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We have obtained the approximate solutions of the Klein–Gordon equation with the Yukawa
ring-shaped potential, by using the Nikiforov–Uvarov method for a special case of equal scalar
and vector potentials. The energy eigenvalues for bound states and the corresponding wave
functions are also obtained in a proper approximation. We have also shown that the results
can be used to evaluate the energy eigenvalues of the Yukawa, angle-dependent, and Coulomb
potentials. The numerical results are discussed and presented in the table and in the figure,
which suggest their applicability to other systems. With the adjusted potential parameters given
in the table, it is shown that the interaction of spinless (Klein–Gordon) particles with the
Yukawa ring-shaped potential gives positive energy eigenvalues for the various quantum states.
K e yw o r d s: spinless particles, Yukawa potential, angle-dependent potential, approximation
scheme, Nikiforov–Uvarov method.

1. Introduction

The subject of the non-central potentials has been
studied in various fields of nuclear physics and
quantum chemistry which concern the interactions
between deformed pair of nuclei and ring-shaped
molecules like benzene [1–4]. There has been contin-
uous interest in the solutions of Schrödinger, Klein–
Gordon, and Dirac equations for some non-central po-
tentials [5].

These equations are solved by means of different
methods for exactly solvable potentials such as Super-
symmetry Quantum Mechanics (SUSYQM) [6–11],
time-dependent perturbation [12], asymptotic iter-
ation method (AIM) [13–16], factorization method
[17, 18], functional analysis [19], Nikiforov–Uvarov
(NU) method [20–28], and others [29–31]. Yaşuk et
al. [8] presented an alternative simple method for
the exact solution of the Klein–Gordon equation

c○ A.D. ANTIA, E.E. ITUEN, U.S. JIM, E.E. EYIBIO, 2017

(KGE) in the presence of noncentral equal scalar
and vector potentials, by using the Nikiforov–Uvarov
method [45].

A spherically harmonic oscillatory ring-shaped po-
tential had been proposed, and the exact complete
solutions of the Schrödiger equation (SE) with it
were presented via the Nikiforov–Uvarov method by
Zhang et al. [33]. Bayrak et al. [34] and also, Chen
et al. [35] presented exact solutions of the SE with
the Makarov potential by using the asymptotic it-
eration method and the partial wave method, re-
spectively. Kandirmaz et al. also used the path in-
tegral method to investigate the coherent states for
a particle in the noncentral Hartmann potential
[30]. Hamzavi et al. studied the Dirac equation with
the Hartmann potential [16].
The Yukawa potential or static screened Coulomb po-
tential [36] is given by

𝑉 (𝑟) = −𝑉0
𝑒−𝛼𝑟

𝑟
, (1)
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where 𝑉0 = 𝛼′𝑍, 𝛼′ = (137.037)
−1 is the fine struc-

ture constant and 𝑍 is the atomic number, and 𝛼 is
the screening parameter. This potential is often used
to compute the bound-state normalization and the
energy level of neutral atoms [37] which have been
studied over the years.

The novel ring-shaped potential was introduced by
Berkdemir [26]:

𝑉𝜃 (𝜃) =
𝛾 + 𝛽 sin2 𝜃 + 𝜂 sin4 𝜃

sin2 𝜃 cos2 𝜃
. (2)

Here, 𝛽, 𝜂 and 𝛾 are arbitrary constants.
The non-central potential has attracted much at-

tention recently. Antia et al. [38] has obtained the
approximate analytical solutions of the relativistic
KGE with scalar and vector shifted Hulthen plus
angle-dependent potentials. Again, Antia et al., [41]
have obtained solutions of the non-relativistic SE
with Hulthen–Yukawa plus angle-dependent potential
within the framework of the Nikiforov–Uvarov (NU)
method.

Our choice of this combined potential is based
on the motivation derived from the applications of
Yukawa and ring-shaped potentials. The Yukawa po-
tential is one of the short-range potentials and has a
lot of applications in physics. It has Coulombic be-
havior for small 𝑟 and is exponentially damped for
large 𝑟. It plays the important role in high-energy and
particle physics, atomic physics, chemical physics,
gravitational plasma physics, and solid state physics
[42–43]. This potential could be applied to various
branches of nuclear physics and quantum chemistry
to describe nucleon-nucleon interactions, the meson-
meson interaction, and interactions between the de-
formed pair of nuclei and ring-shaped molecules like
benzene. One of us [44] investigated a solution of
the non-relativistic Schrödinger equation with the
Yukawa angle-dependent potential and applied it to
study diatomic molecules. Being motivated by this
success, we will attempt to study the relativistic
spinless particles (Klein–Gordon particles) interact-
ing with the Yukawa ring-shaped potential.

This paper aims at obtaining the solutions of the
KGE with the Yukawa ring-shaped potential for a
special case of equal scalar and vector potentials using
the NU method.

The organization of this paper is as follows: In Sec-
tion 2, we review the Nikiforov–Uvarov method. In

Section 3, we present the solutions of the KGE with
the Yukawa ring-shaped potential. In Section 4, we
discuss our results and make conclusions in Section 5.

2. Review of the Nikiforov–Uvarov Method

Nikiforov and Uvarov [45] have presented a method to
obtain the exact solution of the second-order differen-
tial equations such as the Schrödinger, Klein–Gordon,
and Dirac equations.

As for the SE

𝜓′′ (𝑥) + (𝐸 − 𝑉 (𝑥))𝜓 (𝑥) = 0 (3)

of the hypergeometric type, it be solved by applying
the appropriate transformation, 𝑠 = 𝑠 (𝑥) ,

𝜓′′ (𝑠) +
𝜏 (𝑠)

𝜎 (𝑠)
𝜓′ (𝑠) +

�̄� (𝑠)

𝜎2 (𝑠)
𝜓 (𝑠) = 0, (4)

where 𝜎(𝑠) and �̄�(𝑠) must be polynomials of the
at most second degree, and 𝜏(𝑠) is a first-degree
polynomial. 𝜓(𝑠) is a function of the hypergeomet-
ric type. In order to find the solution of Eq. (4), we
set the wave functions as

𝜓 (𝑠) = 𝜑 (𝑠)𝜒 (𝑠) . (5)

Substituting Eq. (5) into Eq. (4), Eq. (4) is reduced
to the hypergeometric-type equation:

𝜎 (𝑠)𝜒′′ (𝑠) + 𝜏 (𝑠)𝜒′ (𝑠) + 𝜒 (𝑠) = 0, (6)

where the wave function 𝜑 (𝑠) is defined as the loga-
rithmic derivative. We have

𝜑′ (𝑠)

𝜑 (𝑠)
=
𝜋 (𝑠)

𝜎 (𝑠)
, (7)

where 𝜋 (𝑠) is a polynomial of the at most first order,
and 𝜎 (𝑠) is a polynomial of the at most second order.

Likewise, the hypergeometric type function 𝜒 (𝑠) in
Eq. (6) for a fixed 𝑛 is given by the Rodrigues relation
as

𝜒
𝑛
(𝑠) =

𝐵𝑛

𝜌 (𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛 (𝑠) 𝜌 (𝑠)], (8)

where 𝐵𝑛 is the normalization constant, and the
weight function 𝜌 (𝑠) must satisfy the condition

𝑑

𝑑𝑠
(𝜎 (𝑠) 𝜌 (𝑠)) = 𝜏 (𝑠) 𝜌 (𝑠) (9)
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with

𝜏 (𝑠) = 𝜏 (𝑠) + 2𝜋 (𝑠). (10)

Therefore, the function 𝜋 (𝑠) and the parameters re-
quired for the NU method are defined as follows:

𝜋 (𝑠) =
𝜎′ − 𝜏

2
±

√︃(︂
𝜎′ − 𝜏

2

)︂2
− �̄� + 𝑘𝜎, (11)

𝜆 = 𝑘 + 𝜋′ (𝑠). (12)

Based on the NU method, the 𝑘-value of the expres-
sion under the square root must be a square of poly-
nomials and this is possible, if and only if its discrim-
inant is zero. With this, the new equation for eigen-
values becomes

𝜆 = 𝜆𝑛 = −𝑛𝑑𝜏
𝑑𝑠

− 𝑛 (𝑛− 1) 𝑑2𝜎

𝑑𝑠2
, 𝑛 = 0, 1, 2, ... .

(13)

By comparing Eq. (12) and Eq. (13), we obtain the
energy eigenvalues.

The parametric generalization of the NU method
that is valid for any non-central potential is given by
the generalized hypergeometric-type equation [46]:

𝜓′′ (𝑠) +
𝑐1 − 𝑐2𝑠

𝑠 (1− 𝑐3𝑠)
𝜓′ (𝑠) +

1

𝑠2 (1− 𝑐3)
2 ×

× [−𝜉1𝑠2 + 𝜉2𝑠− 𝜉3]𝜓 (𝑠) = 0. (14)

Equation (6) is solved by comparing it with
Eq. (4). We get the following polynomials:

𝜏 (𝑠) = (𝑐1 − 𝑐2𝑠) , 𝜎 (𝑠) = 𝑠 (1− 𝑐3𝑠),

�̄� (𝑠) = −𝜉1𝑠2 + 𝜉2𝑠− 𝜉3.
(15)

Now, substituting (15) into (11), we find

𝜋 (𝑠) = 𝑐4 + 𝑐5𝑠±
[︀
(𝑐6 − 𝑐3𝑘±) 𝑠

2 +

+ (𝑐7 + 𝑘±) 𝑠+ 𝑐8]
1/2
, (16)

where

𝑐4 =
1

2
(1− 𝑐1), 𝑐5 =

1

2
(𝑐2 − 2𝑐3), 𝑐6 = 𝑐25 + 𝜉1,

𝑐7 = 2𝑐4𝑐5 − 𝜉2, 𝑐8 = 𝑐24 + 𝜉3.
(17)

The resulting value of 𝑘 in relation (16) is obtained
from the condition that the function under the square
root is a square of a polynomials, which yields

𝑘± = − (𝑐7 + 2𝑐3𝑐8)± 2
√
𝑐8𝑐9, (18)

where

𝑐9 = 𝑐3𝑐7 + 𝑐22𝑐8 + 𝑐6. (19)

The new 𝜋 (𝑠) for each 𝑘 becomes

𝜋 (𝑠) = 𝑐4 + 𝑐5𝑠− [(
√
𝑐9 + 𝑐3

√
𝑐8) 𝑠−

√
𝑐8] , (20)

where

𝑘− = − (𝑐7 + 2𝑐3𝑐8)− 𝑎
√
𝑐8𝑐9. (21)

Using (10), we obtain

𝜏 (𝑠) = 𝑐1 + 2𝑐4 − (𝑐2 − 2𝑐5) 𝑠−
− 2[(

√
𝑐9 + 𝑐3

√
𝑐8) 𝑠−

√
𝑐8]. (22)

The physical condition for the bound-state solution
is 𝜏 ′ < 0, and, thus,

𝜏 ′ (𝑠) = −2𝑐3 − 2 (
√
𝑐9 + 𝑐3

√
𝑐8) < 0. (23)

Using Eqs. (12) and (13), we derive the energy equa-
tion as

(𝑐2 − 𝑐3)𝑛+ 𝑐3𝑛
2 − (2𝑛+ 1) 𝑐5 +

+(2𝑛+ 1) (
√
𝑐9 + 𝑐3

√
𝑐8)+

+ 𝑐7 + 2𝑐3𝑐8 + 2
√
𝑐8𝑐9 = 0. (24)

The weight function 𝜌 (𝑠) is obtained from Eq. (9) as

𝜌 (𝑠) = 𝑠𝑐10−1 (1− 𝑐3𝑠)
𝑐11
𝑐3

−𝑐10−1
. (25)

In view of Eq. (8), we have

𝜒𝑛 (𝑠) = 𝑃

(︁
𝑐10−1,

𝑐11
𝑐3

−𝑐10−1
)︁

𝑛 (1− 2𝑐3𝑠), (26)

where

𝑐10 = 𝑐1 + 2𝑐4 + 2
√
𝑐8, (27)

𝑐11 = 𝑐2 − 2𝑐5 + 2 (
√
𝑐9 + 𝑐3

√
𝑐8), (28)

and 𝑃
(𝛼,𝛽)
𝑛 (𝑠) are the Jacobi polynomials. Detailed

discussions of Jacobi polynomials can be found in the
literature [47–48]. The second part of the wave func-
tion is obtained from Eq. (7) as

𝜑 (𝑠) = 𝑠𝑐12 (1− 𝑐3𝑠)
−𝑐12− 𝑐13

𝑐3 , (29)

where

𝑐12 = 𝑐4 +
√
𝑐8, 𝑐13 = 𝑐5 − (

√
𝑐9 + 𝑐3

√
𝑐8). (30)

Thus, the total wave function becomes

𝜓 (𝑠) = 𝑁𝑛𝑠
𝑐12 (1− 𝑐3𝑠)

−𝑐12− 𝑐13
𝑐3 ×

×𝑃

(︁
𝑐10−1,

𝑐11
𝑐3

−𝑐10−1
)︁

𝑛 (1− 2𝑐3𝑠), (31)

where 𝑁𝑛 is the normalization constant.
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3. Case of Yukawa
Ring-Shaped Potential

The Yukawa ring-shaped potential is defined as [36,
49, 50]

𝑉 (𝑟, 𝜃) = −𝑉0𝑒
−𝛼𝑟

𝑟
+

~2

2𝜇

(︂
𝛾 + 𝛽 cos2 𝜃 + 𝜂 cos4 𝜃

𝑟2 cos2 𝜃 sin2 𝜃

)︂
,

(32)

where 𝑉0 is the potential depth, 𝛼 is the screening
parameter, 𝜇 is the reduced mass, ~ is the reduced
Planck constant, and 𝛾, 𝛽, and 𝜂 are arbitrary con-
stants.

The potential in (32) can be expressed as

𝑉 (𝑟, 𝜃) = −𝑉𝑟(𝑟) +
~2

2𝜇

𝑉𝜃(𝜃)

𝑟2
. (33)

In spherical coordinates, the Klein–Gordon equation
for equal scalar and vector potentials can be written
as[︂
1

𝑟2
𝜕

𝜕𝑟

(︂
𝑟2
𝜕

𝜕𝑟

)︂
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕

𝜕𝜃

)︂
+

+
1

𝑟2 sin2 𝜃

𝜕2

𝜕𝜑2
− 2 (𝐸 +𝑀)𝑉 (𝑟, 𝜃) + 𝐸2 −

−𝑀2

]︂
𝜓(𝑟, 𝜃, 𝜑) = 0, (34)

where 𝑀 is the mass of the particle. The total wave
function in Eq. (34) can be defined as

𝜓 (𝑟, 𝜃, 𝜑) =
𝑅(𝑟)

𝑟
𝑌 (𝜃, 𝜑). (35)

Substituting Eqs. (32) and (35) into Eq. (34), we
have

𝑟2

𝑅

𝜕2𝑅

𝜕𝑟2
+

1

𝑌

[︂
𝜕2𝑌

𝜕𝜃2
+ cot 𝜃

𝜕𝑌

𝜕𝜃

]︂
+

+
1

𝑌

1

sin2 𝜃

𝜕2𝑌

𝜕𝜑2
+

2𝑟

𝑅
(𝐸 +𝑀)𝑉0𝑒

−𝛼𝑟 −

− 2

𝑌
(𝐸 +𝑀)

~2

2𝜇

[︂
𝛾 + 𝛽 cos2 𝜃 +𝐷 cos4 𝜃

cos2 𝜃 sin2 𝜃

]︂
𝑌 +

+(𝐸2 −𝑀2)𝑟2 = 0. (36)

Simplifying Eq. (36) by separating the variables, the
following radial and angular equations are obtained:

𝑑2𝑅

𝑑𝑟2
+

[︂
2(𝐸 +𝑚)𝑉0𝑒

−𝛼𝑟

𝑟
+

+(𝐸2 −𝑀2)− 𝜆

𝑟2

]︂
𝑅(𝑟) = 0, (37)

𝑑2Θ

𝑑𝜃2
+ cot 𝜃

𝑑Θ

𝑑𝜃
− ~2

𝜇
(𝐸 +𝑀)×

×
[︂
𝛾 + 𝛽 cos2 𝜃 + 𝜂 cos4 𝜃

cos2 𝜃 sin2 𝜃

]︂
Θ+

+

(︂
𝜆− 𝑚2

sin2 𝜃

)︂
Θ = 0, (38)

𝑑2Φ

𝑑𝜑2
+𝑚2𝜑 = 0, (39)

where 𝜆 and 𝑚2 are the separation constants, 𝜆 =
= 𝑙(𝑙+1), where 𝑙 is the orbital quantum number, and
𝑚 is the magnetic quantum number. Equation (39) is
the azimutal part, whose solution is well known [38,
40]. Equations (37) and (38) are the radial and an-
gular parts of the KGE, respectively, whose solutions
shall be discussed shortly. Equation (37) has no ana-
lytical solution for 𝑙 ̸= 0 due to the centrifugal term
[38]. Therefore, we must take a proper approximation
[51] to the centrifugal term as

1

𝑟2
≈ 4𝛼2

(︃
𝑒−2𝛼𝑟

(1− 𝑒−2𝛼𝑟)
2

)︃
. (40)

This approximation is valid for a short-ranged poten-
tial, and the values of the screening parameter (𝛼)
must be small. Thus, the range of validity of 𝛼 is
0 < 𝛼 < 1. Substituting Eq. (40) into Eq. (37), we
have

𝑑2𝑅

𝑑𝑟2
+

[︂
4𝛼 (𝐸 +𝑀)

𝑒−2𝛼𝑟

1− 𝑒−2𝛼𝑟
+

+(𝐸2 −𝑀2)− 4𝜆𝛼2𝑒−2𝛼𝑟

(1− 𝑒−2𝛼𝑟)2

]︂
𝑅(𝑟) = 0. (41)

Set

𝑠 = 𝑒−2𝛼𝑟. (42)

Substituting Eqs. (42) into Eq. (41), we have

𝑑2𝑅

𝑑𝑠2
+

(1− 𝑠)

𝑠 (1− 𝑠)

𝑑𝑅

𝑑𝑠
+

1

4𝛼2𝑠2 (1− 𝑠)
2 ×

×

⎡⎢⎢⎣
𝑠2
(︀
𝐸2 −𝑀2 − 4𝛼𝑉0𝐸 − 4𝛼𝑉0𝑀

)︀
+

+ 𝑠

(︂
−2𝐸2 + 2𝑀2 +
+4𝛼𝑉0𝐸 + 4𝛼𝑉0𝑀 − 4𝜆𝛼2

)︂
+

+𝐸2 −𝑀2

⎤⎥⎥⎦𝑅(𝑠) = 0,

(43)

916 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 10



Interaction of Spinless Particles

where 𝑀 is the mass of the particle. Let

−𝛽2 =
𝐸2 −𝑀2

4𝛼2
, 𝛿2 = 4𝛼𝑉0 (𝐸 +𝑀),

𝑊 = −4𝜆𝛼2.
(44)

Equation (43) becomes

𝑑2𝑅

𝑑𝑠2
+

(1− 𝑠)

𝑠(1− 𝑠)

𝑑𝑅

𝑑𝑠
+

1

𝑠2 (1− 𝑠)
2 [−(𝛽2 + 𝛿2)𝑠2 +

+ 𝑠
(︀
2𝛽2 + 𝛿2 +𝑊

)︀
− 𝛽2]𝑅(𝑠) = 0. (45)

Comparing Eq. (45) with Eq. (14), and using Eq. (17)
and (19), we have

𝜉1 = 𝛽2 + 𝛿2; 𝜉2 = 2𝛽2 + 𝛿2 +𝑊 ; 𝜉3 = 𝛽2, (46)

and the other parameters are as follows:

𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 1,

𝑐4 = 0, 𝑐5 = −1

2
, 𝑐6 =

1

4
+ 𝜉1,

𝑐7 = −𝜉2, 𝑐8 = 𝜉3,

𝑐9 = 𝜉1 − 𝜉2 + 𝜉3 +
1

4
.

(47)

Substituting Eq. (47) into Eq. (24), we have

𝑛2+
(2𝑛+ 1)

2
+(2𝑛+ 1)

(︃√︂
𝜉1−𝜉2+𝜉3+

1

4
+
√︀
𝜉3

)︃
−

− 𝜉2+2𝜉3 + 2

√︃
𝜉3

(︂
𝜉1 − 𝜉2 + 𝜉3 +

1

4

)︂
= 0, (48)

𝜉1 − 𝜉2 + 𝜉3 +
1

4
=

1

4
−𝑊 =

1

4
+ 4𝜆𝛼2 = A2, (49)

−𝜉2 + 2𝜉3 = −𝛿2 +𝑊 = −𝛿2 − 4𝜆𝛼2. (50)

Substituting Eqs. (49)–(50) into Eq. (48), we have

𝑛2+
(2𝑛+ 1)

2
+(2𝑛+1)(𝐴+𝛽)+2𝐴𝛽 = 𝛿2−𝑊. (51)

Rearranging Eq. (51) and squaring both sides, we ob-
tain the energy eigenvalues for the radial part of the
KGE as

𝐸2 −𝑀2 = −4𝛼2 ×

×

[︁
𝛿2 + 4𝜆𝛼2 − 𝑛2 − (2𝑛+1)

2 − (2𝑛+ 1)𝐴
]︁2

[︁
(2𝑛+ 1)

2
+ 4𝐴(2𝑛+ 1) + 4𝐴2

]︁ . (52)

Using Eq. (25), (26), and (29), we obtain the corre-
sponding wave function of the radial part as

𝑅 (𝑠) = 𝑁𝑛𝑙𝑠
√
𝜉3 (1− 𝑠)

1
2+

√
𝜉1−𝜉2+𝜉3+

1
4 ×

×𝑃

(︁
2
√
𝜉3,2+2

√
𝜉1−𝜉2+𝜉3+

1
4

)︁
𝑛𝑙 (1− 2𝑠), (53)

where 𝑁𝑛𝑙 is the normalization constant. As a fur-
ther guide to interested readers, the calculation of the
normalization constant is stated in Refs. [52, 53]. The
eigenvalues and the eigenfunctions of the polar part
of the Klein–Gordon equation can be obtained, in this
case, by making use of Eq. (38) as

−𝑑
2Θ

𝑑𝜃2
+ cot 𝜃

𝑑Θ

𝑑𝜃
− ~2

𝜇
(𝐸 +𝑀)×

×
[︂
𝛾 + 𝛽 cos2 𝜃 + 𝜂 cos4 𝜃

cos2 𝜃 sin2 𝜃

]︂
Θ+

(︂
𝜆− 𝑚2

sin2 𝜃

)︂
Θ = 0.

(54)

Let

𝑝 = cos2 𝜃. (55)

Substituting Eq. (55) into Eq. (54), we have

𝑑2Θ(𝑝)

𝑑𝑝2
+

(︀
1
2 − 3/2𝑝

)︀
𝑝(1− 𝑝)

𝑑Θ(𝑝)

𝑑𝑝
+

1

4𝑝2 (1− 𝑝)
2 ×

×

⎡⎢⎢⎢⎢⎢⎢⎣

(︂
2
(𝐸 +𝑀)~𝜂

𝜇
− 𝜆

)︂
𝑝2+

+

(︂
2 (𝐸 +𝑀) ~𝛽

𝜇
+ 𝜆−𝑚2

)︂
𝑝+

+
2(𝐸 +𝑀)~𝛾

𝜇

⎤⎥⎥⎥⎥⎥⎥⎦Θ(𝑝) = 0,

(56)

where 𝑚 is the magnetic quantum number, and 𝑀 is
the particle mass. Let

−𝑁2 =
2 (𝐸 +𝑀) ~

4𝜇
. (57)

Equation (57) becomes

𝑑2Θ(𝑝)

𝑑𝑝
+

(︀
1
2 − 3

2𝑝
)︀

𝑝 (1− 𝑝)

𝑑Θ(𝑝)

𝑑𝑝
+

1

𝑝2 (1− 𝑝)
2 ×

×
[︂
−
(︂
𝑁2𝜂 +

𝜆

4

)︂
𝑝2 +

(︂
−𝑁2𝛽 +

𝜆

4
− 𝑚2

4

)︂
−𝑁2𝛾

]︂
×

×Θ(𝑝) = 0. (58)
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Comparing Eq. (58) with Eq. (14) and using Eqs. (17)
and (19), we have

𝑐1 =
1

2
, 𝑐2 =

3

2
, 𝑐3 = 1, 𝑐4 =

1

4
, 𝑐5 =

1

4
,

𝑐6 =
1

16
+ 𝜉1, 𝑐7 = −1

8
− 𝜉2, 𝑐8 =

1

16
+ 𝜉3,

𝑐9 = 𝜉1 − 𝜉2 +
9

4
𝜉3 +

5

64

(59)

and

𝜉1 = 𝑁2𝜂+
𝜆

4
, 𝜉2 = −𝑁2𝛽 +

𝜆

4
− 𝑚2

4
, 𝜉3 = 𝑁2𝛾.

(60)

Substituting Eq. (59) into Eq. (24) gives

𝑛

2
+ 𝑛2 − 1

4
(2𝑛+ 1)+

+ (2𝑛+ 1)

[︃√︂
𝜉1 − 𝜉2 +

9

4
𝜉3 +

5

64
+

√︂
1

16
+ 𝜉3

]︃
−

− 1

8
− 𝜉2 +

1

8
+ 2𝜉3 +

+2

√︃(︂
1

16
+ 𝜉3

)︂(︂
𝜉1 − 𝜉2 +

9

4
𝜉3 +

5

64

)︂
= 0. (61)

But, we can use

𝜉1−𝜉2+
9

4
𝜉3+

5

64
= 𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64
, (62)

and

−𝜉2 + 2𝜉3 = 𝑁2 (𝛽 + 2𝛾)− 𝜆

4
+
𝑚2

4
. (63)

Using Eqs. (62) and (63), Rq. (61) can now be sim-
plified as follows:

𝑛2 − 1

4
+ (2𝑛+ 1)

[︃√︃
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64
+

+

√︂
1

16
+𝑁2𝛾

]︃
+𝑁2 (𝛽 + 2𝛾)− 𝜆

4
+
𝑚2

4
+

+2

√︃(︂
1

16
+ 𝜉3

)︂
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64
= 0.

(64)

Solving Eq. (64), 𝜆 becomes

𝜆 = 4𝑛2 − 1+

+4(2𝑛+ 1)

[︃√︃
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64
+

+

√︂
1

16
+𝑁2𝛾

]︃
+ 4𝑁2 (𝛽 + 2𝛾) +𝑚2 +

+8

√︃(︂
1

16
+𝑁2𝛾

)︂(︂
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64

)︂
,

(65)

where 𝜆 = 𝑙 (𝑙 + 1), and 𝑐10, 𝑐11, 𝑐12, and 𝑐13 obtained
with the use of Eqs. (27), (28), and (30) are as follows:

𝑐10 = 1 + 2

√︂
1

16
+ 𝜉3,

𝐶11 = 2 + 2

(︃√︂
𝜉1 − 𝜉2 +

9

4
𝜉3 +

5

64
+

√︂
1

16
+ 𝜉3

)︃
,

𝐶12 =
1

4
+

√︂
1

16
+ 𝜉3,

𝐶13 = −1

4
−

(︃√︂
𝜉1 − 𝜉2 +

9

4
𝜉3 +

5

64
+

√︂
1

16
+ 𝜉3

)︃
.

(66)

The corresponding wave function of the angle-
dependent part is obtained by substituting Eq. (59)
and (66) into Eq. (31). Thus,

Θ(𝑝) = 𝑁𝑙𝑚𝑝
1
4+

√
1
16+𝜉3 (1− 𝑝)

√
𝜉1−𝜉2+

9
4 𝜉3+

5
64 ×

×𝑃

(︁
2
√

1
16+𝜉3, 2+2

√
𝜉1−𝜉2+

9
4 𝜉3+

5
64

)︁
𝑙𝑚 (1− 2𝑝), (67)

where 𝑁𝑙𝑚 is the normalization constant (see, e.g.,
[52, 53]). The total energy of the Yukawa ring-shaped
potential is obtained by considering the effect of the
angle-dependent part on the radial part. Substituting
Eq. (65) into Eq. (52) yields the energy spectra for this
system as

𝐸2
𝑛𝑙𝑚 −𝑀2 = −4𝛼2 ×

×

[︁
𝛿2 + 4𝐹𝛼2 − 𝑛2 − (2𝑛+1)

2 − (2𝑛+ 1)𝐴
]︁

[︁
(2𝑛+ 1)

2
+ 4𝐴(2𝑛+ 1) + 4𝐴2

]︁
2

, (68)

where

𝐹 = 4𝑛2 − 1 + 4(2𝑛+ 1)×

×

[︃√︃
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64
+
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+

√︂
1

16
+𝑁2𝛾

]︃
+ 4𝑁2 (𝛽 + 2𝛾) +𝑚2 +

+8

√︃(︂
1

16
+𝑁2𝛾

)︂(︂
𝑁2

(︂
𝜂 + 𝛽 +

9

4
𝛾

)︂
+
𝑚2

4
+

5

64

)︂
,

(69)
and

𝐴 =

(︂
4𝐹𝛼2 +

1

4

)︂1/2
. (70)

4. Discussions

Using Eq. (68), the numerical solutions of the bound-
state energy for the Yukawa ring-shaped potential
with 𝑀 = 1, 𝑉0 = 0.02, 𝛽 = 𝛾 = 𝜇 = 𝜂 = 1 are
given in the table below for 𝛼 = 0.02, 𝛼 = 0.04, and
𝛼 = 0.06, respectively, with different quantum states
(𝑛, 𝑙,𝑚). From the table, it is clear that the energy
eigenvalues are all positive. This is in order as the
bound-state energy could either be negative (parti-
cles) or positive (antiparticles). In the figure below,
the variation of the energy eigenvalues in the quan-
tum state 𝑛 are discussed for a fixed 𝑙 = 𝑚 = 0 and
𝛼 = 0.02, 𝛼 = 0.04, and 𝛼 = 0.06. From the graph, it
is observed that the bound-state energy decreases, as
the principal quantum 𝑛 increases.

Furthermore, some special cases can be deduced by
adjusting some parameters of our potential, and their
respective energy eigenvalues and the corresponding
wave function could be studied with these adjusted
parameters. Some of those special potentials are pre-
sented as follows.

4.1. Yukawa potential

When we set 𝛾 = 𝛽 = 𝜂 = 0 in Eq. (32), the Yukawa
ring-shaped potential reduces to Yukawa potential
and the energy eigenvalues are obtained as follows
[21]:

𝐸2
𝑛𝑙𝑚 −𝑀2 = −4𝛼2 ×

×

[︁
𝛿2 + 4𝑄𝛼2 − 𝑛2 − (2𝑛+1)

2 − (2𝑛+ 1)𝐴
]︁

[︁
(2𝑛+ 1)

2
+ 4𝐴(2𝑛+ 1) + 4𝐴2

]︁
2

, (71)

where

𝑄 = 4𝑛2 − 1 + 4(2𝑛+ 1)

[︃√︂
𝑚2

4
+

5

64
+

1

4

]︃
+𝑚2 +

+8

√︃(︂
𝑚2

4
+

5

64

)︂
. (72)

4.2. Angle-dependent potential

When we set 𝑉0 = 0, 𝛼 = 0 in Eq. (32), the Yukawa
ring-shaped potential reduces to angle dependent po-
tential. Thus, in this limit, the energy eigenvalues for

Energy (𝐸) versus the quantum state number 𝑛 with 𝑙 = 𝑚 = 0

Bound-state energy of Yukawa ring-shaped
potential for 𝑀 = 1, 𝑉0 = 0.02, 𝛽 = 𝛾 = 𝜇 = 𝜂 = 1,
𝛼 = 0.02, 𝛼 = 0.04, and 𝛼 = 0.06

𝑛 𝑙 𝑚

𝐸𝑛𝑙𝑚

𝛼 = 0.02 𝛼 = 0.04 𝛼 = 0.06

0 0 0 0.999865824 0.999454126 0.998724631
1 0 0 0.999422666 0.997744429 0.995105907
2 0 0 0.999159122 0.996770694 0.993210389
2 1 0 0.999157305 0.996742223 0.99307115
2 1 1 0.999157693 0.996748347 0.993101483
2 1 –1 0.999157693 0.996748347 0.993101483
3 0 0 0.998992801 0.996189201 0.992204017
3 1 0 0.998990608 0.996155078 0.992039355
3 1 1 0.998990934 0.996160185 0.992064301
3 1 –1 0.998990934 0.996160185 0.992064301
4 0 0 0.998879969 0.995822657 0.991678541
4 1 0 0.998877521 0.995784834 0.991498421
4 1 1 0.998877800 0.995789181 0.991519371
4 1 –1 0.998877800 0.995789181 0.991519371
5 0 0 0.998799361 0.995585144 0.991437421
5 1 0 0.998796731 0.995544785 0.991247786
5 1 1 0.998796974 0.995548554 0.991265701
5 1 –1 0.998796974 0.995548554 0.991265701
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pure angle dependent potential could be obtained by
using this adjusted parameters of Eq. (68).

4.3. Coulomb potential

Also setting 𝛼 = 𝛾 = 𝛽 = 𝜂 = 0, the potential in
Eq. (32) reduces to Coulomb potential [6] and the cor-
responding energy could be obtained by using these
parameters in Eq. (68).

5. Conclusion

We have studied the approximate solutions of the
Klein–Gordon equation with the Yukawa ring-shaped
potential using the Nikiforov–Uvarov method when
the scalar potential and the vector potential are
equal. The bound states energy eigenvalues and the
corresponding wave functions are obtained by using
a proper approximation [49].

We also show that the results can be used to eval-
uate the energy eigenvalues of the Yukawa potential
and when 𝛾 = 𝛽 = 𝜂 = 0, they are in good agreement
with the results of [36].

It is a great pleasure for the authors to thank the
anonymous referees for their many useful comments
which led to the improved standard of this paper. We
really appreciate your positive criticism.
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32. F. Yaşuk, A. Durmus, I. Boztosun. Exact analytical solu-
tions of the relativistic Klein–Gordon equation with non-
central equal scalar and vector potential. J. Math. Phys.
47, 082302 (2006).

33. M.C. Zhang, G.H. Sun, S.H. Dong. Exactly complete so-
lutions of the Schrödiger equation with a spherically Har-
monic oscillator ring-shaped potential. Phys. Lett. A 374,
704 (2010).

34. O. Bayrak, M. Karakoc, I. Boztosun, R. Sever. Approx-
imate analytical solution of the Schrödiger equation for
Makarov potential with any 𝑙 angular momentum. Int. J.
Theor. Phys. 47, 3005 (2008).

35. C.Y. Chen, C.L. Liu, F.L. Lu. Exact solutions of Schrödi-
ger equation for the Makarov potential. Phys. Lett. A 374,
1346 (2010).

36. H. Yukawa. Interaction of elementary particle. Proc. Phys.
Math. Soc. Japan 17, 48 (1935).

37. J. McEnnan, L. Kissel, R.H. Pratt. Analytic perturbation
theory for screened Coulomb potentials: non-relativistic
case. Phys. Rev. A 13, 532 (1976).

38. A.D. Antia, S.E. Etuk, A.O. Adeniran. Solutions of rela-
tivistic Klein–Gordon equation with equal scalar and vec-
tor shifted Hulthen plus angle dependent potential. Adv.
Phys. Theor. Appl. 47, 45 (2015).

39. Y. Xu, S. He, C.S. Jia. Approximate analytical solutions
of the Klein–Gordon equation with the Poschl–Teller po-
tential including the centrifugal term. Phys. Scripta 81,
045001 (2010).

40. A.S. Davydov. Quantum Mechanics (Pergamon Press,
1976) [ISBN: 0-08-020437-6].

41. A.D. Antia, E.E. Umo, C.C. Umoren. Solutions of non-
relativistic Schrödiger equation with Hulthen–Yukawa
plus angle-dependent potential within the frame work of
Nikiforov–Uvarov method. J. Theor. Phys. and Cryp. 10,
1 (2015).

42. A. Alhaidari, H. Bahlouli, I. Nasser, M. Abdelmonem. An
efficient mapped pseudospectral method for weakly bound
state. J. Chem. Phys. A 41, 032001 (2008).

43. S.M. Ikhdair, R. Sever. Approximate analytical solutions
of the general Wood–Saxon potential including spin-orbit
coupling term and spin symmetry. Central European Jour-
nal of Physics 5, 2322 (2010).

44. A.D. Antia, O.P. Akpan. Yukawa-angle dependent po-
tential and its applications to diatonic molecules under
Schrödiger wave equation. J. Appl. Theor. Phys. Res. 1, 9
(2017).

45. A.F. Nikiforov, V.B. Uvarov. Special Functions of Mathe-
matical Physics (Birkhäuser, 1988).
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ВЗАЄМОДIЯ БЕЗСПIНОВИХ ЧАСТИНОК
З КIЛЬЦЕВИМ ПОТЕНЦIАЛОМ ЮКАВИ

Р е з ю м е

Ми отримали наближенi рiшення рiвняння Клейна–Гордона
з кiльцевим потенцiалом Юкави методом Никифорова–
Уварова в спецiальному випадку рiвних скалярного i ве-
кторного потенцiалiв. Знайдено енергiї i вiдповiднi хвильовi
функцiї зв’язаних станiв. Показано, що результати можуть
бути використанi для оцiнки енергiй для потенцiалiв Юка-
ви i Кулона та потенцiалу, що залежить вiд кута. Числовi
результати представленi в таблицi i на рисунку та можуть
бути корисними при описi iнших систем. При виборi пара-
метрiв потенцiалiв, зазначених в таблицi, показано, що вза-
ємодiя безспiнових (Клейна–Гордона) частинок з кiльцевим
потенцiалом Юкави приводить до позитивних власних зна-
чень енергiї для рiзних квантових станiв.
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