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DIELECTRIC FUNCTION
OF A QUANTUM-CONFINED THIN FILM
WITH A MODIFIED PÖSCHEL–TELLER POTENTIAL

The spatial and time dispersions of the dielectric permittivity of an electron gas in quasi-two-
dimensional quantum nanostructures are studied. The screening of the charge-carrier scatter-
ing potential in a quantum-confined film with a modified Pöschel–Teller potential is considered
for the first time. Analytical expressions for the dielectric permittivity are obtained.
K e yw o r d s: quantum-confined thin film, quantum confinement effects, dielectric function,
modified Pöschel–Teller potential, matrix element of the scattering potential, polarization
operator.

1. Introduction

Large attention is currently paid to the creation and
research of semiconductor nanostructures. In partic-
ular, these are quantum wells, quantum wires, and
quantum dots. From the practical viewpoint, the elec-
tronic properties of nanostructures emerging due to
quantum effects are of special interest. Quantum con-
finement effects begin to affect the electronic proper-
ties, when the size of the free charge carrier localiza-
tion region becomes comparable with the de Broglie
wavelength. These effects play a key role in the for-
mation of optoelectronic properties of nanostructures
[1]. Owing to the rapid development of nanoelectron-
ics and the available technologies for the production
of low-dimensional structures, a large number of the-
oretical and experimental works devoted to the phys-
ical properties of those structures have appeared in
recent decades [2, 3].

The dielectric function is one of the most im-
portant characteristics that describe the electrical
and optical properties of solids. The accurate mod-
eling of the frequency-dependent dielectric function
is of large importance, when studying the adsorption
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and long-range van der Waals interaction in solids
[4]. In particular, the gain coefficient of semiconduc-
tor laser structures created on the basis of quantum
wells directly depends on the dielectric permittivity
[5]. Therefore, the knowledge of the corresponding
spatial dispersion law is important for the calculation
of the parameters of such structures to be correct. In
work [6], an analytical model was proposed for the di-
electric function of two-dimensional semiconductors,
which can be used as a reliable tool for predicting
the excitonic optical properties. Using the spectro-
scopic ellipsometry method, the dependence of the
dielectric function of PbSe nanocrystals electrically
deposited onto the Au substrate on the thickness of
those crystals was studied in work [7], and the ex-
perimental results were compared with the results of
electron structure calculations. The authors of work
[8] combined the Maxwell–Garnett theory of effective
medium with the Kramers–Krönig relations in order
to obtain the complex dielectric function for PbS,
PbSe, and PbTe quantum dots. The applied method
allows the real and imaginary parts of the dielectric
function to be determined from the experimental ab-
sorption spectrum. The spatial and time dispersions
of the dielectric permittivity of an electron gas in
quasi-two-dimensional quantum nanostructures was
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considered in work [9]. The cited authors analyzed
expressions obtained for the dielectric permittivity of
quasi-two-dimensional quantum structures, by using
the finite-depth rectangular and 𝛿-function models for
the potential well.

When physical processes in semiconductor quan-
tum nanostructures are described, it is very impor-
tant to use a proper mathematic model for the con-
fining potential. As the latter, potentials with rectan-
gular or parabolic profiles are often used. An analysis
of the results of long-term researches showed that the
rectangular potential is more suitable for thin layers,
whereas the parabolic potential produces better re-
sults in the case of thicker layers. In this work, we
consider the screening of the scattering potential for
charge carriers in a quantum-confined thin film with
a modified Pöschel–Teller potential.

2. Theory

When many-body effects in solids are examined, it is
basically important to elucidate the role of the screen-
ing of external perturbations that are imposed on the
system. The relevant phenomena are explained by the
redistribution of charge carriers under the action of
an external perturbation field. It is known that, in
the two-dimensional geometry, the screening results
in an essentially different spatial dependence of the
dielectric function, as compared with that obtained in
the three-dimensional case. If the interaction between
particles is considered, the screening of the electric
field created by charges in those structures has to be
taken into account correctly [10–12].

Nowadays, such effects as the impurity field screen-
ing, Kohn effect, appearance of a charge halo around
the impurity, and others have been studied rather
well. The solution of the corresponding self-consistent
problem testifies that the potential that actually acts
on an electron is equal to the applied potential di-
vided by the dielectric permittivity function, with the
latter depending of the wavelength and frequency of
the applied perturbation.

The probability magnitudes for a quantum-
mechanical system to transit from one state into an-
other are mainly described by matrix elements. In
terms of the dielectric function, the screening is de-
termined as follows [13, 14]:

𝑀scr =
𝑀

𝜖(𝑞)
, (1)

where 𝑀 is the matrix element of the scattering po-
tential,

𝜖(𝑞) = 1 +𝑀eeΠ(0, 𝑞) (2)

is the dielectric function, 𝑀ee is the matrix element
of the electron-electron interaction potential,

Π(0, 𝑞) =

∫︁
𝑔 (𝜀)

(︂
−𝜕𝑓0
𝜕𝜀

)︂
𝑑𝜀 (3)

is the polarization operator [15], 𝑔 is the electron state
density, and 𝑓0 is the Fermi distribution function.

In quasi-two-dimensional quantum films, the elec-
tron Hamiltonian is known to have the following form:

𝐻 =
1

2𝑚
𝑝2 + 𝑈(𝑧), (4)

where

𝑈(𝑧) =
~2𝛼2𝜆(𝜆+ 1)

2𝑚
tanh𝛼𝑧

is the modified Pöschel–Teller potential confining the
electron motion. The energy spectrum and the one-
electron normalized wave functions for the charge car-
riers were obtained in works [10–13]:

𝜀𝜈,𝜆 =
~2𝛼2

2𝑚

(︁
𝜆 (𝜆+ 1)− (𝜆− 𝜈)

2
)︁
, (5)

𝜓𝜈,𝜆,𝑘 =
1√︀
𝐿𝑦𝐿𝑥

𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) ×

×
[︂
𝛼 (𝜆− 𝜈) Γ (2𝜆− 𝜈 + 1)

Γ (𝜈 + 1)

]︂
𝑃𝜆(𝑧), (6)

where 𝑚 is the effective mass of charge carriers, 𝐿𝑥

and 𝐿𝑦 are the film dimensions in the 𝑥𝑦-plane, 𝛼
and 𝜆 are the potential parameters (𝜆 > 1), 𝜈 is the
size quantum number (𝜈 < 𝜆), Γ(𝑥) is the gamma
function, and 𝑃𝜆 (𝑧) is the Legendre function.

In the case of Pöschel–Teller potential, the electron
density of states looks like [13]

𝑔 (𝜀) =

[𝜆]∑︁
𝜈=0

𝐿𝑥𝐿𝑦𝑚

𝜋}2
𝜃 (𝜀− 𝜀𝜈,𝜆), (7)

where 𝜃(𝑥) is the Heaviside step function. The polar-
ization operator equals

Π(0, 𝑞) =

[𝜆]∑︁
𝜈=0

𝐿𝑥𝐿𝑦𝑚

𝜋}2

∞∫︁
𝜀𝜈,𝜆

(︂
−𝜕𝑓0
𝜕𝜀

)︂
𝑑𝜀 =

=

[𝜆]∑︁
𝜈=0

𝐿𝑥𝐿𝑦𝑚

𝜋}2
𝑓0 (𝜀𝜈,𝜆). (8)
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Taking formulas (5) and (6) into account, the matrix
element of the electron-electron interaction operator
can be calculated in the quantum limit 𝜈 = 0 as fol-
lows:

𝑀ee =

(︂
1

𝐿𝑥𝐿𝑦

)︂2(︂
𝛼 (𝜆) Γ (2𝜆+ 1)

Γ (1)

)︂2
×

×
∞∫︁

−∞

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

𝑑𝑥1𝑑𝑦1𝑑𝑧1𝑑𝑥2𝑑𝑦2𝑑𝑧2 ×

× 𝑒𝑖[(𝑘
′
𝑦1

−𝑘𝑦1)𝑦1+(𝑘′
𝑥1

−𝑘𝑥1)]𝑥1 ×

× 𝑒
𝑖
[︁
(𝑘′

𝑦2−𝑘𝑦2)𝑦2+
(︁
𝑘′
𝑥
1
−𝑘𝑥

1

)︁]︁
𝑥1 ×

×
𝑒2𝑃 2

𝜆(𝑧1)𝑃
2
𝜆(𝑧2)

𝜒
[︁
(𝑥1 − 𝑥2)

2
+ (𝑦1 − 𝑦2)

2
+ (𝑧1 − 𝑧2)

2
]︁1/2. (9)

Let us change the variables:
𝑥1 − 𝑥2 → 𝑥, 𝑥1 + 𝑥2 → 𝑋,

𝑦1 − 𝑦2 → 𝑦, 𝑦1 + 𝑦2 → 𝑌.

The corresponding Jacobian equals 1
4 . Since

∞∫︁
−∞

𝑒𝑖(𝑘
′
𝑥1

−𝑘𝑥1
+𝑘′

𝑥2
−𝑘𝑥2)

1
2𝑋𝑑𝑋 =

= 2𝐿𝑥𝛿(𝑘
′
𝑥1

− 𝑘𝑥1
+ 𝑘′𝑥2

− 𝑘𝑥2
)

and
∞∫︁

−∞

𝑒𝑖(𝑘
′
𝑦1

−𝑘𝑦1
+𝑘′

𝑦2
−𝑘𝑦2

) 1
2𝑌 𝑑𝑌 =

= 2𝐿𝑦𝛿(𝑘
′
𝑦1

− 𝑘𝑦1 + 𝑘′𝑦2
− 𝑘𝑦2),

we obtain(︀
𝑘′𝑦1

− 𝑘𝑦1 + 𝑘′𝑦2
− 𝑘𝑦2

)︀
= 0,

(𝑘′𝑦1
− 𝑘𝑦1

− 𝑘′𝑦2
+ 𝑘𝑦2

) = 2𝑞𝑦,

so that

𝑘′𝑦1
− 𝑘𝑦1

= 𝑞𝑦,

𝑘𝑦2 − 𝑘′𝑦2
= 𝑞𝑦.

Substituting those expressions into Eq. (9) for the ma-
trix element of the electron-electron interaction oper-
ator, we get

𝑀ee =

(︂
1

𝐿𝑥𝐿𝑦

)︂2(︂
𝛼 (𝜆) Γ (2𝜆+ 1)

Γ (1)

)︂2
×

×
∞∫︁

−∞

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

𝑑𝑥𝑑𝑦𝑑𝑧1𝑑𝑧2 𝑒
𝑖𝑞𝑟 cos𝜑×

×
𝑒2𝑃 2

𝜆(𝑧1)𝑃
2
𝜆(𝑧2)

𝜒
[︁
𝑧2 + 𝑦2 + (𝑧1 − 𝑧2)

2
]︁1/2 . (10)

Now, using the realtions

𝑥 = 𝑟 cos𝜑, 𝑦 = 𝑟 sin𝜑,

let us change in Eq. (10) from the Cartesian coordi-
nate frame to the polar one:

𝑀ee =

(︂
1

𝐿𝑦𝐿𝑥

)︂[︂
𝛼 (𝜆) Γ (2𝜆+ 1)

Γ (1)

]︂2
×

×
∞∫︁

−∞

∞∫︁
−∞

∞∫︁
0

2𝜋∫︁
0

𝑟𝑑𝑟𝑑𝜑𝑑𝑥1𝑑𝑥2 𝑒
𝑖𝑞𝑟 cos𝜑 ×

×
𝑒2𝑃 2

𝜆(𝑧1)𝑃
2
𝜆(𝑧2)

𝜒
[︁
𝑟2 + (𝑧1 − 𝑧2)

2
]︁1/2 =

= (2𝜋)

(︂
1

𝐿𝑥𝐿𝑦

)︂[︂
𝛼 (𝜆) Γ (2𝜆+ 1)

Γ (1)

]︂2
×

×
∞∫︁

−∞

∞∫︁
−∞

∞∫︁
0

𝑟𝑑𝑟𝑑𝑧1𝑑𝑧2𝐽0(𝑞𝑟)
𝑒2𝑃 2

𝜆(𝑧1)𝑃
2
𝜆(𝑧2)

𝜒
[︁
𝑟2 + (𝑧1 − 𝑧2)

2
]︁1/2 =

=
2𝜋𝑒2

𝜒𝑞

(︂
1

𝐿𝑦𝐿𝑥

)︂[︂
𝛼 (𝜆) Γ (2𝜆+ 1)

Γ (1)

]︂2
×

×
∞∫︁

−∞

∞∫︁
−∞

𝑑𝑧1𝑑𝑧2 𝑒
−𝑞

√
(𝑧1−𝑧2)

2

𝑃 2
𝜆(𝑧2),

where 𝐽0(𝑥) is the Bessel function of the 0-th order
[13]. At 𝜆 = 1, we have

𝑃 2
𝜆(𝑧) =

1

2
sech𝛼𝑧,

so that

𝑀ee =
2𝜋𝑒2

𝜒𝑞

(︂
1

𝐿𝑦𝐿𝑥

)︂
(2𝛼)2 ×

×
∞∫︁

−∞

𝑑𝑧1𝑑𝑧2

(︂
1

𝑒𝛼𝑧2 + 𝑒−𝛼𝑧2

)︂2
𝑒−𝑞

√
(𝑧1−𝑧2)

2

×

×
[︁
𝑒𝛼(𝑧1+𝑧2) + 𝑒𝛼(𝑧1−𝑧2)+

+ 𝑒−𝛼(𝑧1+𝑧2) + 𝑒−𝛼(𝑧1−𝑧2)
]︁2
. (11)

In formula (11), we change the variables:

𝑧 = 𝑧1 − 𝑧2, 𝑍 = 𝑧1 + 𝑧2.
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The corresponding Jacobian equals 1
2 . Then

𝑀ee =
2𝜋𝑒2

𝜒𝑞

(︂
1

𝐿𝑦𝐿𝑥

)︂
1

2
×

×
∞∫︁

−∞

∞∫︁
−∞

𝑑𝑧𝑑𝑍

(︂
1

cosech 𝑍 + cosech 𝑧

)︂2
𝑒−

𝑞
𝛼 𝑧 =

=
𝜋3𝑒2

2𝜒𝑞

(︂
1

𝐿𝑦𝐿𝑥

)︂(︁𝑞
𝛼

)︁2
cosec

(︁𝜋𝑞
2𝛼

)︁2
. (12)

Substituting expressions (8) and (12) into Eq. (2), we
obtain the following formula for the dielectric func-
tion:
𝜖(𝑞) = 1 +

𝑚𝜋2𝑒2

2~2𝜒𝑞
𝑓0 (𝜀0,1)

(︁ 𝑞
𝛼

)︁2
cosec

(︁𝜋𝑞
2𝛼

)︁2
. (13)

In the limiting case 𝑞 ≪ 𝛼, the relation

cosec
(︁𝜋𝑞
2𝛼

)︁2
≈

(︂
2𝛼

𝜋𝑞

)︂2
is satisfied. Then formula (13) looks like

𝜖(𝑞 ≪ 𝛼) = 1 +
2𝑚𝑒2

~2𝜒𝑞
𝑓0 (𝜀0,1).

This expression describes the dependence of the di-
electric constant on the wave vector 𝑞 at 𝑞 ≪ 𝛼 in the
two-dimensional case.

3. Conclusion

In this work, an expression for the dielectric con-
stant of a quantum-confined thin film with a modified
Pöschel–Teller potential has been obtained. In the
two-dimensional case, the screening leads to a sub-
stantially different spatial dependence of the dielec-
tric function, as compared with the three-dimensional
case. It is shown that, in the two-dimensional case,
the dependence of the dielectric constant on the wave
vector is determined by a characteristic potential size
and has the form 𝜖 (𝑞) ∼ const× 𝑞−1.
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ДIЕЛЕКТРИЧНА ФУНКЦIЯ
КВАНТОВO-РОЗМIРНОЇ ТОНКОЇ ПЛIВКИ
З МОДИФIКОВАНИМ ПОТЕНЦIАЛОМ
ПЕШЛЯ–ТЕЛЛЕРА
Р е з ю м е
Дослiджено просторову та часову дисперсiї дiелектри-
чної проникностi електронного газу в квазiдвовимiрних
квантових наноструктурах. Вперше розглядається задача
про екранування потенцiалу, що розсiює, носiїв заряду в
квантово-розмiрнiй плiвцi з модифiкованим потенцiалом
Пешля–Теллера. Отриманi аналiтичнi вирази для дiеле-
ктричної проникностi.
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