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THEORETICAL ANALYSIS
OF THE INTENSITY OF ULTRASOUND
ABSORPTION IN AQUEOUS ALCOHOLIC SOLUTIONS

Ultrasound absorption in aqueous alcoholic solutions has been studied in the vicinity of their
singular points. The abnormal ultrasound absorption is assumed to occur due to the forma-
tion of unstable nuclei of a new phase. A model for the time evolution of those nuclei is
proposed. The model makes it possible to explain the emergence of the resonance ultrasound
absorption in the vicinity of the singular point of the 2-propanol solution. The dependences
of the absorption intensity on the nucleus parameters, temperature, and ultrasound frequency
are analyzed. A contribution of the ultrasound radiation from the nuclei to the effective shear
viscosity of the solutions is estimated. The results of theoretical calculations are compared with
available experimental data.
K e yw o r d s: ultrasound absorption coefficient, ultrasound absorption maximum, aqueous al-
coholic solutions, Lagrange–Rayleigh function, new phase nuclei, interaction with the acous-
tic field.

1. Introduction
The analysis of the behavior of aqueous alcoholic so-
lutions at relatively low molar alcohol concentrations
(𝑥 < 0.1) revealed a number of anomalous proper-
ties in them [1–5, 9, 10, 15, 16]. The latter are ob-
served near the so-called singular points of the solu-
tion [1–3]. In particular, an anomalous growth in the
intensity of molecular light scattering and the inter-
section of the contraction concentration dependences
measured at different temperatures take place in the
aqueous solution of ethanol near the solution concen-
tration 𝑥𝑠 ≈ 0.077 [2]. Furthermore, in work [3], it
was shown that the value of the ethanol diffusion co-
efficient is minimum at the singular point.

Similar peculiarities in the behavior of various
physical quantities are also observed at the singu-
lar points of other aqueous alcoholic solutions. As a
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rule, the relevant differences manifest themselves in
the magnitude of the corresponding effect that is ob-
served experimentally. It should be noted that such
deviations can only be observed in a day after the so-
lution has been prepared [4], which is associated with
the formation of mesoscopic inhomogeneities [5–8].

Note that the solution singular points also manifest
themselves in ultrasound measurements [9, 10]. For
instance, the interaction of an ultrasonic wave with
the aqueous solution of 2-propanol was studied in
work [10], and it was shown that (i) the curves de-
scribing the concentration dependences of the longi-
tudinal sound velocity measured at different tempera-
tures mutually intersect at the solution concentration
𝑥𝑠 ≈ 0.03 and (ii) the ultrasound absorption curves
have a pronounced maximum in the vicinity of this
singular point. The latter is illustrated in Fig. 1. It
should be noted here that the properties of the aque-
ous solutions of 1- and 2-propanol are similar, because
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their molecular configurations differ from each other
only in the hydroxyl group position.

As one can see from Fig. 1, the maximum in the
ultrasound absorption is observed at the solution con-
centration 𝑥𝑠 ≈ 0.1 and the ultrasound frequency
𝜔0 ≈ 0.63 × 108 s−1. The maximum location practi-
cally does not depend on the temperature. It is clear
that the origin of the absorption coefficient maximum
goes beyond the framework of the classical theory of
ultrasound absorption, where the magnitude of the
effect is proportional to the shear viscosity of the
medium, 𝜂, and inversely proportional to the cube of
the sound wave propagation velocity in the medium,
𝐶: 𝛼𝑓 ∼ 𝜂/𝐶3. This behavior of the absorption coef-
ficient is observed only at frequencies 𝜔 > 4×108 s−1

[10, 11].
Each of the concentration dependences for the ul-

trasound absorption coefficient that are depicted in
Fig. 1 can be represented as the sum of two compo-
nents: one of them corresponds to classical absorption
[12, 13] and the other to an additional resonance ab-
sorption, which occurs when the system approaches
its singular point (see below and works [12, 14]):

𝛼 =
𝜔2

2𝜌𝐶3

[︂
4

3
𝜂 + 𝜅

(︂
1

𝐶𝑉
− 1

𝐶𝑝

)︂]︂
+

+
𝜉𝜏𝜔2

𝜏2 (𝜔2
0 − 𝜔2)

2
+ 𝜔2

, (1)

where 𝛼 is the ultrasound absorption coefficient of
the solution, 𝜔 the incident wave frequency, 𝜔0 the
characteristic frequency of elastic vibrations in the
system, 𝐶 the velocity of sound propagation in the
medium, 𝜌 the medium density, 𝜂 the shear viscos-
ity of the medium, 𝜅 the coefficient of thermal con-
ductivity, 𝜉 a parameter related to the bulk viscosity
of the system, 𝜏 the relaxation time (in particular,
the lifetime of bound water-alcohol molecular com-
plexes), and 𝐶𝑉 and 𝐶𝑝 are the isochoric and isobaric,
respectively, heat capacities of the system. The reso-
nant character of the additional contribution cannot
be explained, in principle, from the viewpoint of the
classical absorption theory.

Really, in the framework of the classical relaxation
theory [13], the addition of small amounts of alcohol
can be described by introducing an internal relax-
ation parameter. This parameter describes the forma-
tion of water-alcohol clusters whose properties change
in time. The relaxation of this internal parameter re-

Fig. 1. Concentration dependences of the ultrasound absorp-
tion in the aqueous solutions of 2-propanol at the frequency
𝑓 ≈ 10 MHz and various temperatures (according to the re-
sults of work [10])

sults in an additional frequency dispersion of all vis-
coelastic moduli. But its contribution is not crucial.

At the same time, as was marked in works [1–3,15],
in solutions whose concentrations are close to the cor-
responding concentration at the singular point, the
formation of structures that are inhomogeneous at
the micronic level – in other words, unstable nuclei of
a new phase – takes place. It is clear that the influ-
ence of the nuclei on the system properties cannot be
taken into account in the framework of the quasither-
modynamic perturbation theory. Instead, it requires
a different approach.

In this work, a model of ultrasound absorption ow-
ing to radial vibrations of nuclei of the new phase
that are formed in aqueous alcoholic solutions is con-
sidered. According to this model, a planar sound wave
falls on a system containing the nuclei of a metastable
phase. This wave induces pressure oscillations, which
result in the resonance absorption of ultrasound. Spe-
cial attention is paid to the study of the intensity of
ultrasound radiation and its dependences on the tem-
perature and the solution concentration at various in-
cident wave frequencies. The vibration frequencies of
the nuclei were also determined.

2. The Lagrange–Rayleigh
Function for a Single Nucleus

While constructing the Lagrange–Rayleigh function,
we proceeded from the hypothesis that ultrasound is

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 9 821



Yu.M. Stula

absorbed by the nuclei of a metastable phase, which
are formed in the aqueous alcoholic solutions. The nu-
clei are assumed to be elastic, and their size varies
under the influence of the external oscillating sound
field. The medium inside and outside a nucleus is
considered to be liquid with a definite shear viscos-
ity. At the first step, our main task is to construct the
Lagrange–Rayleigh function for a single nucleus.

2.1. Kinetic energy

The kinetic energy of the nucleus-solution system is
determined by the velocity of the fluid at the sur-
face of the nucleus during its vibration. The velocity
field created in a liquid by spherical surface vibra-
tions is well known and satisfies to the following con-
ditions: (i) the velocity oscillations vanish at infinity,
and (ii) the velocity potential must be finite inside
the nucleus [14]. Using our notations, we obtain

𝑢n (𝑟) = �̇�𝑠
𝑟

𝑟0
,

𝑢m(𝑟) = �̇�𝑠
𝑟0
𝑟
,

(2)

where 𝑢n (𝑟) and 𝑢m(𝑟) are the velocities of the
molecules located inside the nucleus and in the
medium, respectively, at the distance 𝑟 from the nu-
cleus center.

The kinetic energy is an additive quantity. There-
fore, it is equal to the sum of kinetic energies inside
and outside the nucleus,

𝑇 =

∫︁
𝑉n

𝜌n
2

𝑢2
n(𝑟)𝑑𝑉 +

∫︁
𝑉m

𝜌m
2

𝑢2
m(𝑟)𝑑𝑉 . (3)

By substituting the velocities from Eqs. (2) into
Eq. (3), we obtain

𝑇 = 2𝜋
(︁𝜌n
3

+ 𝜌m

)︁
𝑟30 𝛿�̇�

2. (4)

2.2. Potential energy

The potential energy of the system is the sum of two
components,

𝑈 = 𝑈𝜎 + 𝑈el.

The componrent 𝑈𝜎 describes the effect of the nucleus
surface tension 𝜎, and the component 𝑈el the elastic
response of the system, which corresponds to radial

vibrations. According to the results of works [16, 17],
the component 𝑈𝜎 equals

𝑈𝜎 = 4𝜋𝜎𝛿𝑟2 +
1

2
𝜎
∑︁
𝑚𝑛

(𝑛− 1)(𝑛+ 2)|𝜆𝑚𝑛|2, (5)

where 𝜆𝑚𝑛 are generalized coordinates that determine
the angular dependence of the nucleus radius change,

𝛿𝑟 (𝜃, 𝛼) =
∑︁
𝑚𝑛

𝜆𝑚𝑛ϒ𝑚𝑛 (𝜃, 𝛼),

and ϒ𝑚𝑛 (𝜃, 𝛼) are spherical functions. The summa-
tion in formula (5) is carried out from 𝑛 ≥ 2.

The elastic potential energy of the nucleus is deter-
mined as the increment of the Gibbs energy for the
system with the new phase nucleus,

𝑈el =
1

2

𝜕2𝐹

𝜕𝑉 2

⃒⃒⃒⃒
0

𝛿𝑉 2 + ..., (6)

where 𝐹 = 𝐹n + 𝐹m; 𝐹n and 𝐹m are the free ener-
gies of the nucleus and medium, respectively; and
𝛿𝑉 = 4𝜋𝑟20𝛿𝑟 is the variation of the nucleus vol-
ume. The growth of the nucleus volume is accompa-
nied by a volume decrease of the external medium,
𝛿𝑉𝑛 = −𝛿𝑉𝑚. With the help of thermodynamic iden-
tities, it is easy to find that

𝑈el =
1

2

(︃
1

𝑉n

1

𝛽
(n)
𝑇

− 1

𝑉m

1

𝛽
(m)
𝑇

)︃
𝛿𝑉 2

n + ... .

Taking into account additionally that the isother-
mal compressibility and the isothermal velocity of the
sound are coupled by the relation 𝛽𝑇 =

(︀
𝜌𝐶2

𝑇

)︀−1, we
obtain the ultimate expression for the potential en-
ergy,
𝑈el ≈ 6𝜋𝑟0

(︁
𝜌n𝐶

(n)2
𝑇 − 𝜌𝑚𝐶

(𝑚)2
𝑇

)︁
𝛿𝑟2. (7)

2.3. Interaction of the nucleus
with the external sound field
of an incident wave

Let us consider the case where a flat sound wave falls
on the nucleus. The pressure variation in this wave is
described by the expression

𝛿𝑝 (𝑟, 𝑡) = 𝛿𝑝0𝑒
𝑖kr, (8)

where the value of 𝛿𝑝0 is determined by the sound
generator power.
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For further calculations, the expansion of the plane
wave in a series of spherical functions is used:

𝑒𝑖kr =

∞∑︁
𝑙=0

𝑖𝑙 (2𝑙 + 1)𝑃𝑙(cos 𝜃)𝑗𝑙(𝑘𝑟), (9)

where 𝑃𝑙(cos 𝜃) are the Legendre polynomials, and
𝑗𝑙(𝑘𝑟) the spherical Bessel functions [18]. According
to work [18], the first terms in the asymptotic ex-
pansion for the radial component of the sound wave
pressure at the nucleus surface equal

𝛿𝑝 (𝑟0, 𝑡) = 𝛿𝑝0 (1 + 𝑖𝑘𝑟0cos 𝜃 + ...),
𝑘𝑟0 ≪ 1,

𝛿𝑝 (𝑟0, 𝑡) = −𝑖𝛿𝑝0
𝑒𝑖𝑘𝑟0

𝑘𝑟0
(1 + 3cos 𝜃 + ...),

𝑘𝑟0 ≫ 1.

(10)

The energy of interaction between the nucleus and the
field of the external sound wave is determined by the
minimum work (𝑅min = 𝛿𝑝 𝛿𝑉 [19]) that is required
to change the nucleus radius 𝑟0 by 𝛿𝑟,

𝑈int = −4𝜋𝑟20 𝛿𝑝(𝑟0,𝑡) 𝛿𝑟. (11)

Note that, in experiments [10], the ultrasound radi-
ation with the frequency varying from 10 to 2500 MHz
was used. Such frequency values correspond to the
wave vector magnitudes 𝑘 = 𝜔/𝐶 within the inter-
val 3 × 10−2 cm−1 < 𝑘 < 8 cm−1. The characteris-
tic size of the nucleus 𝑟0 is determined by evaluat-
ing the size of the micro-sized inhomogeneities. Ac-
cording to works [1, 4, 15], it has an order of 𝑟0 ∼
∼ (10−6÷10−4) cm. From whence, it follows that the
product 𝑘𝑟0 changes from about 3 × 10−6 to about
8× 10−4.

2.4. Dissipation function

Dissipative forces are governed by the viscous friction
forces emerging as a result of the fluid motion induced
by vibrations, as well as by energy losses taking place
owing to the sound emission to infinity. The contribu-
tion of the first type to the dissipation function 𝑅 is
the sum of two components corresponding to the nu-
cleus, 𝑅1, and to the surrounding medium, 𝑅2. Each
𝑖-th (𝑖 = 1, 2) component is determined by the equa-
tion of the same type,

𝑅𝑖 =
𝜂𝑖
2

∫︁
𝑉𝑖

(︃
𝜕𝑢

(𝑖)
𝑛

𝜕𝑥𝑘
+

𝜕𝑢
(𝑖)
𝑘

𝜕𝑥𝑛
− 2

3
𝛿𝑛𝑘

𝜕𝑢
(𝑖)
𝑙

𝜕𝑥𝑙

)︃2
𝑑𝑉 ,

𝑖 = 1, 2. (12)

Making allowance for only the radial velocity compo-
nents, we obtain

𝑅𝑖 = 8𝜋𝜂𝑖𝑟
2
0

(︂
𝜕

𝜕𝑟
𝑢2
𝑖

)︂⃒⃒⃒⃒
𝑟=𝑟0

(𝑖 = 1, 2). (13)

Besides the viscous frictional forces, the energy dis-
sipation in the medium also takes place owing to en-
ergy losses as a result of the propagation of the sound
waves generated by the nucleus surface vibrations
toward infinity. The flow of the sound wave energy
through a spherical surface located at a definite dis-
tance from the nucleus is determined by the relation

𝐽𝐸 =

∮︁
𝑠

𝜀𝐶
(𝑚)
𝑇 𝑑𝑆 = 2𝜋𝛿𝑝20

1

𝜌𝐶
(𝑚)
𝑇

1

𝑘2
, (14)

where 𝜀 = 1
2𝛽

(𝐶)
𝑇 𝛿𝑝20 is the mean value of the sound

energy density over a period. By definition, the ef-
fective viscosity of the medium associated with the
sound energy losses is determined from the relation

𝐽𝐸 ≈ 𝑅us, (15)

where the expression for 𝑅us is identical to that for
the energy losses due to the ordinary shear viscosity
[see Eq. (13)],

𝑅us = 8𝜋𝜂us𝑟
2
0

(︂
𝜕

𝜕𝑟
𝑢2
2

)︂⃒⃒⃒⃒
𝑟=𝑟0

.

Following this way, we obtain

𝜂us =
𝐶

(𝑐)
𝑇

2𝑟0𝜔4𝜌𝑛

𝛿𝑝20
𝛿𝑟20

. (16)

The ultimate formula for the dissipation function
𝑅 looks like

𝑅 = 8𝜋 (𝜂n + 𝜂m + 𝜂us) 𝑟0 𝛿�̇�
2. (17)

In work [10], the propagation velocity of a sound
wave in the solution of 2-propanol was selected to
equal 𝐶

(m)2
𝑇 ≈ 105 cm/s. As was indicated above,

the characteristic size of the nucleus is 𝑟0 ∼ (10−6÷
10−4) cm. Since the water density 𝜌𝑤 = 1 g/cm3 and
the alcohol density 𝜌𝑎 ≈ 0.7 g/cm3, the nucleus den-
sity is of an order of 𝜌𝑛 ≈ 1 g/cm3.
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In work [10], the maximum of the ultrasound ab-
sorption was observed within the frequency interval
𝜔 ∼ (200÷400) MHz. While evaluating the quan-
tity 𝛿𝑝20, let us make use of the fact that the ex-
perimental power of an ultrasonic wave in work [10]
did not exceed 𝑁exp < 0.3 W/cm2 in order to avoid
the cavitation phenomenon. This power limit corre-
sponds to the pressure limit 𝛿𝑝 < 0.1 atm. With all
the values indicated being taken above into account,
the additional viscosity has an order of magnitude
𝜂us ≤ 10−3 g/(cm s).

3. Nucleus Evolution

In the previous section, the components of the Lag-
range function,

𝐿(𝛿𝑟, 𝛿�̇�, 𝑡) =
2𝜋

3
𝑟30 (𝜌n + 3𝜌m) 𝛿�̇�2 − 6𝜋𝑟0,(︁

𝜌nm(n)2
𝑇 𝜌mm(m)2

𝑇

)︁
𝛿𝑟2 + 4𝜋𝜎𝛿𝑟2 + 4𝜋𝑟20𝛿𝑃𝛿𝑟,

(18)

and the Rayleigh dissipation function,

𝑅(𝛿𝑟, 𝛿�̇�, 𝑡) = 8𝜋 (𝜂n + 𝜂m + 𝜂us) 𝑟0𝛿�̇�
2, (19)

were found for the medium-nucleus system. In the
general case, the Lagrange–Rayleigh equations of mo-
tion for a system with energy dissipation have the
form
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛿�̇�
− 𝜕𝐿

𝜕𝛿𝑟
= − 𝜕𝑅

𝜕𝛿�̇�
(20)

and lead to the following linear differential equation
that describes the nucleus vibrations in the external
field:

𝛿𝑟 + 2𝛾𝛿�̇� + 𝜔2
0𝛿𝑟 = 𝑓𝑒𝑖𝜔𝑡. (21)

Here,

𝑓 =
3𝛿𝑝0

𝑟0 (𝜌n + 3𝜌m)

is the external force amplitude,

𝜔2
0 =

9𝑟0

(︁
𝜌nm

(m)2
𝑇 − 𝜌𝑚m

(n)2
𝑇

)︁
+ 6𝜎

𝑟30 (𝜌n + 3𝜌m)
(22)

is the characteristic frequency of the nucleus size os-
cillations, and

𝛾 =
6 (𝜂n + 𝜂m + 𝜂us)

𝑟20 (𝜌n + 3𝜌m)

is the damping coefficient of nucleus vibrations.

The solution of Eq. (21) is well known. It looks
like [19]

𝛿𝑟(𝑡) = 𝛿𝑟0(𝑡) + 𝛿𝑟𝑓 (𝑡), (23)

where the component 𝛿𝑟0(𝑡) corresponds to free oscil-
lations of the nucleus size, and the component 𝛿𝑟𝑓 (𝑡)
is associated with induced nucleus vibrations. It is
easy to verify that the latter component equals

𝛿𝑟𝑓 (𝑡) = 𝑓 (𝑎 cos𝜔𝑡 + 𝑏 sin𝜔𝑡 ) , (24)

where

𝑎 =
𝜔2
0 − 𝜔2

(𝜔2
0 − 𝜔2)

2
+ 4𝛾2𝜔2

.

The energy absorption intensity (i.e. the energy ab-
sorbed within a vibration period) is determined by
the expression

𝐼abs =

∫︁
⟨𝛿�̇�𝑓 𝑓 cos𝜔𝑡⟩ 𝑑𝑡.

It is equal to

𝐼abs =
16𝜋2𝑟40𝑓

2

2

𝛾𝜔2

(𝜔2
0 − 𝜔2)

2
+ 4𝛾2𝜔2

. (25)

As one can see, the energy absorption has a resonance
character. Near the resonance frequency, it has the
form

𝐼abs = 4𝜋2𝑟40
𝑓2𝛾

𝜀2 + 𝛾2
, (26)

where 𝜀 = 𝜔0 − 𝜔.

4. Dependences of the Ultrasound
Absorption Coefficient on the Frequency,
Temperature, and Solution Concentration

Now, let us consider a possibility to consistently re-
produce the experimental dependences of the ultra-
sound absorption coefficient regarding as a function
of the sound frequency and the solution concentra-
tion at the temperatures 𝑇 = 293 K (see Fig. 2) and
𝑇 = 343 K (see Fig. 3). From Fig. 2, it follows that
the maximum of the anomalous ultrasound absorp-
tion at the temperature 𝑇 = 293 K is observed at the
frequency 𝑓1 = 10 MHz. The absorption coefficient
grows nonmonotonically with the decreasing concen-
tration (Fig. 2), so that an absorption maximum is
observed at the alcohol concentration 𝑥𝑠 ≈ 0.13,
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which is slightly higher than the concentration at the
singular point [1–5, 9, 10, 15, 16]. It should be noted
that other literature sources give somewhat differ-
ent concentration values for the singular point. For
instance, the molecular light scattering [2] and the
behavior of contraction curves at different tempera-
tures [4] testify to the singular concentration value
𝑥𝑠 ≈ 0.06.

The magnitude of the quantity 𝛼/𝑓2 is very im-
portant for the correct identification of the physical
nature of anomalous absorption. From experimental
data, it follows that

𝛼

𝑓2
∼ 200 if 0.25 < 𝑥 < 1.

At the same time, at lower concentrations, the ab-
sorption value is an order of magnitude larger:

700 <
𝛼

𝑓2
< 1300 if 0.06 < 𝑥 < 0.18.

The absorption behavior at the ultrasound gener-
ator frequency 𝑓2 = 1800 MHz and the temperature
𝑇 = 343 K is completely different (Fig. 3). Namely,
the absorption curves are monotonically decreasing
functions of the concentration. It should be marked
that typical values of the absorption coefficient 𝛼/𝑓2

vary within the interval 25 < 𝛼/𝑓2 < 95 depending
on the alcohol concentration. It is easy to make sure
that those values correspond to the classical law of
ultrasound absorption [13]:
𝛼

𝑓2
=

4𝜋2

𝜌𝐶3

[︂
4

3
𝜂 + 𝜅

(︂
1

𝐶𝑉
− 1

𝐶𝑝

)︂]︂
. (27)

For this formula to be applicable, the behavior of all
parameters in it has to be imitated. In this work, the
simplest approximation formulas are used:

𝜂 = (1− 𝑥) 𝜂w + 𝑥𝜂a,

𝜅 = (1− 𝑥)𝜅w + 𝜅𝜂a,

1

𝐶𝑉
− 1

𝐶𝑝
=

1

(1− 𝑥)𝐶
(𝑤)
𝑉 + 𝑥𝐶

(𝑎)
𝑉

−

− 1

(1− 𝑥)𝐶
(w)
𝑝 + 𝑥𝐶

(a)
𝑝 + 𝑘B

,

(28)

where 𝐶(w)
𝑉 and 𝐶

(a)
𝑉 are the isochoric heat capacities

of water and alcohol, respectively. The values of the
sound velocity at various concentrations were taken
from work [10].

Fig. 2. Dependence the ultrasound absorption coefficient on
the ultrasound frequency and the solution concentration of the
aqueous alcoholic solution of 2-propanol at the temperature
𝑇 = 293 K (according to the results of work [10])

Fig. 3. The same as in Fig. 2, but for the temperature 𝑇 =

= 343 K

The contribution of the classical term at high sound
frequencies and the solution concentration 𝑥 ≈ 0.13 is
illustrated in Fig. 4. As one can see, a quite satisfac-
tory agreement takes place between the experimental
temperature dependence and formula (27). The same
agreement is also observed for all other solution con-
centrations.

Let us also evaluate the classical contribution at
low frequencies. The result of the comparison for a
solution with the same concentration is shown in
Fig. 5. Now, the classical absorption gives only a
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Fig. 4. Temperature dependences of the ultrasound absorp-
tion coefficient in aqueous solutions of 2-propanol at the fre-
quency 𝑓 = 10 MHz for various alcohol concentrations 𝑥. The
solid curve corresponds to the results of calculations using for-
mula (27) for 𝑥 ≈ 0.13 and the parameter dependences (28).
Dashed curves and symbols correspond to the experimental
data of work [10]. Numerical values of constant parameters
were taken from work [20]

Fig. 5. The same as in Fig. 4, but for the ultrasound frequency
𝑓 = 1800 MHz

small fraction, (5÷15)%, of the total ultrasound ab-
sorption. Hence, almost all absorption has an anoma-
lous character.

In order to reproduce the behavior of the anoma-
lous ultrasound absorption, formulas (25) and (26)
were applied, and the characteristic frequency 𝜔0(𝑥, 𝑡)
of the system was put equal to

𝜔0 ≈ 0.63× 108 s−1 (29)

in the adopted approximation. The dependences of
𝜔0 on the solution concentration and temperature are

Fig. 6. Temperature dependence of the ultrasound absorption
coefficient in aqueous solutions of 2-propanol at the frequency
𝑓 = 10 MHz. The solid curve corresponds to the results of
calculations using formula (31). Dashed curves and symbols
correspond to the experimental data of work [10]. Numerical
values of constant parameters were taken from work [20]

Fig. 7. Concentration dependence of the relaxation time min-
imum value

weak, so that they can be neglected. The intensity of
the anomalous ultrasound absorption can be written
in the form

𝐼 (𝜔) = 𝐻0
1/𝜏

(𝜔 − 𝜔0)2 + 1/𝜏2
. (30)

Here, the quantity 𝜏 has a sense of the nucleus life-
time. To determine this parameter as a function of
the temperature at a fixed concentration of the solu-
tion, let us take advantage of the experimental data
from work [10]. We also assumed that the radiation
frequency equals 𝜔0, so that, according to work [10],
𝜔0 is equal to the generator frequency in this case,
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and

𝐼 (𝜔0) = 𝐻0𝜏. (31)

It is easy to make sure that the temperature depen-
dence of the relaxation time 𝜏 is described by the
formula

𝜏 =
𝜏0

𝑡2 + 𝑡20
, (32)

where 𝑡 = (𝑇 − 𝑇0)/𝑇0 and 𝑇0 = 282 K, which corre-
sponds to the leftmost points in the plots in Fig. 5.

The agreement between the temperature depen-
dences of the ultrasound absorption coefficient taken
from work [10] and calculated using formula (31) is
quite satisfactory (see Fig. 6). This dependence is jus-
tified by the fact that the absorption intensity maxi-
mum is described by formula (31), and the absorption
intensity must be expanded in an even-power series
of the temperature. The values of the main param-
eters were determined by fitting the calculated de-
pendences to the experimental data. As a result, the
following values were obtained:

𝜏0 ∼ 10−7 s, 𝑡0 ≈ 0.039, 𝐻0 ≈ 0.7× 10−4 cm−1s−3.

(33)

The relaxation time near the singular point (𝑥 ≈ 0.13
and 𝑇 = 282 K) equals 𝜏 ≈ 5×10−7 s (unfortunately,
the exact position of the singular point, as well as the
behavior of the ultrasound absorption intensity in its
vicinity, are unknown).

The concentration dependence of 𝜏0 is depicted in
Fig. 7. One can see that this dependence is weak.

Let us use estimate (29) obtained for the charac-
teristic vibration frequency of the nucleus in order to
evaluate its characteristic size 𝑟0. On the basis of ex-
pression (22) and neglecting the surface tension effect,
we find that

𝑟0 = 3

⎯⎸⎸⎷(︁𝜌n𝐶(m)2
𝑇 − 𝜌m𝐶

(n)2
𝑇

)︁
(𝜌n + 3𝜌m)𝜔2

0

≈

≈ 0.7× 10−4 cm. (34)

Let us compare this result with the nucleus size 𝑟0 de-
termined from the estimation of the relaxation time,

𝑟0 =

√︃
6𝜏 (𝜂n + 𝜂m + 𝜂us)

(𝜌n + 3𝜌m)
. (35)

Using the values for 𝜏0 and 𝜏 = 𝜏0/𝑡
2
0 [see Eq. (33)],

we obtain the estimate

𝑟0 ≈ 4× 10−4 cm, (36)

which is in a rather satisfactory agreement with esti-
mate (34).

Finally, the dependence of the ultrasound absorp-
tion intensity on the solution concentration and the
sound frequency has the form

𝐼 =
𝐼0

1 + (𝜔 − 𝜔0)
2
𝜏2 + 𝜁2(𝑥− 𝑥0)

2 . (37)

5. Conclusions

In this work, the anomalous absorption of ultra-
sound in an aqueous solution of propyl alcohol near
its singular point has been analyzed. The basic idea
of the proposed approach consists in that the effect
of anomalous ultrasound absorption appears due to
the interaction of ultrasound with elastic radial vi-
brations of nuclei that arise in the system. As a re-
sult, the relaxation in the system becomes consid-
erably slower. Instead of the relaxation time 𝜏 ∼
∼ (10−12÷10−10) s, which is typical of molecular pro-
cesses, the relaxation time 𝜏 ∼ (10−7÷10−6) s is
dealt with. The corresponding dimensions of nuclei,
as was shown above, lie within the interval 𝑟0 ∼
∼ (0.7÷4) × 10−4 cm, which agrees with the wave-
length of light, 𝜆 ∼ 10−4 cm, that was used in
works [2, 4].

The temperature dependences of the ultrasound
absorption coefficient at fixed ultrasound frequencies
and various solution concentrations are plotted. It
is shown that, at relatively low frequencies (𝑓 ∼
∼ 10 MHz) and at concentrations close to the concen-
tration at the singular point of the system (𝑥 ≈ 0.13),
a quite satisfactory reproduction of experimental de-
pendences is obtained. This fact testifies that the
assumption about the formation of nuclei of a new
phase in the system is sufficiently substantiated. It
is clear that, for the description of all experimental
dependences to be more accurate, it is necessary to
apply more adequate dependences for the parameters
of the medium inside a nucleus in comparison with de-
pendences (28) used in this work and corresponding
to the ideal solution model. More profound studies
should be carried out also in the field of experimental
researches, since it is of importance, in particular, to
elucidate why the ultrasound absorption maximum is
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observed at a concentration that is somewhat differ-
ent from the concentration of the system at its sin-
gular point. The indicated and other relevant issues
will be the subject of subsequent works.
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ТЕОРЕТИЧНИЙ АНАЛIЗ ПОГЛИНАННЯ
УЛЬТРАЗВУКУ ВОДНИМИ РОЗЧИНАМИ СПИРТIВ

Р е з ю м е

Робота присвячена теоретичному дослiдженню поглинання
ультразвуку в водно-спиртових розчинах в околi їх особли-
вих точок. Приймається, що аномальне поглинання ультра-
звуку вiдбувається внаслiдок утворення нестабiльних за-
родкiв нової фази. Запропоновано модель, яка описує ево-
люцiю цих зародкiв з часом, а також дозволяє пояснити
виникнення резонансного поглинання ультразвуку в околi
особливої точки водного розчину 2-пропанол. Дослiджено
характер залежностi iнтенсивностi поглинання вiд параме-
трiв зародка, температури та частоти ультразвуку. Оцiне-
но внесок звукового випромiнювання зародкiв у ефективну
зсувну в’язкiсть розчинiв. Виконано порiвняння теорети-
чних результатiв з наявними експериментальними даними.
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