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ON GOLDSTONE FIELDS
WITH SPIN HIGHER THAN 1/2 1

We review the properties of 3d non-linear models of vector and vector-spinor Goldstone fields
associated with the spontaneous breaking of certain higher-spin counterparts of supersym-
metry (so-called Hietarinta algebras), whose Lagrangians are of the Volkov–Akulov type. At
the quadratic order, these Lagrangians contain, respectively, the Chern–Simons and Rarita–
Schwinger terms. The vector Goldstone model has a propagating degree of freedom which, in
a decoupling limit, is a quartic Galileon scalar field (similar to those appearing in models of
modified gravity). On the other hand, the vector-spinor goldstino retains the gauge symmetry
of the Rarita–Schwinger action and eventually reduces to the latter by a non-linear field redef-
inition. We thus find that, in three space-time dimensions, the free Rarita–Schwinger action is
invariant under a hidden rigid symmetry generated by fermionic vector-spinor operators and
acting non-linearly on the Rarita–Schwinger goldstino.
K e yw o r d s: higher-spin symmetries, spontaneous symmetry breaking, non-linear realiza-
tions.

1. Introduction

The spontaneous breaking of symmetries plays an im-
portant role in various fields of physics. The Gold-
stone theorem [1] states that if a rigid (or global)
symmetry is broken spontaneously in a certain field
theory, there always appear massless fields, called
Nambu–Goldstone fields [1, 2] whose number is as-
sociated with the number of broken symmetries. The
most known examples are the spontaneous breaking
of internal symmetries such as 𝑈(1), whose associ-
ated Goldstone fields are space-time scalars [1] and
the spontaneous breaking of the global supersymme-
try generating a massless spin-1/2 field [3, 4] called
Volkov–Akulov goldstino. When a local (gauge) sym-
metry is broken, the Nambu–Goldstone fields are
effectively absorbed by corresponding gauge fields
which become massive due to the Brout–Englert–
Higgs mechanism [5, 6]. The first description of this
effect in supergravity was given in [7, 8].

The Volkov–Akulov model is the first example of
the appearance of Nambu–Goldstone fields carrying
a non-zero spin due to the spontaneous breaking of
supersymmetry, which is a non-trivial generalization
of the space-time (Poincaré) symmetry. One can then
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ask a natural question whether Nambu–Goldstone
fields with spins 𝑠 higher than 1/2 can also exist?
Such fields should be associated with the breaking
of symmetries whose generators transform as rank-𝑠
tensors under the Lorentz group 2.

One possible example might be the spontaneous
breaking of Poincaré translations which would give
rise to spin-1 goldstones. In this context, one may
wonder, if models of massive gravity (see, e.g., [9–
12] for a review and references) could be regarded as
effective theories arising due to a mechanism simi-
lar to the Brout–Englert–Higgs one associated with
the spontaneous breaking of the diffeomorphism in-
variance. Nambu–Goldstone fields of else higher spins
might arise as a result of the spontaneous breaking of
higher-spin symmetries which underly the gauge the-
ories of higher-spin fields. Higher-spin field theories

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.

2 Strictly speaking, as the single characteristic of the angu-
lar momentum of a field, the notion of spin is an attribute
of four-dimensional theories. However, as is often adopted
in the higher-spin literature for any space-time dimension,
we loosely call symmetric tensor fields 𝐴𝑎1...𝑎𝑠 of rank 𝑠 as
integer spin-𝑠 fields and the symmetric-tensor spinor fields
Ψ𝛼

𝑎1...𝑎𝑠
as half-integer spin 𝑠+ 1

2
fields.

1014 ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11



On Goldstone Fields with Spin Higher than 1/2

(see, e.g., [13–37] for a review and references) are re-
garded as possible candidates for a consistent ultra-
violet completion of quantum gravity. On the other
hand, the string theory, which is the main candidate
on the role of quantum gravity, has an infinite tower of
higher-spin fields of increasing mass proportional to
the square root of the string tension. These higher-
spin fields are indispensable for the renormalizabil-
ity (or even finiteness) of the string theory. For quite
awhile, there has been conjectured [38–41] that the
string theory might be a spontaneously broken phase
of the underlying higher-spin gauge theory, with a
string tension generated via the Brout–Englert–Higgs
effect. However, so far a specific realization of this as-
sumption has not been carried out because of a very
high complexity of the problem related, in particular,
to the fact that the consistent higher-spin gauge the-
ories are based on infinite-dimensional higher-spin al-
gebras. So, the questions such as how to break higher-
spin (HS) symmetries, are they broken spontaneously,
and what is the mechanism remain to be answered.

In such a situation, one can try to ask a bit sim-
pler question, namely, can one construct consistent
non-linear models of higher-spin Nambu–Goldstone
fields associated with the spontaneous breaking of
HS symmetries? Such models would describe, in a
universal way, the result of the spontaneous HS sym-
metry breaking without the knowledge of a physical
mechanism that leads to this breaking. To address
this question, we chose, in [42], a simplified set-up
based on simpler but yet non-trivial finite HS algebras
(similar to supersymmetry) constructed in [43]. The
𝐷-dimensional Hietarinta algebras have the following
generic structure:

{𝑄𝑎1...𝑎𝑛
𝛼 , 𝑄𝑏1...𝑏𝑚

𝛽 } = 𝑓𝑎1...𝑎𝑛,𝑏1...𝑏𝑚,𝑐
𝛼𝛽 𝑃𝑐,

[𝑆𝑎1...𝑎𝑝 , 𝑆𝑏1...𝑏𝑞 ] = 𝑓𝑎1...𝑎𝑛,𝑏1...𝑏𝑚,𝑐𝑃𝑐,

[𝑄𝑎1...𝑎𝑛
𝛼 , 𝑃𝑏] = 0, [𝑆𝑏1...𝑏𝑞 , 𝑃𝑎] = 0, [𝑄,𝑆] = 0,

(1)

where 𝑎, 𝑏, 𝑐 = 0, 1..., 𝐷 − 1 are vector indices, 𝛼, 𝛽
are spinor indices, 𝑄𝑎1...𝑎𝑛

𝛼 are fermionic tensor-
spinor generators, 𝑆𝑎1...𝑎𝑝 are bosonic tensor gener-
ators, and 𝑃𝑐 is the translation generator. The gen-
erators are transformed under certain representations
of the Lorentz group 𝑆 = 𝑆𝑂(1, 𝐷 − 1). The struc-
ture constants 𝑓𝑎1...𝑎𝑛,𝑏1...𝑏𝑚,𝑐

𝛼𝛽 and 𝑓𝑎1...𝑎𝑛,𝑏1...𝑏𝑚,𝑐 are
𝑆𝑂(1, 𝐷 − 1)-invariant and constructed with the use
of the Minkowski metric, Levi-Civita tensor, and

gamma matrices. The list of the Hietarinta algebras
can be further extended by algebras with commut-
ing tensor-spinor generators forming a “bosonic su-
persymmetry” (see, e.g., [44, 45]).

Algebras (1) are finite-dimensional higher-spin al-
gebras. This distinguishes them from the more famil-
iar infinite-dimensional higher-spin algebras in which
the (anti)-commutators of higher-spin generators in-
volve the generators carrying yet higher spins

[𝑇𝑠1 , 𝑇𝑠2} = 𝑇𝑠1+𝑠2−2 + 𝑇𝑠1+𝑠2−4 + ...+ 𝑇|𝑠1−𝑠2|+2.

At least in some cases, the Hietarinta algebras may
be obtained by Inönü–Wigner contractions of infinite
HS algebras.

In this contribution, I will review the results of
[42]. We will use the Hietarinta algebras to construct
(á la Volkov–Akulov) non-linear models for associated
Nambu–Goldstone fields. Though these Lagrangians
appeared already in [43], we do not aware of any study
of these models, as far as their structure and physi-
cal consistency are concerned. We will see that even
in the simplest 3𝑑 cases of spin-1 and spin-3/2 gold-
stones (to which we restrict our consideration), the
models have interesting and peculiar features.

2. Volkov–Alulov Goldstino Model

To set-up the stage, let us review the Volkov–Akulov
construction of a non-linear Lagrangian for a spin-1/2
goldstino [3, 4] describing a result of the spontaneous
breaking of the 𝑁 = 1, 𝐷 = 3 supersymmetry. The
latter has the form

{𝑄𝛼, 𝑄𝛽} = 2 (Γ𝑎𝐶−1)𝛼𝛽 𝑃𝑎,

[𝑄𝛼, 𝑃𝑎] = 0,
(2)

where now 𝑎 = 0, 1, 2, 𝛼 = 1, 2, 𝑄𝛼 are Grassmann-
odd Majorana spinor generators, Γ𝑎 𝛽

𝛼 are the Dirac
matrices in the Majorana representation, 𝐶𝛼𝛽 =
= −𝐶𝛽𝛼 is the charge conjugation matrix, and 𝐶−1

𝛼𝛽

is its inverse.
The Volkov–Akulov construction works as fol-

lows. First, one identifies the Cartan one-form which
is invariant under transformations generated by (2)

Ω = −𝑖𝑔−1𝑑𝑔 = 𝐸𝑎𝑃𝑎 + 𝐸𝛼𝑄𝛼,

𝑔 = 𝑒𝑖𝑥
𝑎𝑃𝑎𝑒𝑖𝜃

𝛼𝑄𝛼 ,
(3)

where

𝐸𝑎 = 𝑑𝑥𝑎 + 𝑖𝜃Γ𝑎𝑑𝜃, 𝐸𝛼 = 𝑑𝜃, (4)
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𝑥𝑎 is a coordinate of the 3𝐷 Minkowski space, and 𝜃𝛼
is its Grassmann-odd counterpart.

Components (4) of the one-form are invariant un-
der the following rigid supersymmetry transforma-
tions with parameter 𝜖𝛼 of the coordinates:

𝜃′𝛼 = 𝜃𝛼 + 𝜖𝛼, 𝑥′𝑎 = 𝑥𝑎 − 𝑖𝜖Γ𝑎𝜃. (5)

The second step is to promote the Grassmann-odd
coordinate 𝜃𝛼 to a spinorial field 𝜓𝛼(𝑥) such that the
Cartan-form components (4) take the form

𝐸𝑎 = 𝑑𝑥𝑎 + 𝑖𝑓−2𝜓Γ𝑎𝑑𝜓(𝑥), 𝐸𝛼 = 𝑓−1𝑑𝜓𝛼(𝑥), (6)

where we have introduced the parameter 𝑓 of mass-
dimension 𝑚

3
2 characterizing the supersymmetry

breaking scale. Now, due to (5), the infinitesimal su-
persymmetry variation of 𝜓𝛼(𝑥) has the form

𝛿𝜓𝛼 = 𝜖𝛼 + 𝑖𝑓−2(𝜖Γ𝑏𝜓)𝜕𝑏𝜓
𝛼. (7)

The above expression tells us that 𝜓𝛼 is transformed
as a typical Nambu–Goldstone field, whose variation
is characterized by the constant shift 𝜖𝛼 and the non-
linear second term. The Volkov–Akulov action for 𝜓𝛼

which is invariant under (7) has the form

𝑆 =
𝑓2

6

∫︁
𝐸𝑎 ∧ 𝐸𝑏 ∧ 𝐸𝑐 𝜀𝑎𝑏𝑐 = −𝑓2

∫︁
𝑑3𝑥 det𝐸𝑎

𝑏 ,

(8)
where

𝐸 𝑎
𝑏 = 𝛿𝑎𝑏 + 𝑖𝑓−2𝜓Γ𝑎𝜕𝑏𝜓.

Substituting this expression into the action, we get
its explicit form

𝑆1/2 =

∫︁
𝑑3𝑥

(︃
− 𝑓2 − 𝑖 𝜓 Γ𝑎 𝜕𝑎𝜓+

+
𝑓−2

2
𝜀𝑎𝑏𝑐 (𝜓𝜓) 𝜕𝑎𝜓 Γ𝑏 𝜕𝑐𝜓

)︃
, (9)

where 𝜓 𝜓 ≡ 𝜓𝛼 𝐶𝛼𝛽 𝜓
𝛽 ≡ 𝜓𝛼 𝜓𝛼 .

The second term in this action is the standard
massless Majorana field Lagrangian, and the third
term describes the quartic self-interaction of 𝜓𝛼 re-
quired by the supersymmetry of the action. In what
follows, we will skip the first constant term in the ac-
tion, which, however, becomes important, when the
goldstino couples to gravity, since it gives a positive
contribution to the cosmological constant (see [46,47]
for a review and references).

3. Spin-1 Goldstone and Galileon

Let us now use the Volkov–Akulov prescription to
construct a 3𝑑 spin-1 Goldstone model which de-
scribes the spontaneous breaking of the simplest Hie-
tarinta symmetry based on the algebra of the follow-
ing form:

[𝑀𝑎𝑏 , 𝑆𝑐] = 𝑖(𝜂𝑏𝑐 𝑆𝑎 − 𝜂𝑎𝑐 𝑆𝑏), (10)

[𝑆𝑎, 𝑆𝑏] = 2𝑖 𝜀𝑎𝑏𝑐𝑃𝑐, [𝑆𝑎, 𝑃𝑏] = 0, (11)

where 𝑀𝑎𝑏 are generators of the Lorentz group
𝑆𝑂(1, 2), and 𝑃𝑎 are Poincaré translations, while 𝑆𝑎

is another vector generator whose commutator closes
on the translations, resembling a bosonic counterpart
of the supersymmetry algebra (2). This similarity al-
lows us to apply the Volkov–Akulov prescription. We
associate a vector field 𝐴𝑎(𝑥) to the generators 𝑆𝑎

and construct the Cartan one-form

𝐸𝑎 = 𝑑𝑥𝑎 + 𝑓−2 𝜀𝑎𝑏𝑐𝐴𝑏(𝑥) 𝑑𝐴𝑐(𝑥) =

= 𝑑𝑥𝑚(𝛿𝑎𝑚 + 𝑓−2 𝜀𝑎𝑏𝑐𝐴𝑏(𝑥) 𝜕𝑚𝐴𝑐(𝑥)) ≡ 𝑑𝑥𝑚𝐸𝑎
𝑚 (12)

which is invariant under the following transforma-
tions:

𝑥′
𝑎
= 𝑥𝑎 − 𝑓−2 𝜀𝑎𝑏𝑐 𝑠𝑏𝐴𝑐(𝑥), 𝐴′

𝑎(𝑥
′) = 𝐴𝑎(𝑥) + 𝑠𝑎,

(13)

where 𝑠𝑎 is a constant vector parameter. The in-
finitesimal transformation of the form of the Gold-
stone field 𝐴𝑎(𝑥),

𝛿𝐴𝑎(𝑥) = 𝑠𝑎 + 𝑓−2 𝜀𝑑𝑏𝑐𝑠𝑏𝐴𝑐(𝑥) 𝜕𝑑𝐴𝑎(𝑥), (14)

shows that it is transformed non-linearly under the
symmetry. Note that the commutator of two varia-
tions closes on the translation of 𝐴𝑎 in accordance
with the structure of algebra (11),

[𝛿2 , 𝛿1]𝐴𝑎(𝑥) = 2 𝑓−2 𝜀𝑑𝑏𝑐 (𝑠1𝑏 𝑠
2
𝑐) 𝜕𝑑𝐴𝑎(𝑥). (15)

The action which is invariant under (14) has the fol-
lowing form:

𝑆1=−𝑓2
∫︁
𝑑3𝑥 (det𝐸𝑎

𝑑 − 1) =

∫︁
𝑑3𝑥
(︁
𝜀𝑎𝑏𝑐𝐴𝑎 𝜕𝑏𝐴𝑐 −

− 𝑓−2

2
𝜀𝑎𝑏𝑐𝜀𝑑𝑒𝑓 𝐴𝑎𝐴𝑑 𝜕𝑒𝐴𝑏 𝜕𝑓𝐴𝑐

)︁
. (16)
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Note that the sixth-order term in 𝐴𝑎 (and its deriva-
tives) in (16) vanishes, while the quadratic term is the
Abelian Chern–Simons action. The latter is known to
be invariant under the 𝑈(1) variations 𝛿𝐴𝑎 = 𝜕𝑎𝜆(𝑥)
of the vector field. This gauge symmetry makes the
Chern–Simons field non-dynamical. As such, there
arises a natural question whether the gauge invari-
ance of the Chern–Simons action extends to the quar-
tic term of (16). The answer to this question is nega-
tive, i.e. the non-linear action is not gauge-invariant,
and, hence, the field 𝐴𝑎(𝑥) propagates a degree of
freedom. To identify this degree of freedom, we apply
the Stückelberg trick to make the action (16) formally
gauge-invariant, by replacing 𝐴𝑎(𝑥) with

𝐴𝑎(𝑥) = 𝐴𝑎(𝑥)− 𝑓
1
2 𝜕𝑎𝜙(𝑥), (17)

where 𝜙(𝑥) is the Stückelberg field ensuring the gauge
invariance of 𝐴𝑎(𝑥) under the variations 𝛿𝐴𝑎 = 𝜕𝑎𝜆

and 𝛿𝜙 = 𝑓−
1
2𝜆. The factor 𝑓

1
2 in (17) is chosen to

perform an appropriate limit 𝑓 → ∞ in the action
(16) for 𝐴𝑎 such that the terms with 𝐴𝑎(𝑥) and 𝜙(𝑥)
decouple from each other. In this decoupling limit,
the action reduces to

𝑆(𝐴𝑎)|𝑓→∞ =

∫︁
𝑑3𝑥

(︃
𝜀𝑎𝑏𝑐𝐴𝑎 𝜕𝑏𝐴𝑐 −

− 1

2
𝜀𝑎𝑏𝑐𝜀def 𝜕𝑎𝜙𝜕𝑑𝜙𝜕𝑒𝜕𝑏𝜙𝜕𝑓𝜕𝑐𝜙

)︃
. (18)

Somewhat surprisingly, one recognizes, in the quar-
tic 𝜙-dependent term of this action, the quartic La-
grangian for a so-called Galileon scalar field [48] which
appears in modified theories of gravity. The Galileon
Lagrangian modulo total derivatives can be written
in different forms

ℒ(𝜙) = 1

2
𝜙𝜀𝑎𝑏𝑐𝜀𝑑𝑒𝑓 𝜕𝑎𝜕𝑑𝜙𝜕𝑒𝜕𝑏𝜙𝜕𝑓𝜕𝑐𝜙 =

= −3𝜙 det(𝜕𝑎𝜕
𝑏𝜙) =

= −1

2
𝜙 ((�𝜙)3 − 3�𝜙𝜕𝑎𝜕

𝑏𝜙𝜕𝑏𝜕
𝑎𝜙+

+2 𝜕𝑎𝜕
𝑏𝜙𝜕𝑏𝜕

𝑐𝜙𝜕𝑐𝜕
𝑎𝜙)). (19)

The Lagrangian is invariant under the Galilean sym-
metry with 𝜑 → 𝜑 + 𝑐 + 𝑐𝑎𝑥

𝑎, where 𝑐 and 𝑐𝑎 are
constant parameters.

Note that, in the model under consideration, the
propagating (Galileon) scalar mode of the field 𝐴𝑎(𝑥)
appears only at the non-linear level. It does not have
the conventional quadratic kinetic term, since the
quadratic part of action (16) is gauge-invariant. Note
also that, in spite of the presence of higher derivatives,
the Galileon Lagrangians contain only second-order
time derivatives of 𝜙(𝑥) and, hence, do not have Os-
trogradskii ghosts, though they may still be haunted
by instabilities. In this respect, it is instructive to
look at the Hamiltonian which can be derived from
action (16) (see [42] for more details on the Hamilto-
nian analysis)

ℋ = 6 𝑓−2 (𝐴0)
2 det 𝜕𝑖𝐴𝑗 , (20)

where 𝐴0 is the time component of the Goldstone
field, and 𝑖, 𝑗 = 1, 2 are spatial indices. The corre-
sponding Galileon Hamiltonian is

ℋGalileon = 6 (𝜕0𝜙)
2 det 𝜕𝑖𝜕𝑗𝜙. (21)

Because of the presence of the determinants, the
Hamiltonians are not positive definite and not
bounded from below. Hence, fluctuations around cer-
tain zero-energy configurations of the fields may
have negative energies leading to instabilities. This
is known for more general Galileon Lagrangians (see,
e.g., [49, 50]). Some of these instabilities can be re-
moved by imposing the appropriate initial and bound-
ary conditions on the fields.

4. Spin-3/2 Goldstino

We now pass to the consideration of a 3𝑑 model de-
scribing a fermionic goldstino field of spin-3/2. It is
based on the following Hietarinta algebra:

{𝑄𝑎
𝛼, 𝑄

𝑏
𝛽} = 2𝐶𝛼𝛽 𝜀

𝑎𝑏𝑐𝑃𝑐, [𝑄𝑎
𝛼, 𝑃𝑏] = 0, (22)

where 𝑄𝑎
𝛼 are Grassmann-odd tensor-spinor genera-

tors to which we associate the spin-3/2 goldstino field
𝜒𝛼
𝑎 (𝑥).
The Cartan one-form which we will use for the con-

struction of the action is

𝐸𝑎 = 𝑑𝑥𝑑𝐸 𝑎
𝑑 = 𝑑𝑥𝑑 (𝛿𝑎𝑑 + 𝑖𝑓−2 𝜀𝑎𝑏𝑐 𝜒𝑏 𝜕𝑑𝜒𝑐). (23)

It is invariant under the variations

𝛿𝜒𝛼
𝑎 (𝑥) = 𝜁𝛼𝑎 + 𝑖 𝑓−2𝜀𝑑𝑏𝑐 𝜁𝛽𝑏 𝜒𝑐𝛽(𝑥) 𝜕𝑑𝜒

𝛼
𝑎 (𝑥) (24)
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generated by (22), where 𝜁𝛼𝑎 is a constant parame-
ter. Note that, as for the spin-1/2 and the spin-1 case,
the commutator of two variations (24) closes on the
translations off the mass shell, i.e. without the use of
the equations of motion:

[𝛿2, 𝛿1]𝜒
𝛼
𝑎 = 𝜉𝑑 𝜕𝑑𝜒

𝛼
𝑎 , 𝜉𝑑 = 2 𝑖 𝑓−2 𝜀𝑑𝑏𝑐 𝜁1𝑏 𝜁

2
𝑐 . (25)

The spin-3/2 goldstino action has the form

𝑆3/2 = −𝑓2
∫︁
𝑑3𝑥 (det𝐸𝑎

𝑑 − 1) =

=

∫︁
𝑑3𝑥

(︀
𝑖 𝜀𝑎𝑏𝑐 𝜒𝑎 𝜕𝑏𝜒𝑐 +

+
𝑓−2

4
𝜀𝑎𝑏𝑐𝜀𝑑𝑓𝑔 (𝜒𝑎 𝜕[𝑏𝜒|𝑐) (𝜒𝑑| 𝜕𝑓 ]𝜒𝑔) +

+
𝑖 𝑓−4

6
𝜀𝑎

′𝑏′𝑐′ (𝜀𝑎𝑏𝑐𝜀𝑑𝑒𝑓 − 𝜀𝑎𝑏𝑓𝜀𝑑𝑒𝑐)×

× (𝜒𝑐 𝜕𝑎′𝜒𝑓 ) (𝜒𝑎 𝜕𝑏′𝜒𝑏) (𝜒𝑑 𝜕𝑐′𝜒𝑒)) . (26)

We see that the quadratic term in (26) is the ac-
tion for a 𝐷 = 3 Rarita–Schwinger spin- 32 free
massless field which is invariant under conventional
(linearized) local supersymmetry variations 𝛿𝜒𝛼

𝑎 =
= 𝜕𝑎𝜖

𝛼(𝑥). Because of this local symmetry, the
Rarita–Schwinger field is non-dynamical in the three-
dimensional space-time, as well as the Chern–Simons
vector field. Now, the question is whether the non-
linear action (26) retains this local symmetry, prob-
ably modified by non-linear terms? In contrast to
the spin-1 case, it turns out that now the answer is
positive. Implicitly, the gauge transformation of the
field 𝜒𝛼

𝑎 under which action (26) is invariant looks as
follows:

𝛿𝜒𝛼
𝑎 +

𝑖𝑓−2

3
𝜀𝑑𝑓𝑔 𝜕𝑎

(︁
𝜒𝛼
𝑑 (𝜒𝑓 𝛿𝜒𝑔)

)︁
+

+ 𝑖 𝑓−2 𝜀𝑑𝑓𝑔 (𝛿𝜒𝑑 𝜕𝑎𝜒𝑓 )𝜒
𝛼
𝑔 = 𝜕𝑎𝜖

𝛼. (27)

From this relation, by an iteration procedure which
exploits the Grassmann-odd nature of 𝜒𝛼

𝑎 , one can
get the gauge variation of 𝜒𝑎 to all orders in 𝑓−2:

𝛿𝜒𝛼
𝑎 = 𝜕𝑎

(︁
𝜖𝛼 − 𝑖𝑓−2

3
𝜀𝑑𝑓𝑔 𝜒𝛼

𝑑 (𝜒𝑓 𝜕𝑔𝜖)
)︁
−

− 𝑖𝑓−2 𝜀𝑑𝑓𝑔 (𝜕𝑑𝜖 𝜕𝑎𝜒𝑓 )𝜒
𝛼
𝑔 +𝒪(𝑓−4). (28)

Moreover, it turns that the non-linear field redefini-
tion

�̂�𝛼
𝑎 = 𝜒𝛼

𝑎 +
𝑖𝑓−2

3
𝜀𝑑𝑓𝑔 𝜒𝛼

𝑑 (𝜒𝑓 𝜕𝑎𝜒𝑔) (29)

reduces action (26) to the manifestly gauge-invariant
quadratic action for the Rarita–Schwinger field �̂�𝛼

𝑎

𝑆𝑅𝑆 = 𝑖

∫︁
𝑑3𝑥 𝜀𝑎𝑏𝑐 �̂�𝑎 𝜕𝑏�̂�𝑐. (30)

Note that relation (29) is invertible. Using the itera-
tion procedure, one can express 𝜒𝑎 in terms of �̂�𝑎.

We have thus learned that, due to the fact that ac-
tion (26) is invariant under the rigid spin-3/2 super-
symmetry variations of the goldstino 𝜒𝑎 (24), relation
(30) is also non-manifestly invariant under this sym-
metry with the corresponding variation of �̂�𝑎 derived
from (29) having the following form:

𝛿�̂�𝛼
𝑎 = 𝜁𝛼𝑎 + 𝑖 𝑓−2 𝜀𝑑𝑏𝑐 (𝜁𝑏 �̂�𝑐) 𝜕𝑑�̂�

𝛼
𝑎 +

𝑖𝑓−2

3
×

× 𝜀𝑑𝑏𝑐
(︁
(�̂�𝑏 𝜕𝑎�̂�𝑐) 𝜁

𝛼
𝑑 + (𝜁𝑏 𝜕𝑎�̂�𝑐)�̂�

𝛼
𝑑

)︁
+𝒪(𝑓−4), (31)

[𝛿2, 𝛿1] �̂�
𝛼
𝑎 ≡ 𝜉𝑑 𝜕𝑑�̂�

𝛼
𝑎 , 𝜉𝑑 = 2 𝑖 𝑓−2 𝜀𝑑𝑏𝑐 𝜁1𝑏 𝜁

2
𝑐 .

Therefore, the 3𝑑 Rarita–Schwinger field is the non-
dynamical goldstino associated with the spontaneous
breaking of the Hietarinta symmetry (22).

5. Conclusion

The simplest examples of the spontaneous breaking of
Hietarinta symmetries and the corresponding Gold-
stone models turn out to be peculiar non-linear gener-
alizations of the Chern–Simons and Rarita–Schwinger
Lagrangians.

The Chern–Simons goldstone propagates a scalar
mode which is a Galileon field that appears in mod-
ified theories of gravity. It would be of interest to
consider couplings of this spin-1 Goldstone to a 3d
bi-gravity theory which is invariant under the local
symmetry associated with algebra (10) and (11) and
to study the generation of the graviton field mass due
to this coupling. In [51], it was noticed that algebra
(11) is dual to the so-called Maxwell algebra [52, 53]
in three space-time dimensions. The latter has the
commutation relations

[𝑃𝑎, 𝑃𝑏] = 2𝑖𝜖𝑎𝑏𝑐𝑆
𝑐, [𝑆𝑎, 𝑃𝑏] = 0. (32)

We see that, in (32), the roles of 𝑃𝑎 and 𝑆𝑎 get
interchanged with respect to (11), but the algebras
are formally identical. What is changed is the phys-
ical meaning of fields associated with these gen-
erators. The Chern–Simons Maxwell gravity model
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based on (32) was constructed and studied in [54–56],
while its Hietarinta counterpart and its higher-spin
generalizations have been considered in [42,51]. These
actions are a natural basis for studying the effects of
the local symmetry breaking in these models due to
the presence of spin-1 Nambu–Goldstone fields.

In the spin-3/2 case, the spontaneous breaking of
the rigid spin-3/2 Hietaring symmetry retains a local
symmetry of the Rarita–Schwinger Lagrangian. The
non-linear spin-3/2 goldstino Lagrangian reduces to
the quadratic Rarita–Schwinger Lagrangian upon a
non-linear field redefinition. This causes the 3𝑑 spin-
3/2 goldstino be a non-propagating field. It would be
of interest to couple the spin-3/2 goldstino to con-
ventional 3d (super)gravity and hypergravity dealing
with spin-2 and spin-5/2 gauge fields [57–63], and to
study properties of these models.

It would be also of interest to generalize the con-
struction reviewed in this contribution to higher-
dimensional models of higher-spin Nambu–Goldstone
fields. In this respect, the recent results on the study
of algebraic structures involving Hietarinta-like alge-
bras (see, e.g., [64–66]) might be useful.

This work was supported in part by the Australian
Research Council project No. DP160103633.
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Д.П.Сорокiн

ПОЛЯ ГОЛДСТОУНА ЗI СПIНОМ, ВИЩИМ ЗА 1/2

Р е з ю м е

Ми розглядаємо властивостi 3d-нелiнiйних моделей вектор-
них та векторно-спiнорних полiв Голдстоуна, пов’язаних зi
спонтанним порушенням деяких вищих спiнових аналогiв
суперсиметрiї (так званi алгебри Гiтарiнти), лагранжiани
яких мають тип Волкова–Акулова. У квадратичному по-
рядку цi лагранжiани мiстять, вiдповiдно, члени Черна–
Саймонса i Рарiти–Швiнгера. Векторна модель Голдсто-
уна має еволюцiонуючу ступiнь вiльностi, яка на межi
роз’єднання являє собою скалярне поле галiлеона (подiбне
до тих, що з’являються в моделях модифiкованої гравiта-
цiї). З iншого боку, вектор-спiнорне голдстiно зберiгає калi-
брувальну симетрiю дiї Рарiти–Швiнгера i, зрештою, зводи-
ться до останнього шляхом нелiнiйного переозначення по-
ля. Таким чином, ми знаходимо, що в трьох просторово-
часових вимiрах вiльна дiя Рарiти–Швiнгера є iнварiан-
тною при перетвореннях прихованої симетрiї, що породжу-
ється фермiонними векторно-спiнорними операторами i дiє
нелiнiйно на голдстiно Рарiти–Швiнгера.
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