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ENERGY LEVELS OF ISOBARIC
NUCLEI (16N, 16F) WITHIN THE MODIFIED
SURFACE DELTA-INTERACTION MODEL

The modified surface delta-interaction model is applied to calculate the energy levels of 16N
and 16F nuclei. The good agreement between theoretical and experimental data is attained for
excitation energies. This indicates that the shell model describes properly the structure of these
nuclei.
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1. Introduction

The nuclear shell model (NSM) has a very long his-
tory, during which much efforts were directed to the
improvement of the formal and technical aspects of
the model applied to the explanation of nuclear prop-
erties [1]. It was introduced some (55) years ago to
clarify the regularities of the nuclear properties re-
lated to the magic number [2]. The shell model has
been successful in the characterization of configura-
tions with a few nucleons outside “closed shells” or
missing from them [3]. Having a simple shell model
in mind, Talmi used the surface delta-interaction to
evaluate properties of nuclear states with few “nucle-
ons” on a magic core [4]. Likewise, the shell model
has been successful in describing the configurations
with a few nucleons outside closed shells or missing
from them [3]. It employs the following assumption:
first, there exists an inert core model of a close shell,
which acts with central forces upon valence nucle-
ons; second, there exists a residual interaction caused
by two-body forces acting between the valence nucle-
ons [5]. Here, this work presents a modified surface
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delta-interaction (SDI) method and will apply it to
calculate the energy levels of (16N, 16F) nuclei, which
contain one particle and one hole outside of the closed
shell 16O.

2. Particle-Hole Formalism

By knowing the nuclear potentials for all nucleons of
a nucleus, one can calculate the energy levels [6] with
the normal assumption of two-body forces defined by
a potential 𝑉 . The Hamiltonian can be written in the
form [7]

𝐻 =
∑︁
𝛼𝛽

⟨𝛼|𝐸|𝛽⟩𝜂+𝛼 𝜂𝛽 +
1

4

∑︁
𝛼𝛽𝛾𝛿

⟨𝛼𝛽|𝑉 |𝛾𝛿⟩𝜂+𝛼 𝜂+𝛽 𝜂𝛿𝜂𝛾 ,

(1)

where 𝜂+𝛼 and 𝜂𝛼 denote the (creation and annihila-
tion) operators, respectively, of a nucleon in the state
|𝛼⟩, 𝐸 is the kinetic energy operator, and ⟨𝛼𝛽|𝑉 |𝛿𝛾⟩
idealizes the normalized antisymmetrized matrix el-
ement of the nucleon-nucleon interaction. The wave
functions in the (one-particle)–(one-hole) configura-
tion space are represented by [7, 8]

|0; 𝑝ℎ−1⟩ = 𝑎ℎ𝑎
+
𝑝 |0⟩. (2)
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We denote particle states by the labels 𝑝1, 𝑝2, and
𝑝3 and hole states by labels ℎ1, ℎ2, and ℎ3. The NSM
Hamiltonian reads

𝐻𝑠.𝑝|0; 𝑝ℎ−1⟩=(𝑒𝑝 − 𝑒ℎ)𝑎ℎ𝑎
+
𝑝 |0⟩=(𝑒𝑝 − 𝑒ℎ)|0; 𝑝ℎ−1⟩,

(3)

where 𝑒𝑝 represents the single-particle (s.p.) energy
for a particle, and 𝑒ℎ symbolizes the single-particle
energy for a hole. Consequently, we can construct a
basis of one-particle (one-hole) states with the injec-
tion energy as given in Eq. (3). For the description
of excited states in nuclei, one still has to perform
the angular momentum coupling. Once a sufficiently
large set of basis functions is obtained, the coupled
(particle-hole) states are given by

0; 𝑝ℎ−1; |𝐽𝑀⟩ =
∑︁

𝑚𝑝𝑚ℎ

(−1)𝑗ℎ−𝑚ℎ⟨𝑗𝑝𝑚𝑝𝑗ℎ𝑚ℎ|𝐽𝑀⟩×

× 𝑎𝑗ℎ−𝑚ℎ
𝑎+𝑗ℎ−𝑚ℎ

|0⟩. (4)

The ground state is taken to be a closed config-
uration, and the excited state is a mixed (one par-
ticle, one hole) configuration. This approach is usu-
ally referred to as the Tamm–Dancoff approximation
(TDA).

3. Surface Delta-Interaction

The residual nucleon-nucleon interaction is that part
of the interaction, which is not involved in the cen-
tral average potential. As a consequence of the Pauli
principle, most inelastic collisions inside the nucleus
are prohibited. Therefore, the nucleons move almost
freely in the nuclear matter, and the (effective inter-
action) between the nucleons occurs mainly on the
nuclear surface. Using this assumption, Moszkowski
and co-workers [5] have proposed a simple model able
to describe the interaction between the valence nucle-
ons. This model of interaction assumes the following.

I. The residual interaction 𝑉1,2 between particles 1
and 2 takes place at the nuclear surface only.

II. The two-body forces are delta-forces; i.e., the
interaction takes place only if the two nucleons are at
the same place [9, 10]:

𝑉1,2 = −4𝜋𝐴′
𝑇 𝛿(Ω1,2), (5)

where 𝐴′
𝑇 represents the interaction strength, and

Ω1,2 is the angular distance between the interacting
particles. The factor is introduced for the normaliza-
tion purposes.

III. The radial one-particle wave functions of the
active shell have the same absolute value at the
nuclear surface. The interaction defined in this way
possesses all the features of pairing interaction. It
is short-ranging and allows only symmetric spatial
states. It should be pointed out that SDI exists not
only between particles coupled to (𝐽 = 0, 𝑇 = 𝑙), but
also between particles coupled to (𝐽 ̸= 0). Unlike the
pairing, SDI acts also in states with 𝑇 = 0. Therefore,
SDI should be a better approximation, than a pure
pairing one. Following the work by Glaudemans et
al. [11], where the isospin dependence of the interac-
tion was taken into account, the “interaction” may be
written in the form [7–10]

𝑉1,2 = −4𝜋𝐴
′

𝑇 𝛿(Ω1,2)𝛿(𝑟1−𝑅0)𝛿(𝑟2−𝑅0)+𝐵𝜏1·𝜏2 , (6)

where 𝑟1, 𝑟2 are the position vectors of interacting
particles, 𝑅0 is the nuclear radius [9–12, 13], 𝐴′

𝑇 is
the strength of interaction, and 𝜏𝑛 are the isospin
operators (𝑛 = 1, 2). 𝑇 = 𝑡1 + 𝑡2 depends on the
isospin of interacting particles. The correction term
𝐵𝜏1·𝜏2 is introduced to account for the splitting be-
tween the groups of levels with different isospins. The
eigenvalue of the operator product 𝜏1 ·𝜏2 is found from
the relation 𝑇2 = 𝑡21 + 𝑡22 +2𝑡21𝑡

2
2. Taking into account

that (𝑡 = 1/2𝜏 and 𝑡1 = 𝑡2 = 1/2, we get

𝑡1𝑡2 =
𝑇 (𝑇 + 1)− 𝑡1(𝑡1 + 1)− 𝑡2(𝑡2 + 1)

2
=

=
2𝑇 (𝑇 + 1)− 3

4
, (7)

𝜏1 · 𝜏2 = 2𝑇 (𝑇 + 1)− 3. (8)

Such a form of the interaction is called a modified
surface delta-interaction (MSDI). In the simple case
of two valence nucleons outside of the closed shell, the
Hamiltonian is

𝐻 = 𝐻Core + 𝐸𝑗1 + 𝐸𝑗2 + ⟨𝑗1𝑗2|𝑉(1,2)|𝑗3𝑗4⟩, (9)

where 𝐸(𝑗1,2) are the single-particle energies. The an-
tisymmetrized matrix element of 𝑉1,2 is given by [14,
15]

⟨𝑗1𝑗2|𝑉 |𝑗3𝑗4⟩ = − 𝐴𝑇

2(2𝐽 + 1)
×

×{(2𝑗1 + 1)(2𝑗2 + 1)(2𝑗3 + 1)(2𝑗4 + 1)/2(2𝐽 + 1)×

× (1 + 𝛿1,2)}1/2[(−1)𝑙1+𝑙2+𝑗3+𝑗4 ]×
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×
[︁

𝑗1 𝑗2 𝐽
1/2 −1/2 0

]︁[︁
𝑗3 𝑗4 𝐽

1/2 −1/2 0

]︁
[1−(−1)𝑙3+𝑙4+𝐽+𝑇 ]−

−
[︁

𝑗1 𝑗2 𝐽
1/2 −1/2 0

]︁ [︁
𝑗3 𝑗4 𝐽

1/2 −1/2 0

]︁
×

× [1 + (−1)𝑇 ] + [2𝑇 (𝑇 |+ 1)− 3]𝐵𝛿1,3𝛿2,4, (10)

where
[︁

𝑗1 𝑗2 𝐽
1/2 −1/2 0

]︁
and

[︁
𝑗3 𝑗4 𝐽

1/2 −1/2 0

]︁
are the

Clebsch–Gordan coefficients [7–13] and 𝑗1, 𝑗2, 𝑗3, and
𝑗4 are the spin states of particles. Correspondingly, 𝐽
and 𝑇 indicate the spin and isospin of a two-particle
state. The diagonal matrix elements with 𝑗1 = 𝑗2
and 𝑗3 = 𝑗4 correspond to pure states. In the case of
pure states, the excitation energies are given by the
difference between the binding energies of the level
and the ground state. When the configuration mix-
ing is considered, the energies are obtained by carry-
ing out the diagonalization of energy matrices. The
behavior of two-hole nuclei is almost the same as
that of two-particle nuclei except for that the single-
particle energy changes the sign [14–16]: 𝑒ℎ(hole) =
= −𝑒𝑝(particle). The residual interaction is given by
the MSDI defined in Eq. (6), and the matrix of the
Hamiltonian is [7, 8]
⟨𝑝1ℎ−1

1 |𝐻|𝑝2ℎ−1
2 ⟩Γ =

= (𝑒𝑝1
− 𝑒ℎ1

)𝛿𝑝1𝑝2𝛿ℎ1ℎ2 + ⟨𝑝1ℎ−1
1 |𝑉 |𝑝2ℎ−1

2 ⟩. (11)

Then
⟨𝑝1ℎ−1

1 |𝑉 |𝑝2ℎ−1
2 ⟩ =

=
1

4

√︁
(2𝑗𝑝1

+ 1)(2𝑗𝑝2
+ 1)(2𝑗ℎ1

+ 1)(2𝑗ℎ2
+ 1)×

× (−1)𝑄[𝐴0[1 + 2(−1)𝑙ℎ2+𝑙𝑝2+𝐽 ] +𝐴1[1 + 2(−1)𝑇 ]×

×
[︁
𝑗𝑝2 𝑗ℎ1 𝐽
1/2 −1/2 0

]︁ [︁
𝑗ℎ2 𝑗𝑝2 𝐽
1/2 −1/2 0

]︁
×

× (−1)𝑍 [𝐴0 −𝐴1[1 + 2(−1)𝑇 ]
[︁
𝑗𝑝1 𝑗ℎ1 𝐽
1/2 1/2 −1

]︁
×

×
[︁
𝑗ℎ2 𝑗𝑝2 𝐽
1/2 1/2 −1

]︁
𝛿even𝑙𝑝1+𝑙𝑝2𝑙ℎ1+𝑙ℎ2

−

−𝐶 +𝐵[1 + 2(−1)𝑇 ]]𝛿𝑝1𝑝2𝛿ℎ1ℎ2, (12)

where Γ = 𝑇𝐽 , 𝑄 = 𝑗ℎ1 + 𝑗ℎ2 + 𝑙𝑝1 + 𝑙ℎ1 + 𝐽 + 𝑇 ,
and 𝑍 = 𝑗ℎ1 + 𝑗𝑝2 + 𝑙𝑝2 + 𝑙ℎ1, 𝐽 is the total angular
momentum, and values of 𝐴0, 𝐴1, 𝐵, and 𝐶 as func-
tions of the mass number 𝐴 [7, 14] are obtained from
fits to experimental data in the varied mass region,
where 𝐴0 ≃ 𝐴1 ≃ 𝐵 ≃ 25

𝐴 . For a two-particle or two-
hole nucleus [10] in the states 𝑗1 and 𝑗2 (𝑗1𝑗2), the
allowable angular momentum values are

𝐽 = 𝑗1+ 𝑗2, 𝑗1+ 𝑗2−1, 𝑗1+ 𝑗2−2, 𝑗1+ 𝑗2−3, |𝑗1− 𝑗2|.
(13)

4. Results and Discussion

The MSDI discussed in the previous section has been
used extensively as the effective two-body interaction
in many regions in the Periodic table [14, 15]. Nuclear
properties of many nuclei were calculated within var-
ious models and were compared with experimental
data [19, 20]. In this work, we present the results
of calculations of the energy levels of 16𝑁 and 16𝐹
nuclei.

4.1. 16F nucleus

The model space includes 0𝑝3/2 and 0𝑝1/2 hole or-
bits and (0𝑑5/2, 1𝑠1/2, 0𝑑3/2 particle orbits in 16F nu-
cleus. It is one-proton (particle) outside the inert core
16O and one neutron (hole). The energy levels can
be obtained, by using the single-particle energy [17,
18], where 𝑒𝑃 (particle) = 𝑒0𝑑5/2

= 0.6 MeV, 𝑒1𝑠1/2 =
= 0.105 MeV, 𝑒0𝑑3/2

= −4.499 MeV, 𝑒𝐻(hole) =
= 𝑒0𝑝1/2

= 15.663 MeV, 𝑒0𝑝3/2
= 21.84 MeV. The

parameters 𝐴0 = 2.1, 𝐴1 = 1.99, 𝐵 = 0.9 and
𝐶 = 0.0. Table 2 and Figure, a show the comparison
between theoretical and experimental values for 16F
nucleus [19]. The MSDI calculations of the energies
and parity are in good agreement with the experi-
mental values. In the “first” sequences for the energy
spectra with MSDI, we predicted a good correspon-

Table 1. Matrix element values 𝑋𝐹 and 𝑋𝑁

(in MeV) for 16𝑁 and 16𝐹 nuclei, respectively.
𝑋 = ⟨𝑗𝑝1𝑗ℎ−1

1

|𝑉 |𝑗𝑝2𝑗ℎ−1
2

⟩, 𝑀 = (16𝑁,16 𝐹 )

𝑗𝑝1 (M) 𝑗
ℎ−1
1

(M) 𝑗𝑝2 (M) 𝑗
ℎ−1
2

(M) 𝐽 (M) 𝑋𝐹 𝑋𝑁

5/2 1/2 5/2 1/2 3 1.865 1.202
5/2 1/2 5/2 1/2 2 1.615 0.897
1/2 1/2 1/2 1/2 0 3.499 0.809
1/2 1/2 1/2 1/2 1 4.389 1.759
3/2 1/2 3/2 1/2 1 1.662 1.352
3/2 1/2 3/2 1/2 2 2.530 0.883
5/2 3/2 5/2 1/2 1 1.341 1.233
5/2 3/2 5/2 3/2 2 2.556 0.885
5/2 3/2 5/2 3/2 3 1.939 1.197
5/2 3/2 5/2 3/2 4 2.129 0.913
1/2 3/2 1/2 3/2 1 4.951 1.706
1/2 3/2 1/2 3/2 2 1 1.001
3/2 3/2 3/2 3/2 0 2.767 0.934
3/2 3/2 3/2 3/2 1 13.214 1.251
3/2 3/2 3/2 3/2 2 3.191 0.865
3/2 3/2 3/2 3/2 3 3.488 1.321
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a b
Comparison the MSDI calculations with the available experimental data [19, 20]

dence for states 1−1 , 2−1 , and 3−1 with empirical val-
ues. The new level 4−1 is expected, though it did not
appear in the experiment. But, in the “second” se-
quences of energy levels, we expect that the states
0−2 , 1−2 , and 3−2 are rather close to the experimental
data. The new level 2−2 was expected, but it was not
yet revealed in the experiment. The “third” sequences
of energy levels, the energy of 2−3 is rather close to the

Table 2. Comparison between theoretical
and experimental values

𝐽𝜋 Energy
(MeV)

Energy
(MeV)

𝐽𝜋 Energy
(MeV)

Energy
(MeV)

𝐽− 16𝐹 Theor. Exp. [19] 𝐽− 16𝑁 Theor. Exp. [20]

01 0 0 21 0 0
21 0.424 0.424 11 0.39 0.39
31 0.721 0.721 01 0.122 0.1204
22 2.83 – 31 0.456 –
11 5.07 5.2 22 4.35 –
23 5.939 5.856 12 5.056 –
12 6.788 6.679 32 5.106 5.129
13 9.07 – 41 5.134 5.1507
24 9.55 9.5 13 5.418 5.318
32 9.67 9.6 32 5.418 5.521
33 9.801 – 24 6.341 6.374
41 9.864 – 14 6.811 6.84
25 10.24 – 02 10.48 –
14 10.44 – 15 11.42 –
02 11.513 11.5 25 11.442 11.16
15 12.403 – 33 11.747 11.701

experimental data. In “other” sequences, the state 2−4
well corresponds to the experiment. We have also cal-
culated new levels such as 1−3 , 3−3 , 1−4 , 2−5 , and 1−5 .

4.2. Nucleus 16N

In the frame of the shell model, we have consid-
ered 16N nucleus. In this case, there are one proton
(hole) and one neutron (particle) outside of the in-
ert core 16O. One proton occupies the model space
0𝑝3/2, 0𝑝1/2, and one neutron occupies the model
space (0𝑑5/2, 1𝑠1/2, 0𝑑3/2). The spectrum of this nu-
cleus was calculated with the use of Eqs. (11) and
(12). The single-particle energies [17, 18] are as fol-
lows: 𝑒𝑃 (particle) = 𝑒0𝑑5/2

= 4.14 MeV, 𝑒1𝑠1/2 =
= 3.272 MeV, 𝑒0𝑑3/2

= −0.942 MeV, 𝑒𝐻(hole) =
= 𝑒0𝑝1/2

= 12.127 MeV, and 𝑒0𝑝3/2
= 18.451 MeV. The

parameters 𝐴0 = 0.16, 𝐴1 = 0.13, 𝐵 = 1.4, and
𝐶 = 0.0. Table 2 and Figure, b show the comparison
between theoretical and experiment values for 16𝑁
nucleus. The MSDI calculations of the energies and
parity are in good agreement with the experimental
values [20]. In the “first” sequences for energy spectra,
we have obtained good correspondence for the states
1−1 , 0

−
1 , and 4−1 with empirical values. In the “second”

sequences of energy levels, we expect that the state
3−2 is rather close to the experimental data. In the
third sequence, the energy levels 1−3 and 3−3 well cor-
rospond to the experimental data. The same is true
for the states 1−4 , 2−4 , and 2−5 . But the expected new
levels 2−1 , 3−1 , 0−2 , 1−2 , and 1−5 are not yet found in
the experiment.
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5. Conclusion

We have attained a good agreement between the-
oretical and experimental data for excitation ener-
gies. There are many unconfirmed experimental en-
ergy levels revealed in our calculations. We have also
predicted some new values for energy levels which
were not yet specified in the experiment. The choice
of model MSDI effective interactions is suitable in this
mass region. The theoretical calculations within the
nuclear shell model with MSDI quite well agree with
the experimental data. This indicates that the shell
model is very good to illustrate the structure of 16F
and 16N nuclei.

We thank University of Kufa, Faculty of “Education
for Girls”, Department of Physics, and “College of
Science”, Department of Physics, for supporting this
work.
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Д.Н.Хамiд, А.К.Хасан

РIВНI ЕНЕРГIЇ IЗОБАРИЧНИХ
ЯДЕР 16N I 16F В МОДИФIКОВАНIЙ МОДЕЛI
З ПОВЕРХНЕВОЮ ДЕЛЬТА-ВЗАЄМОДIЄЮ

Р е з ю м е

Модифiковану модель з поверхневою дельта-взаємодiєю за-
стосовано для розрахунку рiвнiв енергiї ядер 16N i 16F.
Отримано добре узгодження теоретичних i експеримен-
тальних даних для енергiй збудження. Це свiдчить про
те, що оболонкова модель правильно описує структуру цих
ядер.
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