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NATURE OF SELF-DIFFUSION IN FLUIDS

The nature of the self-diffusion in low-molecular fluids is discussed. The particular attention is
paid to atomic fluids (such as argon), liquid metals, and associated fluids (such as water). The
self-diffusion coefficient in the fluids of all indicated types is considered to be the sum of two
components: one of them is associated with the transfer of molecules by hydrodynamic vortex
modes, and the other is generated by the circulatory motion of local molecular groups. The
both components have a collective nature, they are genetically related to each other and differ
only by their scales: the former is mesoscopic, the latter is manoscopic. Manifestations of
the collective vortical transport of molecules as specific features in the time dependence of
the root-mean-square displacement of molecules are discussed. Sound arguments are proposed
concerning the inadequacy of the activation mechanism of thermal molecular motion in low-
molecular liquids. The immanent contradiction of exponential temperature dependences for
the viscosity and self-diffusion coefficients is proved. In all cases, the preference is given to

qualitative arguments.

Karwwoei caoesa: self-diffusion coefficient, shear viscosity, molecular liquids.

1. Introduction

Self-diffusion of atoms or molecules in fluids belongs
to the simplest kinetic processes. It has been studied
in numerous theoretical and experimental works (see,
e.g., works [1,2]). However, a lot of aspects of the self-
diffusion still remain not quite clear. After the works
by I.Z. Fisher [3,4] and L.A. Bulavin [2,5,6], it became
clear that the self-diffusion coefficient of fluids is the
sum of the collective and, as it was coined in the cited
works, “one-particle” components:

Ds:DC+DT7 (]‘)

where D, describes the stochastic motion of molecules
on molecular scales.

The emergence of the collective component notion
did not invoke principal objections, but the calculati-
on of its magnitude and temperature dependence
became associated with serious difficulties due to
the lack of reliable data concerning the behavi-
or of the Maxwell relaxation time (MRT). As a
rule, this parameter is determined by computer si-
mulations. However, various additional approximati-
ons have a too strong effect on the final result. In
particular, most of the obtained MRT values do not
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satisfy the inequality [7]
™ > v/ct, (2)

where v is the kinematic shear viscosity, and ¢; the
longitudinal sound velocity. In essence, this inequali-
ty follows from the MRT definition, 7y = v/c3,
and the explicit inequality ¢; < ¢;, where ¢; is the
high-frequency transverse sound velocity in fluids. As
a result, the estimates of the collective component
turned out overestimated [2, 8]. Moreover, the appli-
cability region of the obtained MRT values has not
been analyzed, so that the MRT continues to exist
even in a vicinity of the critical point, where system’s
density approaches the values typical of the gaseous
state.

There are even more difficulties with the physi-
cal interpretation of the so-called “one-particle”
component of the self-diffusion coefficient. Let us
emphasize from the very beginning that the concept
of “one-particle character” is applicable only in the
case of rarefied gas, where the motion of a particle
during its free-run time is determined only by the
corresponding initial parameters. In a dense liquid
system, every molecule interacts with all its nearest
neighbors, i.e. its motion is also collective. The only
difference consists in that no hydrodynamic methods
can be used for its description. Attempts to estimate
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D,. on the basis of concepts used in solid state physics
are also incorrect. In particular, the inapplicability of
the activation mechanism has been repeatedly noted
in the literature.

This work is mainly devoted to the discussion of
qualitative issues associated with the self-diffusion
process in fluids of various types, first of all, in argon
and water. It will be shown that 1) the fundamental
basis of the collective molecular drift in fluids is the
fluidity of the latter; 2) a characteristic indicator of
the collective transfer in fluids is a square-root contri-
bution to the root-mean-square displacement of a mo-
lecule; 3) the so-called “one-particle” contributions to
the self-diffusion coefficient are formed by circular
(vortical) molecular motions; and 4) the activation
mechanism of thermal molecular motion in fluids is
inconsistent with the character of this motion.

2. Hydrodynamic Mechanism
of Collective Transfer in Fluids

In this section, the main attention is focused on pe-
culiarities of the collective molecular drift, which is
the most important attribute of the thermal motion
in fluids.

2.1. Collective transfer in fluids

The most important difference between fluids and
solids, which are close by density,is the fluidity of the
former. This characteristic is directly associated wi-
th the transfer of matter, momentum, heat, and so
forth. This transfer is reversible and is not connected
with the formation of the self-diffusion, viscosity,
thermal conductivity, and so on coefficients. However,
the fluidity of fluids is a prerequisite for the formati-
on of fluctuating hydrodynamic fields in them. The
space-time evolution of those fields is irreversible and
favors the appearance of corresponding contributions
to kinetic coefficients.

The formation of collective contributions to the
self-diffusion coefficient of fluids is the simplest mani-
festation of fluctuating hydrodynamic flows that are
permanently generated in the system. In essence, the
emergence of a collective component in the self-
diffusion coefficient of molecules is as natural and
universal as the fluidity of fluids. Chaotic molecular
displacements observed on the molecular scale take
place independently of those induced by fluctuati-
ng hydrodynamic flows, whose scale considerably
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exceeds molecular sizes. Accordingly, the coefficient
of molecular self-diffusion is represented in the form

D, = D, + D,. (3)

Hence, the main issue is reduced to the following
question: What is the share of the collective contri-
bution to the experimental self-diffusion coefficient?

It is worth noting here that a stochastic collective
drift of a molecule is very similar, in many aspects, to
the random motion of a Brownian particle, which is
transferred by a fluctuating hydrodynamic flow like a
bobber on rapids of a river. The self-diffusion coefhi-
cient Dy of Brownian particles is well studied and is
described by the Einstein formula [9]

.= oL (4)
6mnr,
where kg is the Boltzmann constant, 7" the tempe-
rature, 7 the shear viscosity coefficient, and r;, the
radius of a Brownian particle. An amazing feature of
this formula is that it produces a quite satisfactory
value for the self-diffusion coefficient of molecules, if
rp is substituted by the molecular radius. Further-
more, the temperature dependence of the self-diffu-
sion coeflicient is also described by this formula quite
satisfactorily.
One should expect the collective component D,
of the molecular self-diffusion coefficient to have a
structure similar to Eq. (4):

kT
D.= " (5)

- 6mnr’

where 7y, is the effective radius of a “fluid” parti-
cle that drifts in the field of thermal hydrodynamic
fluctuations like a Brownian particle. To estimate the
value of r, we should analyze the properties of the
fluctuating hydrodynamic field of velocities, u(r,t),
in more details.

2.2. Role of longitudinal

and transverse modes of the hydrodynamic
field of velocities in the formation

of the collective self-diffusion component

In the general case, the velocity field of a liquid medi-
um is the sum of two components [10],

u(r,t) = us(r,t) + u,((r), t). (6)
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Puc. 1. Schematic diagram of the collective transfer mechani-
sm by fluctuation vortices

The first component describes the medium motions
of the vortex type, the second one the motions of the
potential type,

divu,(r,t) =0, rot u,(r,t) = 0. (7)

The potential component of the velocity field is di-
rectly associated with the changes of the density
and temperature. Those changes are mainly reduced
to the translational forward-backward motion of the
medium (sound vibrations), which results in negligi-
bly small displacements of the medium particles and,
hence, equivalently small contributions to the collecti-
ve component of the self-diffusion coefficient. On the
contrary, vortical displacements lead to a systematic
drift of fluid molecules (see Fig. 1).

A molecule in the medium (a circle in Fig. 1) is
firstly captured by vortex 1 and transferred over a
certain distance. Vortex 1 decays, but there arises
another vortex 2 in a vicinity of the molecule and
transfers it else over some distance. Subsequent parti-
cle displacements occur in this way.

It is very important that the solenoidal (transverse)
component of the fluctuating velocity field is descri-
bed by the diffusion equation

Ou,(r,t)

o = vAu,(r,t), (8)

where A is the Laplace operator, and v the kinematic
shear viscosity. The same law describes the veloci-
ty field of a vortical flow. This fact means that if
the hydrodynamic velocity at a certain fixed spati-
al point located at the distance rg from the vortex
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center is taken to equal u(rg,tg) = up at the time
moment g, it becomes equal to u(rg,t) = ug(to/t)>/>
at the same point at the time moment ¢. A mole-
cule captured by this vortex moves along a circle of
the radius rg. Its drift velocity decreases following the
same dependence,

Var(t) = uo(to/t)%2. (9)
The combination goi(,ir)(t,to) = (Var(t)Var(to)), in
which the angle brackets denote the averaging over
possible values of the initial velocity ug, in accordance
with Eq. (9), equals

3/2
29 (1) = (u2) (t) . (10)

t

It is conventionally called the autocorrelation functi-
on of the molecular drift velocity.

2.3. Features of the collective
drift of molecules

Let Ar;(t) denote a displacement of the molecule
induced by the velocity field of the i-th vortex du-
ring the lifetime of the latter: 0 < ¢ < ty. Since
different vortices arise statistically independently of
one another, the root-mean-square displacement of
the molecule, T'(t) = ((Ar;(t))?), looks like
I'(t) = 6Dy (t — to), (11)
where the coefficient Dy is determined by the exp-
ression

1y(tv)

Dy = -
\%4 6tv’

(12)

and

Y(tv) = {(Ari(tv))?).

The displacement of the molecule due to the vortex
rotation is determined by the standard expression

Ar;(t) = /Vdr(u)du.

The displacement of the molecule during the lifetime
of a fluctuation vortex is assumed to be small, so that
the influence of the circle curvature can be neglected.
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One can directly verify that the root-mean-square
displacement of the molecule

Y(to <t <ty) = {((Ar(t))?)

and the autocorrelation function of its drift velocity
(10) are coupled by the integral relation

t—to

A0 =20t~ t0) [ A (o)

to
t—to

- [ Aapeda)
to

where @@r)(x) = (ud) (to/x)?/2. The integration

leads to the result

’y(t) = 6D0(t — to) — 12D/ to(t — to) =+ Co,
where

2
DO = §<u(2)>to, Co = 6D0t0.

(13)

The first term in Eq. (13) has the same structure as
the root-mean-square displacement of the molecule
during a sufficiently long time interval, as it should
be for the self-diffusion process. At the same time, the
self-diffusion coefficient depends on the choice of both
the initial point inside the vortex (it affects the value
of (u3)) and the initial time moment. This seems to
be not quite correct, because the self-diffusion nature
should not depend on the choice of ty. However, in
the framework of our consideration, the choice of the
initial moment is not absolutely arbitrary, because
it is preceded by the appearance of the vortex in a
certain space region at a certain time moment. In
the framework of a more rigorous description, the
influence of the choice of tg on the self-diffusion coeffi-
cient is nullified, and the parameter t¢ acquires a well-
defined physical meaning. Namely, it defines the time
moment, when the hydrodynamic description of the
corresponding thermal excitation in the fluid becomes
possible. A more rigorous description leads to a speci-
fic expression for the collective component of the self-
diffusion coefficient.

In our opinion, a more important fact is the
presence of the second and third terms in Eq. (13).
The appearance of the second term with the quadra-
tic-root dependence on the time is the most important
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visual indicator of the collective molecular drift wi-
thin the time interval tg < t < ty. The root-mean-
square displacement of the molecule becomes non-
negative and approaching the linear law of growth
with the time t — ¢ at

t>t., t.=>5t. (14)

This result, as well as the appearance of the constant
Cy, is qualitatively consistent with the results of com-
puter simulations of a molecular drift in fluids [2].

2.4. Qualitative estimation
of the collective component
of the self-diffusion coefficient

From a dimensional analysis applied to Eq. (8), it
follows that the fluctuating hydrodynamic excitati-
ons are characterized by the following hydrodynamic
correlation radius:

r(CH)(t) = KV 1t,

where k is a proportionality constant. A more detai-
led analysis of the situation brings about the value
k = 2 [2]. From the physical point of view, the most
important parameter is the minimum value of the
correlation radius. In this case, the hydrodynamic fi-
eld of velocities in a fluid can be regarded as that
created by the motion of an ensemble of fluid, or
Lagrangian, particles. The drift velocity of a mole-
cule coincides with the velocity of a liquid particle
that includes this molecule. On the other hand, the
attention should be paid to that system’s responses to
external perturbations are different within short and
sufficiently long time intervals: in the case of short-
term impacts, the system exhibits elastic properti-
es; otherwise, it demonstrates the fluidity as its basic
property. In the case of solenoidal perturbations, it
is assumed that those types of system’s response are
separated by the Maxwell relaxation time 7. Accor-
dingly, the minimum size of a Lagrangian particle
takes the value

rp = T‘(CH)(TM) = K\/UTM.

By its essence, the collective component of the mole-
cular self-diffusion coefficient coincides with the self-
diffusion coefficient of a Brownian particle with radi-
us (16):

kT
D¢ B

- 6RT/UTM

(15)

(16)

(17)
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3. Nature of the Self-Diffusion
Component Associated with a Local
Intermixing of Neighbor Molecules

In this section, the arguments concerning the role of
activation mechanism in the thermal motion of mole-
cules [11-13] and their self-diffusion in low-molecular
fluids are first discussed. Afterward, a new mechani-
sm giving rise to a local intermixing of molecules is

24
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Puc. 2. Temperature dependences of the dimensionless heat
capacity i = ]{?]3671\\;A on the coexistence curves of HoO, D20,

HsS, Ha2Se, and argon. Experimental data were taken from
works [14, 15]
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Puc. 3. Dependence of In 7 on the reciprocal temperature 1/7T
for argon: sections 1 and 3 correspond to the liquid and vapor
sections of the coexistence curve, section 2 to the viscosity di-
ameter nq(T) = 0.5(nL (T)+nv(T)), section 4 to isochores, and
section 5 to isobars. Points correspond to experimental values
taken from work [16]
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considered. For certainty, the consideration is based
on the analysis of the temperature dependence of the
shear viscosity coefficient, for which the exponential
dependence

n = no exp(Eq/ksT),

where FE, is the activation energy, is often used. This
behavior corresponds to the following assumption.
During the residence time 7y, the liquid molecule vi-
brates around a certain temporary equilibrium posi-
tion. Then, within the time interval 7 < 79, it
jumps into a new temporary position with equili-
brium vibrations. To make this jump, the molecule
has to overcome a certain energy barrier, so that
the corresponding kinetic coefficients are proporti-
onal to the factor exp(—FE,/ksT). This scenario of
a molecular thermal motion in fluids is borrowed
from the theory of solids with a crystalline or amor-
phous structure. However, the issue to what extent
it corresponds to reality remains unclear. On the
example of liquid argon, let us consider below the
basic facts that testify to the favor of this scenario
of a thermal motion and against it. It will be
demonstrated that the thermodynamic properties of
liquid argon are really similar, to some extent, to
those observed in the crystalline phase. At the same
time, it will be shown that the behavior of the si-
mplest transfer coefficients — shear viscosity and self-
diffusion — is definitely inconsistent with the quasi-
crystalline model of molecular thermal motion.

3.1. Density and heat
capacity of liquid argon

The density and specific heat of liquid argon are its si-
mplest characteristics. In a vicinity of the argon triple
point, they turn out really close to those observed in
the crystalline state. In particular, at the triple poi-
nt itself, the densities of the crystalline and liquid
phases differ from each other by no more than 2%.
The behavior of the heat capacity of argon, as well as
that of water and its homologs, is illustrated in Fig. 2.

With the temperature elevation, the exhibited
dependences more and more deviate from the values
corresponding to the solid state at the triple point. If
a state of the system changes along the coexistence
curve up to the critical point, as in Fig. 2, then the
density of argon becomes three times lower, and its
heat capacity decreases by about 20%. Moreover, at
t = 0.9, the heat capacity becomes even lower than
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the heat capacity of argon in the gaseous state. Thus,
any similarity between the critical and solid states of
argon is out of question.

3.2. Behavior of shear viscosity

The behavior of the shear viscosity of liquid argon
on its coexistence curve, isochores, and isobars is
shown in Fig. 3. Here are arguments that testify
to an obvious inconsistency of the features in the
presented temperature dependence of the shear vi-
scosity with the quasicrystalline model of molecular
thermal motion. For example, the isochoric viscosi-
ty values correspond to a dimensionless activation
energy (E,/kpT.) that is significantly lower than uni-
ty. In other words, the activation energy turns out
lower than the thermal noise energy (E, < or <
& kpT,), which has no sense from the physical
standpoint. Moreover, the activation energy turns out
negative on many isochores. At the same time, the
values of the activation energy on the isobars and
the coexistence curve seem to be satisfactory (see
Table 1).

It should be emphasized that it is the isochoric
values of the activation energy that have a di-
rect physical meaning, because, in this case, the
macroscopic state of the system changes only owing
to the temperature increment. The fulfillment of the
condition E, > kgT is mandatory at that.

Let us supplement those results with a simple quan-
titative analysis of interrelations between the activati-
on energy values typical of various phenomena. We
proceed from the expression for the kinematic shear
viscosity on isochores, v = vy exp(e,(n)/T)), where
go(n) = Eg4(n)/kp. A shift along an arbitrary
direction in the density-temperature (n,T) plane
corresponds to the kinematic shear viscosity variation
(see also work [17])

dv 1 deq(n)dn  e4(n)dT
e o el
d¢ T dn d¢ T2 d¢ |

(18)

where d( is a certain linear combination of the densi-
ty and temperature increments. From Eq. (18), it
follows that the effective value of the viscosity acti-
vation energy on the isobar equals

deq(n) Brn
dn dT/dp’

Eoft = €a(n) — (19)

where fr is the isothermal compressibility. Substi-
tuting the numerical valuesof the derivatives into
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Tabauus 1. Dimensionless activation
energy values for argon on its isochores,
isobars, and coexistence curve

Ar
p = const p = const Coexistence
curve
P/Pc Ea/k‘BTc P/Pc Ea/kBTc Ea/k'BTc
1.12 -0.67 5.14 1.37 1.75
1.34 —0.55 10.28 1.25
1.49 —0.46 15.42 1.17
1.87 -0.22 20.56 1.19
2.24 0.012
2.61 0.31

Tabauuys 2. Dimensionless activation

energy Eo/kgTm of the self-diffusion coefficient
Ds = Dg exp(—Eq/kgT) in the solid and liquid
states. Ty, is the melting temperature

Matter T, K B JkpTm EP) JkpTm
Ar 80 26.18 -
Li 454 14.64 1.46
Na 371 13.59 2.03
Rb 312 15.20 1.98
Cs 301 9.56 1.92
Al 933 16.51 1.69
Au 1337 14.86 1.58
Cr 2130 17.46 -
Pb 600 20.46 1.63
Fe 1811 19.81 3.15
Sn 505 26.22 1.39
Bi 544.5 1.15
expression (19), we obtain e, = 1.19, which is in

full agreement with the data in Table 1.

Hence, the effective value of the shear viscosi-
ty and self-diffusion activation energy substantially
depends on system’s state change direction. To obtain
its isochoric value, the corresponding recalculation
is required. This circumstance was also marked in
work [4, 11]. The values of the ratio E,/kgT on the
argon isochores clearly testify that the character of
the thermal motion of its molecules has nothing in
common with the quasicrystalline one.

3.3. On the existence of voids
in the structure of a molecular system

A substantial difference between the self-diffusion co-
efficients in liquids near their triple point and in
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Puc. 4. Temperature dependences f(t) for water, argon, and liquid Sn, Bi, Ga, Zn, and Na

Puc. 5. Schematic diagram of particle motion in a vicinity of
the triple point or melting point Ty, (a) and near the critical
point T (b)

the corresponding adjacent crystalline states (see
Table 2) is often explained by the existence of voi-
ds in the liquid state structure [18]. The fallacy of
this model follows directly from the temperature
dependence of the function f(t) = §/o, where § =
= (ri2) — o is the average gap between the nearest
molecules (ions), (r13) the average distance between
the particles, and o the particle diameter. In other
words, it describes the relative size of the gap between
the nearest neighbor molecules. It is evident that

B Ul/S(t) . Ué/?’
f(t) = 13
Yo

where v is the specific volume per particle, and vg the
own particle volume, which is quite close to the speci-
fic volume at the triple point or the melting point of
metals. The temperature dependences f(t) for argon,
water, and liquid metals are shown in Fig. 4.

As one can see from Fig. 4, near the triple poi-
nt of argon and water or the melting points of li-
quid metals, the relative gap value does not exceed
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1%, i.e. the gap is practically the same as for the
system in the crystalline state. In other words, every
molecule or ion is in a “cell,” whose parameters are
close to those in the solid state. As a result, a simple
translational motion of molecules in fluids is impossi-
ble. At the same time, the values of self-diffusion
coefficients in the crystalline and liquid states differ
from each other by ten orders of magnitude or more,
which is difficult to explain by assuming a fluctuation-
driven formation of voids in a vicinity of the diffusing
molecule.

3.4. The self-diffusion component
associated with a local intermizing
of liquid molecules

It would be more reasonable, if we address the most
important difference between liquids and solids, the
fluidity of the former. In other words, the rotation of a
group of molecules by a small azimuthal angle is more
realistic (Fig. 5). It is important to note that azi-
muthal motions can be irreversible. In a more general
case, the displacements of molecules are combinati-
ons of radial and azimuthal displacements of small
groups of neighbor molecules. Such permanent small
displacements of particles can result in quite large
values of the self-diffusion coefficients in fluids. When
approaching the critical point, the average distance
between the particles grows, and there emerge condi-
tions for a more conventional mechanism of molecular
drift, namely, the displacement of molecules into voi-
ds that appear in their neighborhood (Fig. 5).
Jump-like (hopping) displacements are also possi-
ble, but their contribution to the self-diffusion is
expected to be roughly the same as in solids. Such
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a situation takes place, when persons move in a
dense crowd (but there are no jumps here!). The
corresponding mechanism of self-diffusion in fluids
was proposed for the first time in work [21].

To obtain an explicit expression for the component
D,., which arises due to small rotations of molecular
groups, let us apply dimensional reasons and similari-
ty relations. From the former, it follows that D, has
to look like
p, ~ T

nrp
Hence, the self-diffusion coefficients for molecules wi-
th different sizes are related to one another as

D7(~2) 74;5]1)

DM~ P

Taking into account that the self-diffusion coeffici-
ents of macromolecules are described by the Einstein
formula (4), we conclude that the component D, must
have the same form:

kT

D, = , 20
6mnry, (20)

where the molecular radius value has to be determi-

ned from the analysis of the shear viscosity of a
fluid [17].

3.5. Transfer processes in liquid water

Properties of water are much more diverse than those
of argon. This is a result of the extremely strong
interaction and a non-trivial, for low-molecular liqui-
ds, angular dependence of the corresponding inter-
molecular interaction potential. One of the specific
features of this interaction is a possibility to extract
contributions of hydrogen bonds, which had been
considered for a long time as irreducible interaction
objects [22].

Actually, the main contribution to the hydrogen
bond energy is made by electrostatic forces. There is
only a small irreducible component, which is associ-
ated with the overlapping of electron shells in nei-
ghbor molecules; just this component can be called
the hydrogen bond [23,24]. Its contribution does not
exceed 10-15% of the total electrostatic interaction
energy [24].

Hydrogen bonds, whose interaction energy has
an order of magnitude FEy ~ 5kgT., stimulate the
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Puc. 6. Temperature dependence of the ratio 74(t) = 74(t)/7r.
The data were taken from the works: + [25], O [29], x [30], and
¢ [31]. Points correspond to interpolation values

clustering of various types [25], so that the local
structure of water differs significantly from that of
argon [26]. The existence of clusters allows the appea-
rance of specific excitations of the vibrational type,
which obviously affects the water heat capacity and
its temperature dependence (see Fig. 2). It is hydro-
gen bonds that are responsible for the clustering in
liquid water and water vapor, as well as for the consi-
derable differences between the behavior of the heat
capacity of water and its homologs, especially HsS.

However, some of the thermodynamic and ki-
netic properties of water are insensitive to cluste-
ring effects. The most important among them are the
specific volume and the evaporation heat per water
molecule. In works [27, 28], it was shown that, after
the corresponding normalization, the temperature de-
pendences of those parameters on the coexistence
curve have the same character as for argon. This non-
ordinary result can be explained by the fact that
water molecules permanently rotate, so that their
non-trivial potentials of the intermolecular interacti-
on become self-averaged and acquire a structure that
is close to that in argon. In this case, the argon-
like behavior of the specific volume and evaporati-
on heat is a logical consequence of the principle of
corresponding states.

The specific features of the molecular rotation at
various water temperatures are evidently determi-
ned by the behavior of the dipole relaxation time
74(t) (see Fig. 6). In the figure, 7. ~ 27/wr is the
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characteristic time of the complete revolution of a mo-
lecule, wr ~ /kgT/I a characteristic angular veloci-
ty, I ~ mpuréy the moment of inertia of a water mo-
lecule, my; the hydrogen atom mass, and rop the di-
stance between the oxygen and hydrogen atoms in a
water molecule. As one can see, in the temperature
interval 0.6 < ¢ < 1, the value of 74(t) is close to
unity, i.e. the molecular rotation becomes more and
more quasifree. Substantial deviations of 74(t) from
unity are observed only at ¢ < 0.5 and, especially, in
the overcooled region (¢ < 0.42). In this temperature
interval, the behavior of 74(t) is satisfactorily approxi-
mated by the exponential function
7, — 70
4 =T, exp(eu/t), (21)
where ¥ = 5.1 x 104 and ey = Ey/kpT. = 4.71,
which is typical of the activation theory.

Attention is drawn by the activation energy value:
it has the same order of magnitude as the dimensi-
onless energy per hydrogen bond. This fact stimulates
us to conclude that the rotation of molecules at
t < 0.5 is intermittent, i.e. every rotation by a small
angle occurs after only one of hydrogen bonds has
been broken.

An important feature of the thermal motion of
molecules in water is the applicability of the resi-
dence time notion to its description. This quantity,
To, is directly required, when analyzing the scattering
of thermal neutrons [32, 33]. Since the temperature
dependence of 79 has the same character as 74(t), a
conclusion can be drawn that a certain configurati-
on of hydrogen bonds remains, in essence, unchanged
during the time interval 7. It is essential that the
break of any bond and the formation of a new bond
configuration are also connected with a small di-
splacement of the center of mass of a water mole-
cule, |Ar| ~ 0.1 A, ie. with a contribution to the
self-diffusion process.

In accordance with the aforesaid, we conclude
that the temperature dependences of the kinetic co-
efficients of liquid water should demonstrate diffe-
rent specific features in the following temperature
intervals: 1) T < Ty, where Ty &~ 315 K [22, 32]; this
interval includes both normal and supercooled states;
and 2) Ty < T < Tg; this interval includes almost
all liquid states of water. In the former interval,
when the temperature decreases, the character of the
thermal motion of water molecules becomes more and

1084

more similar to that inherent in hexagonal ice. In the
latter interval, when the temperature increases, this
character becomes more and more argon-like.

The described features in the thermal motion of
water molecules are responsible for the behavior
of the temperature dependence of the self-diffusion
coefficient. In the temperature interval T < Ty,
the displacement of a molecule mainly occurs as a
result of the cluster decay, and the thermal motion
has a quasicrystalline character. In this case, during
the transition time 7y, every molecule in the cluster
becomes shifted, on average, by a distance equal to
a characteristic interparticle distance (riz), which
makes it possible to write the following approximate
expression for the self-diffusion coefficient in water
(see work [34]):

(r12)”

D ~
67'0

(T < Ty). (22)

3.6. Similarity relation

In the adjacent temperature interval Ty < T < Tg,
the magnitude and the character of the temperature
dependence of the self-diffusion coefficient in water
are assumed to be similar to those in liquid argon
(see work [35]):

1/2
UW €W m r r
D(W)(TW) = < A > Df?A )(TAr)v

s
OAr \EAr My

Tu<T<T,,

(23)

where Ty, and T, are the temperatures of the corres-
ponding states for water and argon, respectively,

Ew

Ty = —Th,. (24)

EAr

In Egs. (23) and (24), the following notations are
used: €, and oa, are the Lennard-Jones potential
parameters for argon, €, and oy, the parameters of
the averaged interaction potential for water molecules
similar to the Lennard-Jones potential, and M4, and
my, the masses of an argon atom and a water mole-
cule, respectively.

Note that similar relations must be valid for the
coefficients of kinematic shear viscosity,

. Ew MA 1/2
v (Ti) = 2 (W ) var(Tar),
OAr \EAr My

Tu<T<T,

(25)
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and the Maxwell relaxation times,

1/2

(w) Ow Ew MAr (Ar)

™ — | ——] ™ -
OAr \EAr My

From Egs. (20)—(22), it follows that

(w) vo(T) (an
D{M(T) = 222D (AT,

( ) I/Ar()\T) ()\ )
A =T8T,

Ty <T<T.

(27)

Here, we assume that the similarity relations for ki-
netic and thermodynamic quantities are self-consis-
tent. In particular, for the ratio between the interacti-
on constants and critical temperatures, the following
equality is satisfied:

v
ear A

Ew

Analogously, from Egs. (24) and (25), it follows that

Ow (Ar)

ro (1) = 2L (AT),

p— (28)
where r;, = 2,/vT\ is the appropriate radius of a
Lagrangian particle [1]. In this case, for the Lagrange
theory of thermal hydrodynamic fluctuations and the
method of evaluating, on its basis, the collective
component in the self-diffusion coefficient of mole-
cules to be applicable, the inequality

(T > (>)os, i = Ar,w. (29)

must be satisfied.

The applicability of similarity relations to describe
the viscosity and self-diffusion in water was analyzed
in work [35] in detail. The analysis demonstrates
that those relations lead to a rather good agreement
between experimental data and calculation results
obtained on their basis for the viscosity and self-dif-
fusion coefficients. This fact allows a conclusion to
be made that the character of the thermal motion
of water molecules in the whole temperature interval
of the liquid water state is the same as in argon,
i.e. it has nothing in common with the activation
mechanism.

4. Conclusions

According to the arguments presented above, a con-
clusion can be drawn that the molecular thermal
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motion in fluids and self-diffusion in them have pre-
dominantly a non-activation character. The intermi-
xing of particles occurs owing to 1) a collective dri-
ft in the field of thermal hydrodynamic fluctuati-
ons and 2) irreversible circular motions of small
groups of molecules that form closed chains. It
is obvious that such circulatory displacements of
small molecular groups are genetically associated wi-
th vortical hydrodynamic motions giving rise to a
collective drift. It is proved that the circulatory parti-
cle intermixing is successfully described by the Ei-
nstein formula proposed for the description of the
self-diffusion of Brownian particles.

When approaching the critical point of the system,
the situation chages radically. In this case, the system
expands substantially, and the fluctuation-driven
formation of voids near the diffusing particle becomes
possible (Fig. 2, b). As a result, the kinetic theory can
be used to describe the transport processes in enought
dense systems [39].

It should be noted that the concept of collecti-
ve component in the self-diffusion coefficient was
introduced for the first time by Oskotskii in work [40]
devoted to the analysis of the incoherent scattering of
thermal neutrons in water. However, it began to be
discussed and used purposefully only after Fisher’s
works [3, 4], where it was independently introduced,
and where a method for its determination on the basis
of the Lagrange theory of thermal hydrodynamic
fluctuations was proposed. Of basic importance were
the works by Bulavin and co-authors [2, 5, 6], in
which the value of the collective component in the
self-diffusion coefficient was determined for the fi-
rst time in experiments on the incoherent scattering
of thermal neutrons. It was found that the collecti-
ve component can comprise one fourth and even
one third of the total self-diffusion coefficient magni-
tude. Those works undoubtedly belong to the most
profound achievements in molecular physics and the
physics of fluids.

Some later, Mikhailenko [41, 42] obtained simi-
lar results, by using computer simulations. A further
progress and refinement in the Lagrange theory of
thermal hydrodynamic fluctuations were made by Lo-
kotosh and the author of this work [43-45]. Computa-
tional methods for determining the Maxwell relaxati-
on time of viscous tensions developed by Shakun in
works [7,45] are important for estimating the collecti-
ve component of the self-diffusion coefficient of mo-
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Puc. 7. Illustration of the motion of molecular layers with
respect to one another

lecules. In works [46, 47|, Malenkov and Naberukhin
developed computer methods for the determination of
the size of a Lagrangian particle and explicitly visuali-
zed vortical flows that play such an important role in
the collective transfer [48]. Makhlaichuk’s works [49—
51] played a key role in describing the processes of
self-diffusion in simple liquids, liquid metals, water,
and aqueous electrolyte solutions. A detailed study
of the incoherent scattering of thermal neutrons in
water and aqueous solutions was made in the works
by Pankratov et al. [31,32].

The described scenario of a thermal motion in
fluids also leads to another mechanism of shear vi-
scosity formation. The jump-like motion of molecules
from one molecular layer into an adjacent one that
moves with respect to the former seems to be hardly
probable, because the average gap between the nei-
ghbor molecules is much narrower than the molecular
diameter:

2 —wo)/? < v(l)/g.

Accordingly, the shear viscosity of fluids is formed
by friction effects between the molecular layers that
move with respect to one another (Fig. 7).

A more detailed analysis of the issues discussed
above will be made in a separate work.

To summarize, I would like to thank Prof. Leonid
Bulavin for his stable interest to all issues raised
in this work. Clear formulations of many questi-
ons and corresponding answers would be impossi-
ble without permanent discussions with T.V. Loko-
tosh, G.G. Malenkov, V.M. Makhlaichuk, Yu.I. Nabe-
rukhin, and K.S. Shakun.
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M.II. Manomyoic
I[IPUPOJA CAMOJIUDY3Ii B PIAMHAX

Peszmowme

Pob6ora mnpucssivena 06roBopeHH0 npupoiu camomudysii B
HU3bKOMOJIEKYJIAPHUX piguHax. OcobiauBa yBara IpUIIISLETHCI
aTOMapHUM DiJMHAM THUILy aproHy, PiJKUM MeTajlaM Ta aco-
nifioBanuM pinuaaMm Tuiy Bomu. Ilinkpeciioerbest, mo Koedi-
mieHT camoaudy3il ycix piIuH 3a3HAYEHOrO THUIY € CyMOIO
JBOX CKJIAJIOBUX: OJIHIET, 1110 € 3yMOBJIEHOIO IIEPEHOCOM MOJIEKYJI
rigpoAVHAMIYHUMU BUXPOBHUMHU MOJIAMH, 1 JPYyrol, IO HOPO-
JPKYETHCH [UPKYJISITOPDHAM PYyXOM JIOKAJIBHUX IPYIl MOJIEKYJI.
O6uaBi CKIAIOBI MalOTh KOJIEKTHBHY INPHUPOLY, € TE€HETUIHO
OB’sI3aHUMHY 1 BiAPI3HAIOTHCS MiXK CO60I0 TIIBKU MaciITaba-
MM: TIEPII € ME30CKOIIYHUMU, ApYyTi — HaHockomiuaumu. O6ro-
BOPIOETHCS IPOsIB KOJIEKTUBHOI'O BUXPOBOT'O IIEPEHOCY MOJIEKYJI
y crerudini 1acoBol 3aJI€2KHOCT] CepeIHBOKBAIPATHIHOIO 3Mi-
ieHHsT MoJieKynu. IlomaloThbcst Baromi apryMeHTH Moo HeaJle-
KBATHOCT] aKTHUBAI[IHOIO MEXaHI3My TEIJIOBOI'O PYXY MOJIEKYJI
Y HU3BKOMOJIEKYJISIDHUX DPiIMHAX, JOBOAUTHCS BHYTPIIIHS Cy-
[ePeYINBICTh €KCIIOHEHITIAJIbHUX 3aJI€3KHOCTEH 1y1si KoedilieH-
TiB B’s13KoCTi i camonudy3ii. B ycix Bunaakax mnepesara Hajia-
€ThCsl, IIEPII 32 BCe, AKICHUM apryMeHTaM.
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