︂
𝑓0Ω

~

)︂2 [︀
𝐴(Λ)2+𝐵(Λ)2

]︀
×

× 𝛿(2𝜛+− Ω),

lim
𝑇→∞

1

𝑇
𝑃0→2(2) =

(︂
𝑓0Ω

~

)︂2 [︀
𝐶(Λ)2+𝐷(Λ)2

]︀
×

× 𝛿(2𝜛−− Ω).

(24)

1032 ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11



Signatures of Noncommutativity in Bar Detectors

From the above results, we observe that the charac-
teristics of the transition rates for a linearly polarized
GW hold for circularly polarized GW signals, as well
up to the first-order in ℎ. Thus, the circularly polar-
ized GW from a binary system can also serve as a
deterministic probe for the spatial noncommutativ-
ity. However, if we consider the effect of the second
order term in ℎ, the transition probability 𝑃0→2(0) is
absent for a circularly polarized GW, which is clearly
different from that for a linearly polarized GW. This
interesting result can be used to determine the type
of polarization of the GW source.

Now, we proceed to investigate the status of our
system interacting with aperiodic GW signals, which
are basically generated from GW bursts. GW bursts
can be modelled by taking a simple choice as

ℎ𝑗𝑘(𝑡) = 2𝑓0𝑔(𝑡)
(︀
𝜀×𝜎

1
𝑗𝑘 + 𝜀+𝜎

3
𝑗𝑘

)︀
(25)

containing both components of the linear polariza-
tion. We further take a Gaussian form for the func-
tion 𝑔(𝑡):

𝑔 (𝑡) = 𝑒−𝑡2/𝜏2
𝑔 , (26)

with 𝜏𝑔 ∼ 1
𝑓max

, where 𝑓𝑚𝑎𝑥 is the maximum value
of a broad range continuum spectrum of frequen-
cies. Note that, at 𝑡 = 0, 𝑔 (𝑡) goes to unity. Now,
the Fourier decomposed modes of the GW burst can
be written as

ℎ𝑗𝑘 (𝑡) =
𝑓0
𝜋

(︀
𝜀×𝜎

1
𝑗𝑘 + 𝜀+𝜎

3
𝑗𝑘

)︀ +∞∫︁
−∞

𝑔 (Ω) 𝑒−𝑖Ω𝑡𝑑Ω, (27)

where 𝑔 (Ω) =
√
𝜋𝜏𝑔𝑒

−
(︁
Ω𝜏𝑔
2

)︁2
is the amplitude of the

Fourier mode at the frequency Ω.
The transition probabilities induced by a GW burst

can now be computed and read [42]

𝑃0→2(0) = 2𝜛6𝑓40 𝜏
4
𝑔 𝑒

−𝜏2
𝑔𝜛

2 [︀
𝜀2+ + 𝜀2×

]︀2
,

𝑃0→2(1) = [4
√
𝜋𝑓0𝜏𝑔𝜛+]

2
𝑒−2𝜏2

𝑔𝜛
2
+×

×
(︀
𝐴(Λ)2𝜀+

2 +𝐵(Λ)2𝜀×
2
)︀
,

𝑃0→2(2) = [4
√
𝜋𝑓0𝜏𝑔𝜛−]

2
𝑒−2𝜏2

𝑔𝜛
2
−×

×
(︀
𝐶(Λ)2𝜀+

2 +𝐷(Λ)2𝜀×
2
)︀
.

(28)

Lastly, we consider a modulated Gaussian function
𝑔(𝑡) of the form

𝑔 (𝑡) = 𝑒−𝑡2/𝜏2
𝑔 sinΩ0𝑡, (29)

which represents a more realistic model of the GW
burst signal. The Fourier transform of this function
reads

𝑔 (Ω) = 2𝜋

+∞∫︁
−∞

𝑔(𝑡)𝑒𝑖Ω𝑡𝑑Ω =

=
𝑖
√
𝜋𝜏𝑔
2

[︁
𝑒−(Ω−Ω0)

2𝜏2
𝑔/4 − 𝑒−(Ω+Ω0)

2𝜏2
𝑔/4
]︁
.

From this waveform, we get the transition amplitudes
to be
𝐶0→2(1) =

𝑖

2
√
2
𝜛3𝑓20 𝜏

2
𝑔

(︀
𝜀2× + 𝜀2+

)︀
×

×
[︂
𝑒−

(𝜛−Ω0)2𝜏2
𝑔

4 − 𝑒−
(𝜛+Ω0)2𝜏2

𝑔
4

]︂2
,

𝐶0→2(1) =
[︁
𝑒−(2𝜛+−Ω0)

2𝜏2
𝑔/4−𝑒−(2𝜛++Ω0)

2𝜏2
𝑔/4
]︁
×

× (2
√
𝜋𝑓0𝜛+𝜏𝑔) (𝐴(Λ)𝜀+ +𝐵(Λ)𝜀×),

𝐶0→2(2) =
[︁
𝑒−(2𝜛+−Ω0)

2𝜏2
𝑔/4 − 𝑒−(2𝜛++Ω0)

2𝜏2
𝑔/4
]︁
×

× (2
√
𝜋𝑓0𝜛+𝜏𝑔) (𝐶(Λ)𝜀+ +𝐷(Λ)𝜀×).

(30)

The corresponding transition probabilities are

𝑃0→2(0) =
1
8𝜛

6𝑓40 𝜏
4
𝑔

(︀
𝜀2× + 𝜀2+

)︀2×
×
[︂
𝑒−

(𝜛−Ω0)2𝜏2
𝑔

4 − 𝑒−
(𝜛+Ω0)2𝜏2

𝑔
4

]︂4
,

𝑃0→2(1) =
[︁
𝑒−(2𝜛+−Ω0)

2𝜏2
𝑔/4−𝑒−(2𝜛++Ω0)

2𝜏2
𝑔/4
]︁2
×

× (2
√
𝜋𝑓0𝜛+𝜏𝑔)

2 (︀
𝐴(Λ)2𝜀+

2 +𝐵(Λ)2𝜀×
2
)︀
,

𝑃0→2(2) =
[︁
𝑒−(2𝜛−−Ω0)

2𝜏2
𝑔/4 − 𝑒−(2𝜛−+Ω0)

2𝜏2
𝑔/4
]︁2
×

× (2
√
𝜋𝑓0𝜛−𝜏𝑔)

2 (︀
𝐶(Λ)2𝜀+

2 +𝐷(Λ)2𝜀×
2
)︀
.

(31)

At a low operating frequency of the detector, the
two exponential terms in the transition amplitudes
are almost equal and, hence, cancel. Therefore, the
transition probabilities are reduced considerably. The
other extreme is when 2𝜛+ − Ω0 = Δ𝜛+ and
2𝜛− − Ω0 = Δ𝜛− with Δ𝜛+

𝜛+
≪ 1 and Δ𝜛−

𝜛−
≪ 1,

respectively. This yields [42]

𝑃0→2(1) ≈ 1
8𝜛

6𝑓40 𝜏
4
𝑔

(︀
𝜀2× + 𝜀2+

)︀2
𝑒−16𝜛2𝜏2

𝑔 ,

𝑃0→2(1) ≈ 𝑒−(Δ𝜛+)2𝜏2
𝑔/2 (2

√
𝜋𝑓0𝜛+𝜏𝑔)

2 ×
×
(︀
𝐴(Λ)2𝜀+

2 +𝐵(Λ)2𝜀×
2
)︀
,

𝑃0→2(2) ≈ 𝑒−(Δ𝜛−)2𝜏2
𝑔/2 (2

√
𝜋𝑓0𝜛−𝜏𝑔)

2 ×
×
(︀
𝐶(Λ)2𝜀+

2 +𝐷(Λ)2𝜀×
2
)︀
.

(32)

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11 1033



S. Gangopadhyay, S. Bhattacharyya, A. Saha

4. Conclusion

In this paper, we have extended our earlier calcu-
lations of the probabilities of transitions between the
energy levels of a harmonic oscillator induced by grav-
itational waves in a spatial noncommutative frame-
work including terms up to the second order in ℎ. We
find that, apart from the usual transition [42], there
is an additional transition between the ground state
and the perturbed second excited states. The prob-
abilities of the other transitions that were present
earlier [42] remained unaffected by the inclusion of
second-order terms in ℎ. An interesting result that
we observe in our present investigation is that the
additional transition probability observed in the case
of linearly polarized gravitational wave (due to the in-
clusion of second-order terms in ℎ in the Hamiltonian)
is absent in the case of a circularly polarized gravita-
tional wave. This result can be used, in principle, to
determine the type of polarization of the gravitational
wave source.
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СВIДЧЕННЯ НЕКОМУТАТИВНОСТI
ВIД ДЕТЕКТОРIВ ГРАВIТАЦIЙНИХ ХВИЛЬ

Р е з ю м е

Порiвняння масштабу довжини некомутативностi
√
𝜃 з ва-

рiацiєю довжини 𝛿𝐿 = ℎ𝐿, знайдене за допомогою детекто-
рiв гравiтацiйних хвиль, свiдчить про можливiсть вияви-
ти некомутативну структуру простору за допомогою таких
установок. Тому ми дослiджуємо, як на реакцiю детекто-
ра гравiтацiйних хвиль впливає некомутативна структура
простору, зберiгаючи у гамiльтонiанi члени до другого по-
рядку вiдносно збурення гравiтацiйної хвилi (ℎ). Цiкаво, що
член другого порядку вiдносно ℎ вiдповiдає за перехiд мiж
основним станом та одним iз збурених станiв (другим збу-
дженим), чого не було, коли обмежувалися лише першим
порядком вiдносно ℎ.
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