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ENERGY CHARACTERISTICS
OF METAL NANOWIRES WITH PERIODICALLY
MODULATED SURFACE

The energy spectrum of electrons in a metal nanowire with a periodically modulated surface has
been found in the framework of perturbation theory. To solve the problem, a transition is made
into a coordinate system that “smoothes down” the surface oscillations. The influence of the
surface modulation amplitude on size-induced oscillations of the Fermi energy in such systems
is analyzed. It is shown that an increase of the modulation amplitude leads to a decrease of
the Fermi energy in the wire. Specific calculations were made for Au, Cu, and Al wires.
K e yw o r d s: nanowire, Fermi energy, modulation amplitude, perturbation theory.

1. Introduction

The development of nanotechnology gave rise to the
synthesis and applications of metal nanostructures
with various configurations and, accordingly, differ-
ent optical properties. Among such objects, struc-
tures that have nanometer sizes in two directions–
they are called metal nanoconductors–occupy a spe-
cial place [1–9]. Interest in the study of the proper-
ties of 1D systems is associated with their widespread
applications in nanophotonics (in particular, as ele-
ments of optical antennas [10, 11]), spectroscopy (in
order to increase the Raman screening cross-section
[12]), and single-molecule fluorescence spectroscopy
[13], as well as probes for near-field optical microscopy
[14] and components of lasers, biosensors, and other
devices [15].

When fabricating the metal nanowires, the influ-
ence of mechanical stresses that vary along the wire
length may lead to a deviation of the wire surface
shape from the cylindrical one. The most common
cases of distorting the wire surface are the stochastic
relief and the periodic modulation along the nanowire
axis. The latter case, in particular, may be related to
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the crystalline structure of a wire near its surface,
when the potential field at the nanowire surface be-
comes a periodic function of the longitudinal coordi-
nate. Furthermore, the choice of a periodic relief is
explained by its analogy with the case of nanofilms,
for which it was experimentally confirmed that the
surface shape is close to periodic [16].

The optical properties of systems with a reduced
dimensionality are determined to a large extent by
the excitation of their electron subsystem. One of the
most important parameters of this subsystem is the
Fermi energy. Its dependence on the specimen sizes is
responsible for the oscillations of such optical charac-
teristics of nanostructures as the optical conductivity,
dielectric function, and absorption coefficient [17–19].

The authors of works [6, 20, 21] considered the
electronic properties of charge carriers in nanowires
with a random surface relief. In particular, the charge
carrier scattering by heterogeneities at the metal
nanowire surface was analyzed in work [20], the scat-
tering at interface inhomogeneities and the electron
mobility in quantum wires in work [20], and the scat-
tering on inhomogeneities induced by the insulator-
metal-insulator transition in work [21]. The energy
spectrum of charge carriers in 1D systems with pe-
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riodically modulated surface was obtained in work
[22]. However, the issue about the effect of the peri-
odic surface modulation on the behavior of the Fermi
energy in metal nanowires still remains unexplored
and, therefore, challenging.

2. Formulation of the Problem
and Basic Relations

The lateral surface of a nanowire with a circular cross-
section and a periodic, along the wire length, surface
relief is given in the polar coordinate system by the
equation 𝜌 = 𝜌0 + 𝑓 (𝑧), where 𝑓 (𝑧) = 𝑎 cosκ𝑧 is a
periodic function with the spatial period Λ = 2𝜋/κ,
𝜌0 = const is the average wire radius, 𝑎 is the surface
modulation depth (𝑎≪ 𝜌0), and the 𝑧 axis is directed
along the wire axis. Let us change to a new coordinate
system:

𝜌′ =
𝜌0𝜌

𝜌0 + 𝑓 (𝑧)
, 𝜙′ = 𝜙, 𝑧′ = 𝑧,

in which the conductor surface is cylindrical and de-
scribed by the equation 𝜌′ = 𝜌0. Then, the Laplace
operator in the Schrödinger equation is transformed
according to the formula

Δ =
1
√
𝑔

∑︁
𝑖,𝑘

𝜕𝑖
(︀√
𝑔𝑔𝑖𝑘𝜕𝑘

)︀
, (1)

where 𝑔 = det
[︁(︀
𝑔𝑖𝑘

)︀−1
]︁
, and 𝑔𝑖𝑘 is a contravariant

metric tensor, whose components are determined by
the expression [23]

𝑔𝑖𝑘 (𝜌′, 𝜙′, 𝑧′) =
𝜕𝑥𝑖
𝜕𝜌

𝜕𝑥𝑘
𝜕𝜌

+
𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
𝜕𝜙

+
𝜕𝑥𝑖
𝜕𝑧

𝜕𝑥𝑘
𝜕𝑧

,

𝑥𝑖,𝑘 = 𝜌′, 𝜙′, 𝑧′.
(2)

Calculating all components of this tensor (see Ap-
pendix A), we obtain

𝑔𝑖𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜌′2𝑓 ′
2
𝑧′ + 𝜌0

2

(𝜌0 + 𝑓 (𝑧′))
2 0 − 𝜌′𝑓 ′𝑧′

𝜌0 + 𝑓 (𝑧′)

0
𝜌0

2

𝜌′2(𝜌0 + 𝑓 (𝑧′))
2 0

− 𝜌′𝑓 ′𝑧′

𝜌0 + 𝑓 (𝑧′)
0 1

⎞⎟⎟⎟⎟⎟⎟⎠,

√
𝑔 =

𝜌′(𝜌0 + 𝑓 (𝑧′))
2

𝜌02
. (3)

Hence, in new coordinates, the Laplace operator looks
like

Δ =
𝜌0

2 + 𝜌′
2
𝑓 ′

2
𝑧′

(𝜌0 + 𝑓 (𝑧′))
2

𝜕2

𝜕𝜌′2
+
𝜌0

2 + 𝜌′
2
𝑓 ′

2
𝑧′

(𝜌0 + 𝑓 (𝑧′))
2

1

𝜌′
𝜕

𝜕𝜌′
+

+
𝜌′𝑓 ′

2
𝑧′

(𝜌0 + 𝑓 (𝑧′))
2

𝜕

𝜕𝜌′
− 2𝜌′𝑓 ′𝑧′

𝜌0 + 𝑓 (𝑧′)

𝜕

𝜕𝜌′𝜕𝑧′
−

− 𝜌′𝑓 ′′𝑧′𝑧′

𝜌0 + 𝑓 (𝑧′)

𝜕

𝜕𝜌′
+

𝜕2

𝜕𝑧′2
, (4)

where the notations

𝑓 ′𝑧′ ≡
𝑑𝑓 (𝑧′)

𝑑𝑧′
, 𝑓 ′′𝑧′𝑧′ ≡

𝑑2𝑓 (𝑧′)

𝑑𝑧′2
(5)

were introduced. In the applied approximation,
max 𝑓 ′𝑧′ = 𝑎κ ≪ 1, max ( 𝑎𝑓 ′′𝑧′𝑧′) = 𝑎2κ2 ≪ 1,
and 𝜌′𝑓 ′𝑧′ ≪ 𝜌0. Therefore, in the first order of per-
turbation theory in the quantity 𝑎/𝜌0, the Laplace
operator is described by the expression

Δ ∼=
𝜌0

2

(𝜌0 + 𝑓 (𝑧′))
2

(︂
𝜕2

𝜕𝜌′2
+

1

𝜌′
𝜕

𝜕𝜌′

)︂
+

𝜕2

𝜕𝑧′2
.

The surface modulation amplitude is considered to be
small in comparison with the average nanowire radius
(𝑎/𝜌0 ≪ 1). Then, according to perturbation theory,
the Hamiltonian has the form

ℋ̂ = ℋ̂0 + 𝑉 ,

or
∧
ℋ = − ~2

2𝑚𝑒
×

×

[︃
𝜌20

(𝜌0 + 𝑓 (𝑧′))
2

(︂
𝜕2

𝜕𝜌′2
+

1

𝜌′
𝜕

𝜕𝜌′
+

1

𝜌′
𝜕 2

𝜕𝜙′2

)︂
+

𝜕2

𝜕𝑧′2

]︃
.

The Hamiltonian of the unperturbed problem looks
like

ℋ̂0 = − ~2

2𝑚𝑒

[︂
𝜕2

𝜕𝜌′2
+

1

𝜌′
𝜕

𝜕𝜌′
+

1

𝜌′2
𝜕 2

𝜕𝜙′2
+

𝜕2

𝜕𝑧′2

]︂
,

and its eigenvalues equal

𝐸(0)
𝑚𝑛 =

~2𝑘(0)2𝑚𝑛

2𝑚𝑒
.

The perturbation operator has the form (see Ap-
pendix B)

𝑉 =
~2

𝑚𝑒

𝑎

𝜌0

(︂
𝜕2

𝜕𝜌′2
+

1

𝜌′
𝜕

𝜕𝜌′
+

1

𝜌′2
𝜕2

𝜕𝜙′2

)︂
cosκ𝑧′. (6)
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The first-order correction to the spectrum is deter-
mined by the expression

𝐸(1)
𝑚𝑛 =

~2𝑘(0)𝑚𝑛𝑘
(1)
𝑚𝑛

𝑚𝑒
(7)

or

𝐸(1)
𝑚𝑛 =

∫︁
𝑉 ′

𝜓(0)*
𝑚𝑛𝑝 (𝜌

′, 𝜙′, 𝑧′)𝑉 𝜓(0)
𝑚𝑛𝑝 (𝜌

′, 𝜙′, 𝑧′) 𝑑𝑉 ′. (8)

In the zeroth approximation, we select the wave
functions for a circular wire in the form [18]

𝜓(0)
𝑚𝑛𝑝 (𝜌

′, 𝜙′, 𝑧′) = 𝑅𝑚𝑛 (𝜌
′) Φ𝑚 (𝜙′)𝑍𝑝 (𝑧

′),

where

𝑍𝑝 (𝑧
′) =

1√
𝐿
𝑒−𝑖𝑘𝑧′𝑝𝑧

′

is a part of the wave function that corresponds to the
longitudinal motion of an electron along the axis of
the wire with the length 𝐿, the subscript 𝑝 enumerates
the values of the 𝑧-component of the wave vector,

Φ𝑚 (𝜙′) =
1√
2𝜋

𝑒−𝑖𝑚𝜙′

is the angular part of the wave function (𝑚 = 0.1, ...),

𝑅𝑚𝑛 (𝜌
′) = 𝐶𝑚𝑛𝐼𝑚 (𝑘𝑚𝑛𝜌

′)

is the radial part of the wave function, and

𝐶𝑚𝑛 =

√
2

𝜌′0

⃒⃒⃒
𝐼 ′𝑚

(︁
𝑘
(0)
𝑚𝑛𝜌0

)︁⃒⃒⃒ .
The calculation of integral (8) making use of Eq. (7)
results in the following correction to the wave number:

𝑘(1)𝑚𝑛 = 2𝑘(0)𝑚𝑛

𝑎

𝜌0

sinκ𝐿
κ𝐿

. (9)

In the zeroth order of perturbation theory, the spec-
trum is determined from the transcendental equa-
tion [24]

𝑘(0)𝑚𝑛

𝐼 ′𝑚

(︁
𝑘
(0)
𝑚𝑛𝜌0

)︁
𝐼𝑚

(︁
𝑘
(0)
𝑚𝑛𝜌0

)︁ = κ(0)
𝑚𝑛

𝐾 ′
𝑚

(︁
κ(0)
𝑚𝑛𝜌0

)︁
𝐾𝑚

(︁
κ(0)
𝑚𝑛𝜌0

)︁ , (10)

where 𝐼𝑚 (𝑥) , 𝐾𝑚 (𝑥) , 𝐼 ′𝑚 (𝑥), and 𝐾 ′
𝑚 (𝑥) are the

Bessel and MacDonald functions of the 𝑚-th or-
der and their first derivatives, respectively; κ(0) 2

𝑚𝑛 =

= 𝑘20 − 𝑘
(0) 2
𝑚𝑛 ; ~𝑘0 =

√
2𝑚𝑒𝑈0; and 𝑈0 is the poten-

tial well depth. Making allowance for the first-order
correction, the spectrum looks like

𝑘𝑚𝑛
∼= 𝑘(0)𝑚𝑛 + 𝑘(1)𝑚𝑛 = 𝑘(0)𝑚𝑛

(︂
1 + 2

𝑎

𝜌0

sinκ𝐿
κ𝐿

)︂
. (11)

In the same approximation, the eigenvalues of the
Hamiltonian equal

𝐸𝑚𝑛 =
~2𝑘2𝑚𝑛

2𝑚𝑒
=

~2𝑘(0)2𝑚𝑛

2𝑚𝑒

(︂
1 + 2

𝑎

𝜌0

sinκ𝐿
κ𝐿

)︂2
∼=

∼=
~2𝑘(0)2𝑚𝑛

2𝑚𝑒

(︂
1 + 4

𝑎

𝜌0

sinκ𝐿
κ𝐿

)︂
.

Since the surface modulation is considered to take
place on a large scale (2𝜋/κ ≫ 1), it follows that
κ𝐿≪ 1. In this case, sinκ𝐿/κ𝐿 ∼= 1 with a sufficient
accuracy, and we may write that

𝐸𝑚𝑛
∼=

~2𝑘(0)2𝑚𝑛

2𝑚𝑒

(︂
1 + 4

𝑎

𝜌0

)︂
. (12)

The second term in parentheses determines a correc-
tion to the spectrum caused by the periodic modula-
tion of the wire surface.

The size dependence of the Fermi energy is deter-
mined by the relation [18]

�̄� =
2

𝜋2𝜌20

∑︁
𝑚,𝑛

√︁
𝑘2F − 𝑘2𝑚𝑛, (13)

where �̄� is the concentration of conduction electrons
in the 3D metal, and the numbers 𝑘𝑚𝑛 are determined
from Eq. (11). In formula (13), the summation is car-
ried out over all 𝑚 and 𝑛 values, for which 𝑘𝑚𝑛 < 𝑘F.

3. Calculation Results
and Their Discussion

Specific calculations were performed for Al (𝑍 = 3),
Cu (𝑍 = 2), and Au (𝑍 = 1) nanoconductors with
the electron concentration �̄� = 3/4𝜋𝑟3𝑠 determined for
corresponding values 𝑟𝑠 = 2.07𝑎0, 2.11𝑎0, and 3.01𝑎0,
respectively. Here, 𝑍 is the metal valence, 𝑟𝑠 the av-
erage distance between electrons, and 𝑎0 the Bohr ra-
dius. The modulation amplitude was taken to equal
𝑎/𝜌0 = 0, 0.05, and 0.1. The nanowires were sup-
posed to be embedded into SiO2 (the depth of the
conduction band bottom with respect to the vacuum
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level, i.e. the electron affinity, 𝜒 = 1.1 eV, and the
dielectric constant 𝜖 = 4) or Al2O3 (𝜒 = 1.35 eV,
𝜖 = 9) [25].

For the band structure of the insulator [26] to be
taken into account, it is necessary to redetermine the
work function of electrons from the nanowire and,
hence, the well depth. Unlike the case of a wire in
vacuum, where

𝑈0 = 𝜀0F +𝑊0,

the presence of an insulator results in a decrease of
the work function and the well depth 𝑈𝑑 from the
insulator side,

𝑈𝑑 = 𝜀0F +𝑊𝑑,

where 𝑊𝑑 is the potential barrier height at the metal-
insulator interface (Schottky barrier).

By analogy with work [26], let us take advantage
of two approaches to the determination of 𝑊𝑑:

(I) the work function into the insulator is deter-
mined as the difference 𝑊𝑑 = 𝑊0 − 𝜒, where 𝑊0 is
the work function at the interface semiinfinite metal–
vacuum;

(II) the value of 𝑊𝑑 is taken from the results of
self-consistent calculations (see Table).

The results of calculations of the size dependence
of the Fermi energy 𝜀F (in the relative units 𝜀F/𝜀0F,
where 𝜀0F = ~2

(︀
3𝜋2�̄�

)︀ 2
3 /(2𝑚𝑒) is the Fermi energy in

a uniform electron gas) carried out in the framework
of those two approaches for an Au nanowire in the
Al2O3 and SiO2 media and for the modulation am-
plitude 𝑎/𝜌0 = 0.1 are shown in Fig. 1 (panels 𝑎 and
𝑏, respectively). Curves 1 correspond to approach I,
and curves 2 to approach II. For both approaches,
the results are qualitatively similar. Namely, the
characters of the dependences for both insulators are
similar, and„ for both dependences, there is a sig-
nificant reduction of the oscillation amplitude with
the growth of the effective nanowire diameter. How-
ever, they differ quantitatively in both the ampli-
tude (by about 5–7%) and the position of the peaks:
max

(︀
𝜀F/𝜀

0
F

)︀
I
< max

(︀
𝜀F/𝜀

0
F

)︀
II

, i.e., the maxima in
approach I are shifted to the left with respect to the
maxima in approach II because of the difference be-
tween the values of the potential well depth.

The results of self-consistent calculations are more
correct, because, unlike approach I, where the work

1

2

1 2,

1 3,

1 4,

1 5,

eF

eF
0

a
1 6,

1 2 3

1 2,

1 3,

1 4,

1 5,

eF

eF
0

1

2

b
1 6,

d, nm

Fig. 1. Size dependences of the Fermi energy for an Au nano-
wire in the Al2O3 (𝑎) and SiO2 (𝑏) media. 𝑑 = 2𝜌0

Results of self-consistent
calculations for semiconfined systems

Metal Al Cu Au

Insulator Al2O3 SiO2 Al2O3 SiO2 Al2O3 SiO2

𝑊d, eB 1.29 1.84 1.49 1.89 1.41 1.79

function into the insulator is a given parameter,
this value is calculated by solving together the
Schrödinger and Poisson equations, i.e., the charge
redistribution is taken into account. In this connec-
tion, approach II will be used below.

Figure 2 demonstrates the size dependences of the
ratio 𝜀F/𝜀0F for Cu nanowires in various dielectric me-
dia and at various modulation amplitude values. One
can see that, as the parameter 𝑎/𝜌0 increases, the
𝜀F/𝜀

0
F-values decrease, and the peaks in the size de-

pendences insignificantly move to the right, which is
associated with the variation of the effective potential
well width.
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Fig. 2. Size dependences of the Fermi energy for a Cu nano-
wire in the Al2O3 (𝑎) and SiO2 (𝑏) media at various modulation
amplitudes 𝑎/𝜌0 = 0 (1 ), 0.05 (2 ), and 0.1 (3 ). 𝑑 = 2𝜌0

1,25

1,3

1,35

1,4
eF

eF
0

1,5

1 2 3
d, nm

1,45
1

2

3

Fig. 3. Size dependences of the Fermi energy for nanowires of
various metals in the SiO2 medium at 𝑎/𝜌0 = 0.1: Au (1 ), Cu
(2 ), and Al (3 ). 𝑑 = 2𝜌0

Analogous dependences for various metals but at
the fixed modulation amplitude (𝑎/𝜌0 = 0.1) are
shown in Fig. 3. A substantial difference between the
quantitative results obtained for Au nanowires and

the closeness of the results for Cu and Al ones can be
exhaustively explained by the values of the parameter
𝑟𝑠 for those metals.

4. Conclusions

In this work, the issue how periodic modulations of
the surface of metal nanowires affect the size depen-
dence of the Fermi energy in the conductor has been
considered. The oscillations in this dependence de-
termine the behavior of the optical characteristics of
1D systems.

In the framework of two approaches, the size-
induced oscillations of the Fermi energy are calculated
for Al, Cu, and Au conductors in various dielectric
media and at various surface modulation amplitudes.
It is found that, for an Au nanowire in the Al2O3

and SiO2 media, the both approaches give qualita-
tively similar results for the modulation amplitude
𝑎/𝜌0 = 0.1. However, those results differ quantita-
tively in the oscillation amplitude and the peak posi-
tions owing to different potential well depths.

By the example of a Cu nanowire, it is demon-
strated that the relative values of the Fermi en-
ergy decrease with the modulation amplitude growth.
This result is explained by the fact that the modu-
lation amplitude growth leads to a potential well de-
formation and changes its effective width, so that the
Fermi level decreases.

At fixed modulation amplitudes, the results of cal-
culations are close quantitatively for the Cu and Al
nanowires, but differ significantly for the Au one.
This is a result of the closeness of the 𝑟𝑠-values for
the first two metals and their significant difference
with the case of Au.

The authors are grateful to the Referee for his/her
interest in the article and valuable remarks.

APPENDIX A.
Calculation of the Components
of the Contravariant Metric Tensor

Let us calculate the components of the contravariant metric
tensor using formula (2):

𝑔11 =

(︂
𝜕𝜌′

𝜕𝜌

)︂2

+
1

𝜌2

(︂
𝜕𝜌′

𝜕𝜙

)︂2

+

(︂
𝜕𝜌′

𝜕𝑧

)︂2

=

=
𝜌02

(𝜌0 + 𝑓 (𝑧′))2
+

𝜌02𝜌2𝑓 ′2
𝑧

(𝜌0 + 𝑓 (𝑧′))4
=

𝜌′2𝑓 ′2
𝑧′ + 𝜌02

(𝜌0 + 𝑓 (𝑧′))2
;

𝑔22 =

(︂
𝜕𝜙′

𝜕𝜌

)︂2

+
1

𝜌2

(︂
𝜕𝜙′

𝜕𝜙

)︂2

+

(︂
𝜕𝜙′

𝜕𝑧

)︂2

=
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=
1

𝜌2
=

𝜌02

𝜌′2(𝜌0 + 𝑓 (𝑧′))2
;

𝑔33 =

(︂
𝜕𝑧′

𝜕𝜌

)︂2

+
1

𝜌2

(︂
𝜕𝑧′

𝜕𝜙

)︂2

+

(︂
𝜕𝑧′

𝜕𝑧

)︂2

= 1,

𝑔12 = 𝑔21 = 𝜌
𝜕𝜌′

𝜕𝜌

𝜕𝜙′

𝜕𝜌
+

1

𝜌

𝜕𝜌′

𝜕𝜙

𝜕𝜙′

𝜕𝜙
+ 𝜌

𝜕𝜌′

𝜕𝑧

𝜕𝜙′

𝜕𝑧
= 0,

𝑔23 = 𝑔32 = 𝜌
𝜕𝜙′

𝜕𝜌

𝜕𝑧′

𝜕𝜌
+

1

𝜌

𝜕𝜙′

𝜕𝜙

𝜕𝑧′

𝜕𝜙
+ 𝜌

𝜕𝜙′

𝜕𝑧

𝜕𝑧′

𝜕𝑧
= 0,

𝑔13 = 𝑔31 = 𝜌
𝜕𝜌′

𝜕𝜌

𝜕𝑧′

𝜕𝜌
+

1

𝜌

𝜕𝜌′

𝜕𝜙

𝜕𝑧′

𝜕𝜙
+ 𝜌

𝜕𝜌′

𝜕𝑧

𝜕𝑧′

𝜕𝑧
=
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𝜌0𝑓 ′ (𝑧) 𝜌

(𝜌0 + 𝑓 (𝑧))2
= −

𝜌′𝑓 ′
𝑧′

𝜌0 + 𝑓 (𝑧′)
.

Relation (3) follows from the formulas given above.

APPENDIX B. Perturbation operator

Let us define the perturbation operator:

∧
𝑉 =

∧
ℋ−

∧
ℋ0 = −

~2

2𝑚𝑒
×

×
(︂

𝜌20
(𝜌0 + 𝑓 (𝑧′))2

− 1

)︂(︂
𝜕2
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+

1

𝜌′
𝜕
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+

1

𝜌′2
𝜕 2
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=
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×

×
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+

1
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𝜕
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+

1
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)︂
=
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×

×
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𝜕2

𝜕𝜌′2
+

1

𝜌′
𝜕
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=
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2𝑚𝑒
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𝜌0
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1 + 2 𝑎
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𝜕
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∼=
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𝑎

𝜌0
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𝜕2
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+

1
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𝜕
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+

1
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)︂
cosκ𝑧′.

From whence, formula (6) is obtained.
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ЕНЕРГЕТИЧНI ХАРАКТЕРИСТИКИ
МЕТАЛЕВИХ НАНОДРОТIВ З ПЕРIОДИЧНО
МОДУЛЬОВАНОЮ ПОВЕРХНЕЮ

Р е з ю м е

З використанням теорiї збурень знайдено енергетичний
спектр електронiв у металевому нанодротi з перiодично мо-
дульованою поверхнею. Для розв’язку поставленої задачi
було здiйснено перехiд у систему координат, що “спрямляє”
межi. Дослiджено вплив амплiтуди модуляцiї на розмiрнi
осциляцiї енергiї Фермi таких систем. Показано, що збiль-
шення амплiтуди модуляцiї приводить до зменшення енер-
гiї Фермi дроту. Розрахунки було проведено для дротiв Au,
Cu та Al.
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