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HELLMANN POTENTIAL MODEL

1. Introduction

Within the framework of nonrelativistic noncommutative quantum mechanics using the im-
proved approximation scheme to the centrifugal term for any l-states via the generalized Bopp’s
shift method and standard perturbation theory, we have obtained the energy eigenvalues of a
newly proposed generalized Hellmann potential model (the GHP model) for the hydrogenic
atoms and neutral atoms. The potential is a superposition of the attractive Coulomb potential
plus Yukawa one, and new central terms appear as a result of the effects of noncommutativity
properties of space and phase in the Hellmann potential model. The obtained energy eigen-
values appear as a function of the generalized gamma function, the discrete atomic quantum
numbers (j,m,l, s and m), infinitesimal parameters (a,b, ) which are induced by the position-
position and phase-phase noncommutativity, and, the dimensional parameters (©,0) of the
GHP model, in the nonrelativistic noncommutative three-dimensional real space phase (NC:
3D-RSP). Furthermore, we have shown that the corresponding Hamiltonian operator with (NC:
3D-RSP) symmetries is the sum of the Hamiltonian operator of the Hellmann potential model
and two operators, the first one is the modified spin-orbit interaction, while the second is the
modified Zeeman operator for the hydrogenic and neutral atoms.

Keywords: Schrodinger equation, Hellmann potential model, noncommutative quantum
mechanics, star product, generalized Bopp’s shift method.

[1]. Furthermore, various authors to represent the

Over the past years, the Hellmann potential model,
which is a superposition of the attractive Coulomb
potential and a Yukawa potential, has received much
concern from many authors. By applying an alterna-
tive perturbative scheme in solving the Schrodinger
equation (SE) for the Yukawa potential model with
a modified screening parameter S.M. Ikhdair and
R. Sever investigated energy levels of neutral atoms
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electron-core or the electron-ion interaction have used
this potential. Hellmenn was the first who suggested
this potential, and it was studied in both the rela-
tivistic and nonrelativistic quantum mechanics (see,
e.g., [2-7]). In particular, it is used to describe the
interactions of hydrogenic atoms. This physical po-
tential has been the attraction and interest for many
researchers; we mention G. Kocak et al., M. Hamzavi
et al., S.M. Ikhdair et al., and C.A. Onate et al. They
solved the SE in their works with the Hellmann po-

987



A. Maireche

tential model using several methods such as the para-
metric N-U method, asymptotic iteration, and the
supersymmetric approach (see, e.g., [4-7]). It should
be noted that C.O. Edet et al. were the first who
generalize this Hellmann—Kratzer potential model to
include the Kratzer-like potential V(r) = D, (%)
[8]. H. Louis et al. solved the Dirac equation for the
Manning—Rosen plus shifted Deng—Fan potential and
the Coulomb-like tensor interaction using the N-U
method [9]. Hitler et al. studied the Klein—-Gordon
equation for the more general exponential screened
Coulomb potential plus Yukawa potential using the
N-U method and obtained the relativistic and non-
relativistic wave equations for modified Hylleraas—
Hulthen potential using the N-U quantum formal-
ism [10, 11]. C.O. Edet et al. obtained analytic so-
lutions of the SE with non-central generalized in-
verse quadratic Yukawa potential and ¢-deformed
Hulthen plus generalized inverse quadratic Yukawa
potential in arbitrary dimensions [12,13]. U.S. Okorie
et al. solved the Klein-Gordon equation (KGE) with
a generalized hyperbolic potential in D-dimensions
[14]. B.I. Tta et al. obtained the approximate solu-
tion to the SE with Manning—Rosen plus a class of
Yukawa potential via WKBJ approximation [15]. Fur-
thermore, C.O. Edet et al. studied bound-state so-
lutions of the Schrédinger equation for the modi-
fied Kratzer potential plus screened Coulomb poten-
tial [16]. In this work, motivated by several recent
studies such as the non-renormalizable of the stan-
dard model, string theory, quantum gravity, the non-
commutative quantum mechanics (NCQM) has at-
tracted much attention (see, e.g., [17-23]). Recently,
we are studied the KGE with modified Coulomb po-
tential plus inverse-square-root potential and modi-
fied Coulomb plus inverse-square potential in the non-
commutative three-dimensional space [18, 19]. The
noncommutativity of space-phase was known first by
Heisenberg in 1930 and was formalized by Snyder in
1947. In the present research paper, we want to ex-
tend, the study in Refs. [4-8] to the case of nonrela-
tivistic NCQM to the possibility of finding other ap-
plications and more profound interpretations in the
sub-atomic scales. The nonrelativistic energy levels
for the hydrogenic atoms and neutral atoms such as
sodium, carbon, and gold described by the general-
ized Hellmann potential model (GHP model) in the
context of a noncommutative space phase, have not
been obtained yet. The main purpose of this paper
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is to solve the modified Schrodinger equation (MSE)
with the GHP model (see below):

a bexp(—odr
Vhp(r)z—;—&-#%

= Vol (r) = Vip(r) +

bexp(—dr)  bdexp(—or) a
+( 2r3 2r2 3,3) 1O

(1)

o3

in (NC: 3D-RSP) symmetries using the generalized
Bopp’s shift method which depends on the concepts
that we will present below in the third section. It is
worth to mention that the Hellmann—Kratzer poten-
tial (Eq. (1)) used in the present study was first pro-
posed by Edet et al. [8]. The structure of nonrelativis-
tic noncommutative quantum mechanics (NRNCQM)
based to NC canonical commutations relations in
the Schrodinger, Heisenberg, and interaction pictures
(SP, HP, and IP), respectively, as follows (throughout
this paper, the natural units ¢ = i = 1 will be used)
(see, e.g., [20-27]):

[259,] = 8 03B, (0] = [81: 03Dy ()] =i,
[/Z\'ifgj} = [%1 (t) fﬂAUj (t)} = {JAJn (1) fﬂAij (t)} = itij, (2)
[:19,] = [B: 0 3b; (0] = [br: () 1Br: (0] = 5.
However, the operators @H(t) = (aAcL v ]gz)(t) and
Eﬂ(t) = (%M v ]/;U)(t) (in HP and IP, /r\espectively)

depend on the corresponding operator (;s = 991 \Y, ?)z
in SP from the following projections relations:

{gi w1 (t) =exp(iHppT) s exp(—iHp,T) .
Gir (1) ZeXp(iflohp (t —t0))Cis (2) exp(—iflohpT)

N {@-H () = expliHT) G exp(—il2T)

Gir (t) = exp(iH" T)(;y exp(—iH"T).

Here, T =t —to, Cis = @; V py, Grr(t) = (a3 V py)(t)
and (7(t) = (g%” v f)“)(t) are the three representa-
tions (SP, HP, and IP) in NRQM, while the dynamics

of new systems L’i(t) is described by the following
motion equations in NRNCQM:

de; -
S l) _ [ (), ) + 2210

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 11

} n G (t)



A New Approach to the Approximate Analytic Solution

dCipr (1) dCim (1)
dt ot )

Here, ﬁhp (ﬁth) and H" (H")) denote the or-
dinary and generalized quantum Hamiltonian (free)
operators for the GHP model in the NRQM and
NRNCQM, respectively. The very small two param-
eters (09,0”7) = ¢9(0,0) (compared to the en-
ergy) are elements of two antisymmetric real matri-
ces with dimensions of (length)? and (momentum)?,
respectively. Furthermore, (), denotes the star prod-
uct, which is generalized for two arbitrary functions
(f,9)(z,p) to the form (f,9)(Z,p) in the ordinary 3-

dimensional space-phase (see, e.g., [25-33]):
(f*g)(z,p) =
i ;:0f 0g i-ij Of Og
= — =0 == — - . 5
(fg 2 5$Z axj 2 apZ apj (x?p) ( )
This allows the formation of a scale of two space

and phase cells with volumes 3., = #3/2 and I3, =

ncs nep
= ?3/2, respectively. On the other hand, Eq. (5) al-

lows us to satisfy the postulated algebra in Eq. (2).
The second and the third terms in the above equa-
tion are the effects of (space-space) and (phase-phase)
noncommutativity properties, respectively. It is the
aim of this paper to present approximate solutions
of the modified Schrédinger equation with the GHP
model in 3-dimensions using the improved approxi-
mation scheme to the centrifugal term for different
l zero states and generalized Bopp’s shift method,
in addition to the standard perturbation theory. The
organization scheme of the recent work is given as
follows: In the next section, we briefly review the
ordinary SE with the HP model based on Refs. [3—
8]. Section 3 is devoted to studying the MSE by ap-
plying the generalized Bopp’s shift method for the
GHP model. In the next subsection, by applying stan-
dard perturbation theory to find the quantum spec-
trum of n'? excited levels for the spin-orbital inter-
action in the framework of the global group (NC-3D:
RSP). Then we derive the magnetic spectrum for the
GHP model. In the fourth section, we resume the
global spectrum and corresponding NC Hamiltonian
operator for the GHP model and corresponding en-
ergy levels of the hydrogenic atoms such as Het |
Lit2, and Be' and, in addition, the neutral atoms
such as sodium, carbon, and gold atoms. Finally, the
achieved results are briefly summarized in the last
section.

=[G (0 :E2) +
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2. Overview of the Eigenfunctions
and the Energy Eigenvalues for Hellmann
Potential Model in NRQM

In this section, we recall the time-independent SE for
the Hellmann potential model , which is an impor-
tant short-range potential that behaves itself like the
Coulomb potential for small values of the distance be-
tween two particles r and decreases exponentially for
its large values (see, e.g., [3-8]):
Vip (r):_gJeL((W (6)
where a, b, and § are the potential strengths of
(Coulomb and Yukawa) potentials and the screen-
ing parameter, respectively. If we insert this potential
into the SE, we obtain the radial part of the SE as
follows:

r

dQUnl(’I‘) gdUnl(’l“) +

dr? r o dr
+ 20 (Ent = Vopp(r)) Uni(r) =0 (7.1)
and
d’Ry(r
Té() + 20 (Enp — Vegi—hp(r)) R (r) = 0. (7.2)
Here, U, (r) = R%(T) and Veg_pp(r) = Vip(r)+ W;g”

is the effective potential, u is the reduced mass, F,;
is the eigenvalues of the Hellmann potential model,
while n and [ are the radial and orbital angular mo-
mentum quantum numbers. The complete wave func-
tion W(r,0, ) = Uni(r)Y;(0, ¢), as a function of the
Jacobi polynomial P,(LQH”’QZH)(l — 2s) and the spher-
ical harmonic functions Y;™ (6, ¢), is as follows (see,
e.g., [4-7]):

—0nn
‘I’(T79a<ﬂ) = ans (1 - S)l+1 P£2n"’2l+1)(1—28) X
XY™ (0, ). (8)
Here, s = exp(—dr), 0, = 6”6§A +I(14+1), e, =
_ _ _ néal'(n+a+v+1)|
= —2uBn, A = 2pad, Ny = \/I‘(n+a(4rl)F(n+uJ)rl)

is the normalization constant and v = 2] + 1. The
energy E,; of the potential in Eq. (6) is given by
(see, e.g., [4-6]):

e [(euja) @b -1+ 1210+ DY
En==3, ( 2(n+1+1) >+
+w+u+?fl (9)
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3. Solution of MSE for GHP Model
3.1. Physical model

In this subsection, we devote this part to study-
ing for the GHP model V,*? (r), in (NC: 3D-RSP)
symmetries. To solve this task, the physical form
of a modified Schrodinger equation MSE, it is nec-
essary to replace the ordinary three-dimensional
Hamiltonian operators Hp,, (p, ), ordinary complex
wave function ¥ (r) and E,; (in NRQM) by three-
dimensional Hamiltonian operators H"? (p,), com-
plex wave function V¥ (¥), and new values of E'2, re-
spectively (in NRNCQM). In addition, to replace the
ordinary product by the star product (*). This allows
us to construct the MSE in (NC-3D: RSP) symme-
tries as (see, e.g., [34-38]):

Hyy (p,z) ¥ (r) = By ¥ (r) =

= H} (5,7)+ ¥ (F) = Ep2V (7). (10)

The Bopp’s shift method employed in the solutions
enables us to explore an effective way of obtaining
the modified potential in NRNCQM. It is based on
the following commutators (see, e.g., [22-27]):

[20,25] = [ (025 (0] = [21: (1) .21, (0)] = 035, -
Bibs| = [p: 0. )| = [pr: (8).51: (0] = 8.

The generalized positions and momentum coordi-
nates (%Z,;{\)z) in (NC: 3D-RSP) depend on the corre-
sponding usual generalized positions and momentum
coordinates (x4, pi) in NRQM as follows, respectively
(see, e.g., [34-38]):

. VAVAN
(xiapl) - (‘rlapz) =

(J?i - %pj,pi + 27%) (12)

The above equation allows us to obtain the two op-
erators 72 and p? in (NC-3D: RSP) (see, e.g., [36-42]):
(r2,p2) — (7;27232) = (1"2 -LO,p* + La). (13)

The two couplings LO® and Lé are (Ij@lg +
—|—Ly®23 + Lz@13) and (anlg + Ly923 + L2013), re-
spectively, and (Ly, L, and L) are the three com-
ponents of the angular momentum operator, while
©;j = = 0,j,/2. Thus, the reduced Schrédinger equa-
tion (without star product) can be written as:

H!'? (5,7) * U (F) = E'?U (7) =
990

= HI? (5,3) ¥ (r) = EMU (r). (14)

The Hamiltonian operator H"? (p,7) for the GHP
model can be expressed as:

H}? (p,7) = H (xi = — jjpjvpi =pi+ 2j$]>

(15)

Now, we want to find the GHP model for V"7 (r)
in (NC-3D: RSP) symmetries:

Vip (r) = V2 () = =% + bexprﬂ.

(16)

After straightforward calculations, we can obtain
the important terms (—%) and (M) which will
be used to determine the GHP model in (NC: 3D-
RSP) symmetries as:

a a

a 2

bexp(—d7) :bexp(fdr)Jr? exp(—0r) LO+0(67).
r
This gives (17)
bexp(Z07) _ bexp(=or) % exp(—0r) LO +
T r 2r
&b 9

+ 52 exp(—or) LO + O(67). (18)

By making the substitution of the above equations
(18) and (17) into Eq. (15), we find our global work-
ing Hamiltonian operator H"? (p, ) that satisfies the
equation in (NC: 3D-RSP) symmetries:

. bexp(—dr) &b exp(—dr) a
hp — _
e (,7) ( 2r3 + 272 2r3 LO+
Le -~
+E + Hpp(p; @), (19)

where the operator f[hp (p,x) is just the ordinary
Hamiltonian operator in NRQM:

p? e bexp(—or)

Hyp (p, ) : (20)

:ﬂ_r T

while the rest four terms are proportional with two
infinitesimals parameters (© and ). We can consid-

. h ~ e
ered them as perturbation terms H;% (p, ) in (NC:
3D-RSP) symmetries as:

h ~
Hpgrt (p7:10) =
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- (e MhenlCn o ye Ly,
Sop

273 272 273
(21)

It is clear that the operator ﬁhp (p,x) is just the
Hamiltonian operator for hydrogenic atoms such as
He', Li*? and Bet in ordinary quantum mechanics,
while the generated part Hgfrt (p,T) appears as re-
sults of a deformation of the noncommutativity space
phase. In the present work, we can disregard the sec-
ond term in Hggrt (p, @) because we are interested in

the corrections of first order © and 6.

3.2. Spin-orbit Hamiltonian
operator for the hydrogenic atoms
in the GHP model

In this subsection, we want to derive the physical form
of the induced Hamiltonian Hggrt (p,Z) due to the
space-phase noncommutativity. To achieve this goal,

we replace LO both and Lo by useful physical forms
€O LS and e LS, respectively (see, e.g., [39-43]):

H[2 (p,7) =

. Kb exp(—or)

2r3 212 2r3

(22)

1/2 = 72 | 2

Here, @ = (@%2 + 6%3 + @%3) / 5 9 = (912 + 923 +

+9f3)1/2, and € ~ 1/137 is the atomic fine structure

constant, and S denotes the spin of the hydrogenic

atoms such as (Het, Li*2, and Be™). Thus, the spin-

orbit interactions H? (p,7) appear automatically as

a result of the deformation of the space phase. Now,

physically, we can rewrite the quantum spin-orbit LS
coupling as follows:

J=L+S=2LS=J?-1>-S% (23)

Here, J is the total momentum of the hydrogenic
atoms such as He™, Lit2 and Bet. The substitution
of this equation into Eq. (22) yields:

H (5,7) = 6l(b exp(—or) n 6b exp(—dr)

2r3 2r2
_a>®+0 G?, (24)

2r3 2u
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+ 2220 2o+ o s,
2p

where G2 = J?2 —L? —S?2 and J = L + S. It is well
known that the eigenvalues j of the total operator
J can be obtained from the interval |l —1/2] < j <
< |l 4+ 1/2| for hydrogenic atoms. We have an occa-
sion of determining two-sided bounds to the eigenval-
ues of the operator J? — L? — S? as follows:

k(]JvS):j(.7+1)_l(l+1)_8(s+1):
:{k(j=1—1/2,z,s)

for spin__ down,
e (25)

ki(j=1+1/2,1,s) for spin_down.

A second occasion of determining a diagonal ma-
trix H2 (p, 7) of order (3 x 3) with diagonal elements

(HZ (5,7)),: (HE (P.7)),, and (HY (p,7)) 45 =0

as:

(H!? (p.7)),, =

B bexp(—dr)  dbexp(—dr) a 0

= 6k+ |:( 2’]”3 + 27‘2 ﬁ © + ﬂ

ifj=1+1/2,

(Hshg) (P; f))22 =
bexp(—dr)

= k- K 273 + 272

ifj=1-1/2.

(26)

Sbexp(—6r) a)e 0]

— 53 ﬂ

After the straightforward calculation, the radial
functions Ry (r) satisfy the following differential
equation in NRNCQ for hydrogenic atoms in the
GHP model:

d2 Rnl (T)
dr?
with

+2u (B2 — Vel (r)) R (r) =0 (27.1)

Vi (1) = Veer—np () +
bexp(—dr)  dbexp(—or) a 0
-4 | Ls.
e K 273 * 2r2 273 o+ 2u S
(27.2)

We introduced the generalized effective potential
Ve (r) in (NC: 3D-RSP) symmetries. We have seen
previously that the induced spin-orbit H"? (p,7) is
infinitesimal compared to the principal Hamiltonian
operator Hp, (p,x) in NRQM for hydrogenic atoms
such as Het, Lit2, and Be* in the GHP model. This
equation cannot be solved analytically for any state,
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because of the centrifugal term and the studied
potential itself. Therefore, in the present work, we
considered the following approximation type sug-
gested by Greene, Aldrich, and Dong et al. for them
[44, 45]:

1 52 -0
1 Texp(=on)

2 (1 —exp (—=0r))?

exp (—=or) %5
7'2 (1 _ 8)2 ’
exp (=0r) §355/2
rs (1-s)
1 §8s8/2

; (28)

~

r3 (1- 5)3-

This allows us to apply standard perturbation the-
ory to determine the nonrelativistic energy correc-
tions E of hydrogenic atoms such as He™, Li*2
and Be™ for the first order in two infinitesimal param-
eters © and @ due to the noncommutativity of space-
phase properties. Instead of solving the modified-
radial Schrodinger equation for the effective GHP
model V< () given by Eq. (27b), we now solve the
modified radial Schrédinger equation for the general-
ized effective potential given by the previous approx-
imations:

o[ (63502
Vnc (S) - 6[ <(1 - 8)3

i 53bs? B ad3s3/2 o+
(1-5)? (1-s)

2
LS+5 l(l—&-i) B ad bds .
(1—5) 1—-s5s 1-s

_|_

o
2

3.3. Bound-state solution
for spin-orbit operator for hydrogenic
atoms in the GHP model

The principal goal of this subsection is to determine
the energy spectrum EY" (ky,n,a,b,6,5,1,8) =
= EUPP and EMP (k_,n,a,b,6,j,1,s) = B2 which
produced to H"? (p, %) corresponding to j = [ + 1/2
and j =1 — 1/2 in the first order in two parameters
© and 6 for hydrogenic atoms for (n,l ) states by
applying standard perturbation theory and through
the structure constants which specify the dimension-
ality of the GHP model of hydrogenic atoms such as
He't, Lit2, and Bet. Thus, we obtain the following
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results:

u h
Eso P _

GNglk_;,_ o

+oo
_ / 52 (1 — g)2H2 {P,(f"”’m“) 1- 25)}2 %
0

b63s5/2 53bs? ad3s3/? 0
5 + 5 — 3| ©+ —|dr
(1-y9) (1—29) (1—y9) 2
Edhp
eNZ ki B
—+o0
_ / 5720 (1 5)2H2 {P,(f”“’m“) 1- 23)} %

0

b3 55/2 53bs? ad3s3/2 4
X 3 + 5 = 3 (S} + 27
(1-29) (1—29) (1—13s) iz

We have s = exp (—dr), this allows us to obtain

dr.

dr = —%%. After introducing a new variable z =
=1—2s, we have dr = —%fi, s = lgz and 1 —s =
1+z

= =%, the approximations (29) in that case have the

following form:

exp(=or)  0°s* 63 (1— z)?
r? (1-5)7 (1427
_ 3.5/2 3 (1 _ -\5/2
exp(3 or) ~ 53s — \/55 (1 Z)S 7 (31)
r (1-23) (1+2)

i N §5343/2 B 23/2 53 (1 _ z)3/2
(1+ z)3 )

~

o (1—s)
This allows us to reformulate Eq. (30) as follows:

+1

:/]1_@—%%(L+@”“x

—1

22l+2—25nn Euohp
s
2
eNZ ks

yu1—aw2+
(1+2)°

2b(1—2) ad®s3/? 0 1
+ - O+ ——|dz,
2(142)> (1-s)° 26 1 — z
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+1

- /(1 —2) B (1 4 )72

-1

22l+2725nn Edohp
s
2
eNZ ki,

« |:P7(LQ777“2l+1) (z)} K\f(s%( )3/2

2(1+ 2)°

2 _ 3.3/2 il
5*b(1 ,22) _ad’s + 9 6 1 . (32)
2(1+2) (1—s)° 261 — 2

A direct simplification gives nonrelativistic energy
corrections E4M? and E2"P in the first order in two
infinitesimal parameters © and 6 for the hydrogenic
atoms such as Het, Lit2, and Bet as follows:

Egohp (k+7na a, b7 57 j7 la 8) =

- .
0
= N2k, @;Ti(n,l, ) + ﬂT4(n, 1,0)],
- ; 33
Eéd‘ohp (k+7n7a7b757j7la8) = ( )
-3 p -
— 2 . -
= N2k @Z}z(n,z,a) + 2MT4(n7l,5) ,
where the factors T;(n, [, ) are given by:
9214+3—-26nn 1.5 t
1(n7 ) ) :/ (1_2)7257]1;7‘1’3/2 (1+Z)2l71><
V262b s
x [P (o )]de
20+3-26 Vi
2 + n"TQ nal;(s / —26mn+1 (1 + Z)Ql %
-1
X |:P(2nm2l+1) (Z):| dZ (34)

920+3— ;zjgg;g n,l,0) / —28n,4+1/2 (1—|—z)2l_1><
% [PT(LGmle) (z)} dz, -
§22H2-2000 T, (1, ) = 71(1_2),25%71 (142)2+2x
o {Pf%’mﬂ) (Z)r dz._l

For the ground state n = 0, we have

Po(zn"’mﬂ)(z) = 1. Thus, the above four factors in
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Eq. (34) are reduced to the following simple form:

V262

T1(n,l,5)=m

+1
/(1 —z)_25n°+3/2(1+z)21_1dz,

-1
+1

/(172)*25"0“(“2)21(14

3/2 52 _11 (35)
2°/56 _ -
:22z+372;70 /(1_2) 214 2)" e,

-1
+1

1 26m—
(O,l,é) m /(1—2') 20m 1(1+Z)2l+2d2.
-1

5%b
12(0,1,0) = Sorrs=asmy

T3(07 lv 5)

Let us compare Eq. (35) with the integral of the form
[46]:

+1
/ (1=2)"(1+2)" Py (2) P (2)dz =

-1

20T (npa+ 1)T
B (2n+a+/3+1)I‘

-+ fo-
22”+0‘+6+1F(n+ a+1)T
- 2n+a+B8+1)T

We obtain:

27,(0,1,8)
b

n+58+1)
Cn+a+p+1)

677LTL j

2" (14 2)" Py =

(n+p+1)
C2n+a+p5+1) "

(36)

B I'(=20m9 +5/2)T
- (—20mo +20+3/2)T
215(0,1,8)
2

B T(—20m 4+ 2)T (20 + 1)
©(=26m0 + 21 +2)T (—28m0 + 20 +2)’
275(0,1,0)

02a -

(20)
(—20m0 + 21+ 3/2)’

_ '(=26ny+3/2)T
©(=20mo+20+1/2)T
20T4(0,1,8) =

_ [ (—26m0)T
C(=20mp+20+2)T

(20)
—26m0 + 20+ 1/2)’

(20)
(—26m0 + 21 +2)

\/ == 4 4 I(14+1) and e = —2uFEqy;. Sub-

stituting Eqgs. (37) into Eq. (33), we obtain nonrel-
ativistic energy corrections E“"?(k,,0,a,b,6,],1,s)

993



A. Maireche

and E4MP(k_,0,a,b,6,7,1,5) for the ground state in
the first order in two infinitesimal parameters © and
0 for the hydrogenic atoms such as Het, Lit2, and
Be™ corresponding to j =1+ 1/2 and j =1 —1/2 as:

Egohp (k+7 07 a, b7 57j7 l7 8) =
— eNZky [OT(0,0,6) + 2
Eglohp (k+7 07 a, ba 57j7 lv S) =

= eN2k_ [@T(o, 1,6) + £T(0, z,a)}

with Z T:(0,1,6) = T(n = 0,1,6) and NZ =
= % For the first excited state n = 1, we

have PP (2) = a + 1+ (a + 8 + 2) 25
four factors in Eq. (34) are reduced to the following
simple form:

+1
V26%b —28m1+3/2
= S2i13—2m /(1 — z)

1
x (142" g h(1-2)d,

T1(17la 6)

+1

Ty(1,1,6) = 5%/(1 —g) MLy
A5 %= 53113 25m
—1
x(1+2)"[g_h(1-2)]"dz, "
93/2§2 Va (39
a —26
To(1,0,0) = Saregomse / (1— ) 2m+1/2

x (142" g_h(1- z)F dz,
+

Ti(1,1.8) = sy | (-

x(14+2)" g h(1—2)dz

=

—26m1—1

with ¢ = 2dm + 1, h = m +1+ 2, y1 =
El(SQA +I1(l+1) and ¢ = —2pFy;. A direct sim-

plification to Eq. (39) gives:

920+3-26m T (1’ l, (5)

V262b
+1
292/(1 _ Z)—25"71+3/2 (1 +Z)2l_1 dz —
21
+1
—Zgh/(l—z)_25"1+5/2(1+z)2l_1dz+

+1
2 / (1 2)~20m4T/2 (4 21 g,
1
22l+3725n1T2(17l,5)

62b
+1
=g? / (1—2)" 2t (14 )% dz—
21
+1
- Zgh/ (1- z)_25m+2 (14 2)"dz+
as
+1

+h2/(1 S)RmAS (g 2l g
—1
2AF3=2mTy(1,1,0)

V262b
+1
— g2 / (1 _ z)—267}1+1/2 (1 + Z)Zl—l de —
S1
+1
— Zgh/ (1- z)_26m+3/2 (1+ 2)21—1 dz +

-1
+1

+ h? / (1-=2
-1

92l+3—-26m T4(1, l, 5) B

V282b a

+1
:g2/<1_z)7257]171 (1+Z)2l+2 dZ—

—1
+1

- Qgh/ (1—2) 2" (1422 dz +

-1
+1

+h2/(1—

-1

)—267}1-‘1-5/2 (1 +Z)2l_1 dZ),

2) 7ML (1 4 2)P 2 g, (40)

Comparing Eq. (38) with integral (36), we have four
factors as:
g%62bT" (—26m; +5/2) ' (21)
2(y+3/2)T(v+3/2)
2ghé*bl (—26m; +7/2) T (21)
C 2(y+5/2)T (v +5/2)
h282bT (—26m1 +9/2) T (21)
2(v+7/2)T(v+7/2)
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g%62bl (=26m; +2) T (21 + 1)
2(y+2)T (v +2) a
2ghd?bl (—26m; +3) T (20 + 1)
(v+3)L(v+3)
h262bD (—26m +4)T (21 + 1)
(Y+4)T (v +4) ’

—g26%al’ (—26m + 3/2) T (21)
2(v+1/2)T (v+1/2)
2ghdé?al’ (—26m +5/2) T (21)

(v+3/2)T (v +3/2)
4h*§%al’ (—20m +7/2) T (21)
(7+5/§)T(7+5/2) ’
g°T' (—26m ) T (21 + 3)
R e IR
4ghT (—=26m + 1) T (21 + 2)
(P +3)T(v+3)
4h2bT (—26m; +2) T (21)
d(y+3)T'(v+3)

with v = —20m; + 2. This allows us to obtain nonrel-

ativistic energy corrections for the first excited state

Evh?(ky 1,a,b,6,7,1,5) and E4PP(k_1,a,b,6,7,1,5)

for the first excited state in the first order in two

infinitesimal parameters © and 6 for the hydrogenic

atoms such as He™, Lit? and Be't corresponding to
j=l+1/2and j=1—-1/2 as:

T2(1ala 6) =

Ty(1,1,6) =

(41)

Egohp (k-‘rv 1a avb7 67j7la S) =
— N2k, [@T(L 1,6) + LTi(L,1, 5)},

42
Egohp (k+717aab567.jal75) = ( )

= eN2k_ [@T(l, 1,8) + 2 Tu(1, z,a)}

with 327 Ti(n,1,6) = T(n = 1,1,6) and N2 =
dal (a+21+3)]
T(a+2)T(20+3)
ativistic energy corrections E4'"? (ky,n,a,b,6,j,1,s)
and B4 (k_ . n, a,b,6,7,1,s) for the n'* excited state
in the first order in two infinitesimal parameters ©
and 6 for the hydrogenic atoms such as He™, Lit2,
and Be™ corresponding to j =[1+1/2 and j =1—1/2
as:

Thus, for any excited state, the nonrel-

E“M (ki n,a,b,6,j,1,5) =
0
=eN%ky |OT(n,1,6) + ET4(n,z,5) ,
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Egohp (k-‘rv n,a, bv 57 j7 la 5) =

=eN%k_ |OT(n,1,6) + %T4(n, 1,6) (43)

with 3°2_ Ti(n,1,8) = T(n,1,6). This allow us to
obtain the following important physical results for hy-
drogenic atoms such as Het, Li*2, and Bet in the
GHP model:

o R (r m
1l (5.7) Ty g, ) =

Ry (r

~—

B4 (ky,n,a,b,6,5,1,5)
for j=1+1/2,
Egohp (kJr?nvavba 5aj7lvs)
for j=1+1/2.

Y™ (0, )

\
=

Bl @y 0,

3.4. Bound-state solution
for the modified Zeeman effect
in the GHP model

In this subsection, we will obtain the en-
ergy  spectrum  E“"(k, n,a,b,6,j,1,5) and
EiP°(k_n a,b,6,4,1,s) which is produced to
H!'(p,z) corresponding to j = [ + 1/2 and

j =1—1/2 in the first order in two parameters © and
@ for hydrogenic atoms for (n,l ) states. As is known,
it is possible to obtain the additional symmetry
for the GHP model. This physical phenomenon
is induced automatically from the influence of an
external uniform magnetic field B, if we make the
following two simultaneous transformations to ensure
that the previous calculations are not reputed:
(©,0) = (\,7)B. (45)

Here, A and & are just two infinitesimal real pro-
portional constants. To simplify calculations without
compromising the physical content, we choose the
magnetic field B = Bk. Then we transform the spin-
orbit coupling to the new physical phenomena as fol-
lows:

bexp(—dr)  dbexp(—or) a 0
K 203 oz 2) @y T
bexp(—dr)  dbexp(—dr) a T
= K 2r3 * 2r2 2r3 )\+2u BLs.
(46)
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This allowed us to derive the modified magnetic
Hamiltonian operator H" (r,\,7) for hydrogenic
atoms in the GHP model in global (NC: 3D-RSP)

symimetries as:

_ bexp(—dr)  dbexp(—dr)
h _
HP (r,\o) = K 5,3 + 53 _
a _
_ w) A Qﬂ Honod—». (47)

Here, Hyoq—» = BJ_ H, denotes the to Zee-
man effect in NC quantum mechanics, while H, =
= —BS is the ordinary Zeeman effect. To obtain the
exact NC magnetic modifications of the energy for
the ground state, the first excited state and n'* ex-
cited states of hydrogenic atoms such as Het, Lit2,

and BeT in the GHP model Er};%g 0,a,b,0,7,m,s),
Eﬁgg (1,a,b,9,7,m,s) and E{;};g (nya,b,d,j,m,s) we

just replace ky or k_ and (©,0) in Egs. (38), (42)
and (43) by the following parameters m and (A, 7)B,
respectively:

Bl

mag

(O’ a? b7 67.].7 m7 8) =
— eN2B [)\T(O, 1,6) + £ T4(0,1, 5)} m,
Bl

mag

(1’a7b767j7m) 8) =
_ (48)
— eNZB [AT(l, 1,6) + ZTu(1,1, 5)} m,

EM

mag

= eN%B [)\T(n, 1,6) + & Tu(n, 1,5)} m.

(n7a7b76’j7m78) =

We have (—1 <m <+1), which allow us to fix (2[+1)
values for the discrete number m. It should be noting
that the results obtained in Eq. (48) can be found
by the direct calculation E"?_(n,a,b,d,j,m,s) =

mag
= (U|H" (r,\,7)|¥) that takes the following ex-
plicit relation:

mag

+oo
- 2042
EM :eNleBm/s 20mn (1 — )27 x
0

2
X [Pff""’m“) (1-— 23)} X

b3 s5/2 53bs? ad3s3/2 4 T dr. (49)
— — | dr.
(1-5°% (1-s? (1-3s° 2p

Moreover, we apply the same steps that we saw in
the previous subsection to get the results presented
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in Eq. (48). We end this subsection by addressing the
important results:

Rnl (7“)

H?p (Tv )‘75) Yim (97 (P) =

_ Ehp R’ﬂl (T)
T

mag

(nﬂ a, b7 57 j7 m, S)

" (0, ). (50)

4. Results and Discussion

In the previous subsections, we obtained the solu-
tion of the modified Schrédinger equation for the
GHP model, which is described by the Hamilto-
nian operator given in Eq. (19) by using the gener-
alized Bopp’s shift method and standard perturba-
tion theory. The energy eigenvalues are calculated in
the 3D space-phase. The modified eigenenergies for
the ground state, the first excited state. and n'" ex-
cited states of hydrogenic atoms such as Het, Lit2,
and Bet in the GHP model E“P (0,a,b,6,7,1,m,s),
Ei1P (1,a,b,6,j,1,m, s) and B (n,a,b,3, j,1,m, s)
with spin-1/2 are obtained in this paper on the basis
of our original results presented in Egs. (38), (42),
(43) and (42), in addition to the ordinary energy for
the Hellmann potential model which is presented in
Eq. (9) in the form:

E (0,a,b,6,7,1,m,s) =

= FEy+ + €Nng |:)\T(O, l,(S) + %TAL(O)Z’ (5):| m+

0
ey {@T(O, 1,0) + 3 Ta0.1, 5)]

for j =1+41/2,

+eNg orJ / 7 (51.1)
k_ [@T(O, 1,6) + ETZL(O, l, 5)}
forj=1-1/2,

E:},L(Ijj (17 a7 b7 6’ j’ l? m) S) =

= Ey4eN2B [)\T(l, 1,6) + %ﬂ(l, l, 5)} m+
ky [@T(l, 1,6) + %sz(l, l,(S)}
for j =1+1/2,

Lenz Jlora =Y (51.2)

0
k_ {@T(L ,0)+ ﬂﬂ(l, l, 5)]
forj=1-1/2

and
E" (n,a,b,8,7,1,m,s) =

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 11



A New Approach to the Approximate Analytic Solution

82 [((2u/a) (a —b) — (n4+1+1)> =11+ 1)\
‘mK 2+ 1+ 1) )*
2ua

+l(l+1)+6}+

+eN2B [AT(n,Z, 5) + 21T4(n, l, 5)] m+
I

ey [@T(n, 1,6) + %n(n, l, 5)]

for j =1 +1/2,
yenz I / . (51.3)
k_ |©T(n,l,6) + 2uT4(n,l,6)}

forj=1-1/2.

where the energies of the ground state Ey and the
first excited state E7; in the symmetries of quantum
mechanics in the Hellmann potential model are as
follows:

2
By K(?u/a)(a—b)—(1+1)2—1(z+1)) .

24 2(1+1)
2
+1( +1)+’;a],
o O [(@r/a)a=b)-(+2P 10+ 1)V | (52)
1T Ty 21+ 2)
2
+z<z+1)+’;“].
Thus, the total energy E"(n,a,b,é,5,1,m,s)
for the GHP model in (NC: 3D-RSP) sym-

sum of the ordinary part of
Eﬁlgg(n, a,b,0,j,m,s) and the
two  corrections  E%“P(ky n,a,b,6,5,1,5) and
Edr(k_n a,b,0,5,1,s) (for j = 1+ 1/2 and
j =1—1/2) and. This is one of the main objectives
of our research. Finally, we end this section by

introducing the important result of this work as:

metries is the
the  energy

(i (p,) + H'? (5, 7) + HI (1, 0,))
Rt (1) < om
« Fnt Ty 9, ) =

= (Enl +eN*B [AT(n,l,(S) + ;T4(n,l76)] m+
I
Esuohp (k-i-a n,a, ba 65 jv l, 5)

for j=1+1/2, R, (r

" ey .. 63)
Esop(k+7naa7b75ajvla8) r

forj=1+1/2
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This is one of the main motivations for the topic
of this work. It is clear that the obtained eigenvalues
of energies are real, which allow us to consider the
NC diagonal Hamiltonian H"? (r, @,?)\,E) as a Her-
mitian operator. In addition with regard for results
(20), (22), and (47), the global Hamiltonian operator
in the first order in and within the GHP model for
hydrogenic atoms for (n,1) states takes the form:

H (r,0,00,7) = 72é S

.\ Kbexp(—5r) . Shexp(—br) ) .

bexp(—or) n

2r3 212 2r3

+ U:| Hmodfz +
2p

bexp(—dr)  dbexp(—dr) a E
‘ K 23 T 22 273 o+ 24 LS.
(54)

This is the equation for hydrogenic atoms under the
influence of the GHP model interactions. It should
be pointed out that this treatment considers only
the first-order terms in either © or . Clearly, the
first part of Eq. (54) presents the Hamiltonian op-
erator in the ordinary quantum mechanics for Hell-
mann’s potential model, while the second and third
parts, respectively, present the spin-orbit and mod-
ified Zeeman Hamiltonian operators for the GHP
model, which are induced automatically by the NC
properties of space and phase. It is evident to con-
sider the atomic quantum number m can take (204 1)
values, and we have also two values for j = [+ 1/2
and j = [—1/2 corresponding to up and down polari-
ties, thus, every state in the usual 3D-space of energy
for the GHP model will be 2(2/ + 1) substate in (NC:
3D-RSP). Thus, the total complete degeneracy of the
obtained energy level of the GHP model is obtained
as a sum of all allowed values of [. The total degen-
eracy is, thus,

n—1

2(21 + 1) = 2n?. (55)
=1
In the limit (©,60) — (0,0), we have
Lim  E"(n,a,b,6,7,1,m,s) = Ep.
(©,0)—(0,0)
Now, we can deduce the energy levels
E'(n,k(4,1,5),a,b,8,7,1,m,s) of neutral atoms (the
997
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atoms that possess a number of external electrons
equal to the number of protons in the nucleus) in the
GHP model such as sodium, carbon, and gold atoms,
which are known by their chemical symbols (Na, C
and Au), respectively. We just replace k (j,1, s) with
the new value k(j,1,8) =7 +1)—1(l+1)—s(s+1)
in Eq. (51.3) to ensure that previous calculations are
not reputed:

E’r?cp (n7k(j’l7s) 7avb557jal7m7s) =

82 [((2u/a) (a—b) — (n+1+1)> =11+ 1Y
_zu[( 2(n+1+1) )+

2
+l(l+1)+/§a}+

+eNZB [)\T(n,l, 5) + in(n, l, 5)] m+
N2k (i 8) [@T(n,z,w n imn,z,a)}. (56)

We now look at some special cases and relationships
between our recent results and some other existing
results in our previous works.

Case 1: First case where we set a = Ze? and
b = 0, the GHP model is reduced to the modified
Coulomb potential, it is easy to show that Egs. (19),
(39), and (44) are reduced to the modified interaction
HE, (r,0,0) of a particle in the modified Coulomb
potential and the corresponding NC spectrum, re-
spectively:

H"?

pert

(r,0,8) - H:

o (1,0,0) =
Ze? Lo
=——LO + —
273 + 2u

and o

Z* e
7
ne e 2(n+l+1)+

+eNZB [AT(n,1,b=0,5) + 21T4(n7 Lb=0,6)m+
I

k4|©®T(n,l,b= 0,5)+%T4(n,l,b= 0,9)
for j=1+1/2,

+ N3, ) B (58)
k_1©T(n,l,b= 0,5)+%T4(n,l,b =0,9)
for j=1-1/2.
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Case 2: Similarly, if we set « = 0 and b differ-
ent from zero, Egs. (19) and (39) are reduced to the
results of modified Yukawa H;fg;‘gawa (r,0,60)and cor-
respond to a modified bound state energy spectrum of

a vibrating rotating diatomic molecule, respectively:

co n ukawa = Lo
i (0.7 Y (r.0,7) + 20 =
bexp(—dr)  Sbexp(—dr)
= L
< 2r3 + 22 © (59)
and

EMP — EYUeva (n.b,6,5,1,m, s) =

[ 2p/a)b— (n+ 14+ 1)° 11+ 1)
__mK 2(n+1+1) >+

I+ 1)] +

+eNy B [)\T(n, l,b=0,6)+ 21T4(7”L, l,b= 0,5):| m+
1

k+|©T(n,l,a =0, 5)+%T4(n, l,a=0,0)
for j=1+1/2,

+ €N, ) _ (60)
k_|©T(n,l,a =0, 5)+%T4(n,l, a=0,0)
for j=1-1/2.

It is possible to recover the results for the commu-
tative space, when we consider (O , ) equal (0, 0).

5. Conclusion

In this paper, the three-dimensional modified radial
Schrédinger equation has been solved in the GHP
model by using the improved approximation scheme
to the centrifugal term for any l-states and general-
ized Bopp’s shift method, in addition to standard per-
turbation theory in (NC: 3D-RSP) symmetries. We
resume the main obtained results:

The energy eigenvalues of the bound states
of hydrogenic atoms in the GHP model
(E;fchp (07 a, b7 67j; la m, 8)7 Egchp (1> a, ba 57ja l> m, ‘S)
and E*MP (n,a,b,,7,1,m,s) ) with spin-1/2 for the
ground state, the first excited state, and nt" excited
states have been analytically found. The energy
eigenvalues depending on (a, b, ) parameters and the
discrete atomic quantum numbers (j,1,m,s) have a
finite number of the quantized energy spectrum for
the GHP model.
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The energy eigenvalues of the bound states
of neutral atoms such as Na, C, and Au in
the GHP model, with spin-S for excited states
have been analytically found. The energy eigenval-
ues B (n,k(j,1,5),a,b,6,j,1,m,s) depending on
(a,b,0 ) parameters and the discrete atomic quantum
numbers (7,1, m, s) are obtained.

The ordinary kinetic term —% is modified to the

new form (7%12‘—3 - 12‘—3) for the GHP model in (NC:
3D-RSP) symmetries,

The Hamiltonian operator in (NC: 3D-RSP) sym-
metries H"P (7“, 0,0, )\,E) is the sum of the Hamilto-
nian operator of the HP model Hy,, (p, x)and two op-
erators, the first one is the modified spin-orbit inter-
action H"? (p,z) ,while the second is a modified Zee-
man operator HP (r, \,7) for the hydrogenic atoms
and neutral atoms.

It has been shown that the MSE presents useful
rich spectra for the improved understanding of the
hydrogenic atoms such as He®, Li*2, and Be™ and
neutral atoms such as Na, C, and Au influenced by
the GHP model. We have seen also that the mod-
ified spin-orbital interaction and the modified Zee-
man effect appeared due to the presence of the two
infinitesimal parameters (0, @) which are induced
by (position-position) and (phase-phase) noncommu-
tativity property of space-phase. It should be noted
that the results obtained in this research would be
identical with corresponding results in ordinary quan-
tum mechanics (see, e.g., [3-8]), when the two param-
eters are reduced to the limited values.
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No. BOOLO2UN280120180001 and by the Laboratory
of Physics and Material Chemistry of the University
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A. Mepew,

HOBUMN TIIAXII IO HABJIMZKEHOT'O
AHAJIITUYHOI'O PO3B’A3KY TPUBUMIPHOI'O
PIBHAHHSA ITPEJAIHIEPA J1J141 BOJHEITIOAIBHIMIX
I HEUTPAJIbHUX ATOMIB Y MOJIEJII

3 Y3ATAJIbBHEHUM ITOTEHIIAJIOM XEJIJIMAHA

Pezwowme

B pamMmkax HepeasTUBICTUYHOI HEKOMYTATHBHOI KBAHTOBOI Me-
XaHIKM 3 BUKOPUCTAHHSIM CXEMHU IOJIIIIEHOrO HAOJIMXKEHHS
JJIst BIZIIIEHTPOBOrO 4jeHa JJisi Oy/ib-IKuX [-CTaHIB B y3arajib-
HeHOMY MeTozni 3cyBy Bonmna i cranmapTHOl Teopil 30ypeHb, Mu
OTPpUMAJIN BJIACHI 3HAYEHHS €HepTil JIjIsi HEeIOJaBHO 3aIlpPOIio-
HOBaHOI MOJIeJli y3arajbHEHOro moTeHnjaxy Xesamana (Moje-
ai VIIX) musa BoguenoaibHux i HelTpanbHux atomis. [loTen-

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 11

miaJl € CyNepHO3HUIi€I0 KYy/JIOHIBCHKOIO MHOTEHI[aJIy THAXKIHHSA 1
norennianay FOkasu. HoBi nenTpasibHi 4l€eHN BUHUKAIOTH 3aB-
sk edeKTaM HEKOMYTAaTUBHOCTI mpocTopy i ¢dasum B Moze-
i morenmiany XenanMana. OTpuMani BJIacHi 3HaYEHHsI eHepril
BHPaKalOThCsI I€pe3 y3arajabHeHy raMMma-(pyHKIH0, TUCKPeTHI
aromui kBaHTOBI umcia (j,n,l,s i m), indiniresumanbui na-
pamerpu (a,b,d), HOPOIKEHI HEKOMYTATHBHICTIO OIEpPATOPIB
(monoxkenusi-nonoxkenus i dasza-dasa), i 3amexary Bim pos-
MipHEX napamerpis (O, ?) mozeni YIIX B HepesiaTuBiCTHYIHOMY
HEKOMYTATHBHOMY TPUBUMIPDHOMY peajibHOMY (Da30BOMY IIPO-
cropi. Bisibiite Toro, nmokaszaHo, 1mo BiAOBIAHUN raMijbTOHIAH
i3 CHMeTPisIMU IIHOTO IIPOCTOPY € CYMOIO raMiJIbTOHiaHa MOJeJi
VIIX i gBox omepaTopiB, OWH 3 AKHUX Biamosigae momudiko-
BaHiil cnin-opbiTasibHIA B3aeMoil, a Apyruil — me Moaudiko-
BaHUIl onepaTrop 3eeMaHa ISt BOJIHENOMIOHNX I HEHTpaJIbHUX
aToMiB.
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