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APPROXIMATION OF CLUSTER
INTEGRALS FOR VARIOUS LATTICE-GAS MODELS

An approximation for cluster integrals of an arbitrary high order has been proposed for the
well-known lattice-gas model with an arbitrary geometry and dimensions. The approximation
is based on the recently obtained accurate relations for the convergence radius of the virial
power series in the activity parameter for the pressure and density. As compared to the previous
studies of the symmetric virial expansions for the gaseous and condensed states of a lattice gas,
the proposed approximation substantially approaches the pressure values at the saturation and
boiling points. For the Lee–Yang lattice-gas model, the approximation considerably improves
the convergence to the known exact solution.
K e yw o r d s: lattice gas, virial series, cluster integral, hole-particle symmetry, convergence
radius, saturation point, boiling point.

1. Introduction

One of the well-known models for the description
of substances in statistical physics is the lattice-gas
model, in which the particles are confined in sepa-
rate cells in a spatial lattice. The system has a dis-
crete configuration space, but no restrictions are im-
posed on the momentum space. On the one hand,
this statistical model is closely connected with the
theory of ferromagnets (the Ising problem [1]). On
the other hand, in essence, this is currently the only
example of a rigorous theoretical description of the
matter condensation [2, 3] (to say nothing about the
van der Waals–Maxwell equation [4,5], which was de-
rived on the basis of the unrealistic mean-field ap-
proximation) with a realistic pair interaction poten-
tial, i.e. a potential that involves either the attraction
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or repulsion for each molecular pair depending on
the distance between molecules. Unfortunately, this
example is only applicable to the description of the
phase transition itself (the Lee–Yang solution [3] only
determines the condensation parameters – pressure,
activity, and density at the saturation and boiling
points – for a two-dimensional lattice gas with a
square-well potential) and provides no accurate in-
formation about the behavior of the system in the
gaseous or liquid state.

Recent researches on the basis of the Mayer cluster
expansion of a partition function [6–8] significantly
advanced the statistical theory of nonideal gases in
general [9–15] and the theoretical description of the
lattice-gas behavior in particular [16–18]. New equa-
tions derived in terms of irreducible cluster integrals
(virial coefficients) [9–13] made it possible to establish
the applicability limits of the well-known virial ex-
pansion for pressure in powers of density (the virial



Approximation of Cluster Integrals for Various Lattice-Gas Models

equation of state, VES [6]) and to obtain a general
theoretical criterion that exactly determines the sat-
uration point for various systems of interacting par-
ticles. The study of the virial expansions for pressure
and density in powers of activity with reducible clus-
ter integrals [14,15,18,19] (the virial equation of state
in terms of the activity, VESA [6,13]) completely con-
firmed those results (obtained in terms of irreducible
integrals) and even demonstrated a potential possibil-
ity to determine the boiling point in the framework
of the Mayer cluster approach [15].

As concerning the lattice gas itself, it was found
for a wide number of its models (with an arbitrary
geometry and dimensionality and with various inter-
action potentials) that their partition functions are
characterized by the “particle-hole” symmetry (with
respect to the particle-hole (an empty cell in the cor-
responding lattice) interchange [16]. On the basis of
this symmetry, the equations of state for the lat-
tice gas were obtained in the high density region in
terms of irreducible (the SVES equation, which is
symmetric to the VES one) [16] and reducible (the
SVESA equation, which is symmetric to the VESA
one) [17] cluster integrals. The analysis of those equa-
tions proved the complete symmetry of the lattice gas
saturation and boiling points (i.e. the symmetry of its
binodal, the gas-liquid coexistence curve) and addi-
tionally confirmed [19,20] the results presented above
for the saturation point. Furthermore, it has been
proved very recently that the pressure and activity
are identical at the saturation and boiling points for
both pairs of symmetric equations (VESA–SVESA
and VES–SVES) [14]. Besides that, a general expres-
sion was obtained for the phase transition activity. In
the case of two-dimensional lattice gas with a square-
well potential, this expression exactly coincides with
the Lee–Yang solution [3].

However, all those results characterize, first of all,
the success of the theory itself, whereas their practi-
cal application for the accurate determination of the
same phase transition parameters or the calculation
of isotherms for specific substance models still re-
mains associated with large technical difficulties. Pro-
vided that the complete, i.e. infinite, set of reducible
and irreducible integrals is known, theoretical equa-
tions really have to exactly determine the saturation
and boiling points (the density at those points and
the same pressure). But a direct calculation of such
integrals (even not of the infinite order, but of a rather

high one) for a specific pair interaction potential still
remains to be a technically impossible task.

The largest number of calculated irreducible inte-
grals are associated with the well-known Lennard-
Jones potential [21, 22]. The most powerful compu-
tation facilities in combination with modern effective
numerical integration methods allowed the virial coef-
ficients to be calculated up to the 14-th order for two
subcritical temperatures and up to the 16-th order for
only one temperature [23]. Recently, on the basis of
data available for such spatially-continuous models,
two different approximations of the whole infinite se-
ries in a confined temperature interval were proposed
[24,25]. These approximations reproduce well the be-
havior of subcritical isotherms in a vicinity of the sat-
uration point at a qualitative level. In particular, the
theoretical isotherms, like real ones, have a cusp at
this point. However, a comparison with experimen-
tal data still demonstrates appreciable quantitative
deviations.

Below, the term Lee–Yang lattice-gas model is used
to refer to the two-dimensional model of a square lat-
tice gas with a square-well potential, for which Lee
and Yang obtained an exact solution. For this model,
the exact temperature dependences for the viral co-
efficients to the seventh order were obtained recently
[17]. The analysis of the corresponding equations with
finite-order coefficients (VES and SVES) and the se-
ries expansions in the activity parameter (VESA and
SVESA), which although contain reducible integrals
of very high orders, but were calculated on the basis
of a confined set of irreducible integrals [17,18], really
demonstrates a gradual convergence to the exact so-
lution [3]. However, the difference still remains rather
substantial, and the convergence rate is very slow.

In this work, we propose an approximation for high-
order reducible cluster integrals, which is based on
recent data for the convergence radius of the activ-
ity series for the pressure and density. The subcritical
VESA and SVESA isotherms calculated on the basis
of this approximation for various lattice-gas models
have much closer pressure values at the saturation
and boiling points in comparison with the results of
previous studies [18]. Additionally, in the case of Lee–
Yang model, they also demonstrate a much better
convergence to the exact solution.

The theoretical substantiation of the proposed ap-
proximation is carried out in Section 2. Section 3 con-
tains the main results of calculations on the basis of
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this approximation, as well as their comparison with
the previous results and the exact Lee–Yang solu-
tion. In Section 4, the results obtained are discussed,
and the corresponding conclusions are made.

2. Asymptotics of Reducible
Integrals and Their Approximation

For a classical system of particles with a pair inter-
action potential between the molecules, the Mayer
cluster expansion [6–8] makes it possible to directly
(without further simplifications and assumptions) ex-
press the logarithm of the grand partition function
(pressure 𝑃 in the system) and its derivative with
respect to the chemical potential 𝜇 (average par-
ticle density 𝜌 = 𝑁/𝑉 ) in terms of the activity
𝑧 = 𝜆−3 exp (𝜇/𝑘B𝑇 ), where 𝜆 is the de Broglie wave
length of molecules, and the reducible cluster inte-
grals {𝑏𝑛} [6] read

𝑃

𝑘B𝑇
=

∞∑︁
𝑛=1

𝑏𝑛𝑧
𝑛,

𝜌 =

∞∑︁
𝑛=1

𝑛𝑏𝑛𝑧
𝑛.

(1)

Below, we will use the abbreviation VESA for this
parametric equation of state. The VESA accuracy (in
the sense how accurately it reflects the actual behav-
ior of system’s partition function) directly depends
only on the accuracy of the whole infinite set of clus-
ter integrals. This issue is always associated with cer-
tain difficulties of both theoretical and purely tech-
nical character. As a rule, those integrals are defined
in an infinite integration volume, which makes them
independent of the real system volume or density
[6, 13]. Actually, this simplification has to be correct
only for microscopic particle clusters (𝑛 ≪ 𝑁) and,
as was recently shown [14], remains applicable only
to the saturation point of dry vapor. However, even
with this simplification, the determination of high-
order reducible integrals still remains a very compli-
cated technical problem.

Formally, every reducible integral 𝑏𝑛 of the 𝑛-th or-
der (i.e. for a group of 𝑛 particles), which is defined
in an infinite volume, is the sum of products of ir-
reducible integrals {𝛽𝑘} (𝑘 < 𝑛) [6]. In its simplest
form, the relationship between the reducible and ir-
reducible integrals is expressed by the following re-

cursion formula [18, 20]:

𝑛2𝑏𝑛 = 𝐵𝑛,𝑛−1, (2)

where

𝐵𝑛,𝑖 = 𝑛

𝑖∑︁
𝑘=1

𝑘

𝑖
𝛽𝑘𝐵𝑛,𝑖−𝑘.

For today, the considerable experience has been
accumulated in calculating the irreducible integrals
(i.e. the virial coefficients) for a variety of intermolec-
ular interaction models [26–30], mainly because the
practical application of the virial pressure expansion
in powers of density [6] (virial equation of state, VES)
is much more convenient as compared to the applica-
tion of the VESA. Indeed, a finite-order VES with a
limited set of irreducible integrals (the virial coeffi-
cients), which has a very simple form, corresponds to
an infinite-order VESA, in which all reducible inte-
grals have to be calculated – e.g., using the recursive
relationship (2) – on the basis of the same limited set
of irreducible integrals. Of course, this task signifi-
cantly complicates the practical application of VESA.

However, the current researches [9, 11, 13] demon-
strate that the transformation of a “complicated”
VESA into a “simpler” VES has rigorous restrictions.
In effect, the VES remains adequate only to the
point 𝜌𝐺, where the isothermal bulk modulus van-
ishes. This point is determined as the mimimum pos-
itive root of the equation∑︁
𝑘≥1

𝑘𝛽𝑘𝜌
𝑘
𝐺 = 1. (3)

Furthermore, it is exactly the density 𝜌𝐺 that is the
saturation point of dry vapor [10, 12, 14, 20] [accord-
ingly, the temperature is subcritical if Eq. (3) has at
least one positive root].

The same researches showed that the density 𝜌𝐺
is directly related to the VESA convergence radius
[12, 14, 20]:

𝑧𝐺 = 𝜌𝐺 exp

⎛⎝−∑︁
𝑘≥1

𝛽𝑘𝜌
𝑘
𝐺

⎞⎠. (4)

As the activity in Eq. (1) approached the 𝑧𝐺-value
(4), the density series diverges in the VESA, which
leads to a density jump in isotherms at constant val-
ues of the chemical potential (activity) and pressure
(the pressure series simply has no time to change)
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[18, 20]. For a constant set of reducible integrals (de-
termined in the infinite volume), the density has
an infinite singularity (an essential discontinuity). In
work [15], it was shown that a true finite density jump
to the boiling point, which would correspond to the
actual physical picture of the first-order phase tran-
sition, can still be obtained in the framework of the
Mayer cluster expansion, but only if the dependence
of the reducible high-order integrals corresponding to
macroscopic particle clusters on the real system vol-
ume (real integration limits) is taken into account.

Nevertheless, there also exists another approach
to define the boiling point 𝜌𝐿 and describe the con-
densed states of the lattice-gas model in the frame-
work of the Mayer cluster expansion method. In
works [16, 17], the symmetry of the lattice-gas par-
tition function with respect to the particle-“hole”
(empty lattice cells) interchange was substantiated,
and the equation of state symmetric with respect to
the VESA (SVESA) was obtained,
𝑃

𝑘B𝑇
= 𝜌0

(︂
𝑢0

𝑘B𝑇
+ ln

𝜌0
𝜂

)︂
+

∑︁
𝑛≥1

𝑏𝑛𝜂
𝑛,

𝜌 = 𝜌0 −
∑︁
𝑛≥1

𝑛𝑏𝑛𝜂
𝑛,

(5)

in terms of the same reducible cluster integrals {𝑏𝑛}
and the reciprocal activity

𝜂 =
𝜌20
𝑧

exp

(︂
2𝑢0

𝑘B𝑇

)︂
,

where 𝜌0 is the close-packing density of a lattice gas,
and 𝑢0 the potential energy of a particle in the close-
packing state.

VESA (1) provides the best accuracy for dilute
states, i.e. when the density 𝜌 is close to zero, even
with a limited or approximate set of cluster inte-
grals. On the contrary, the accuracy of SVESA (5) is
the highest for the states that are close to the dense
packing, i.e. when the “hole” concentration 𝜌′ = 𝜌0−𝜌
tends to zero. The both equations have the same con-
vergence radius (the activity 𝑧 in VESA, and the in-
verse activity 𝜂 in SVESA), which is determined by
Eq. (4). The corresponding density at the saturation
point, 𝜌𝐺, is exactly symmetric with respect to the
density at the boiling point:

𝜌𝐿 = 𝜌0 − 𝜌𝐺.

All those peculiarities in the behavior of VESA and
SVESA were directly observed in numerical calcula-

Fig. 1. Asymptotics of reducible integrals of various orders
calculated on the basis of five first irreducible integrals

{︀
𝑏0𝑛

}︀
(solid line) and approximated by Eq. (8) (dashed line) for the
Lee–Yang model (𝑇 = 0.5𝜀/𝑘B). The upper horizontal line
corresponds to the convergence radius 𝑧𝐺 from Eq. (4), and
the lower one to the convergence radius 𝑧0 from Eq. (6). The
vertical line marks the order 𝑛max, below which the reducible
integrals have exact values

tions [18] carried out by using a large, although finite,
set of reducible integrals {𝑏𝑛} (their order 𝑛 reached a
value of several thousands) calculated, with the help
of the recursive relationship (2) on the basis of a lim-
ited set of known irreducible integrals {𝛽𝑘} (the cor-
responding set of virial coefficients).

The asymptotics of high-order reducible integrals
completely corresponds to the Cauchy–Hadamard
theorem [31]: with the growth of their order 𝑛, the
values of integrals (regarded as the power coefficients
in the activity series) really approach the value of
the reciprocal convergence radius raised to the cor-
responding power (see Fig. 1). In work [19], we pro-
posed a new method for determining the reducible in-
tegrals of very high orders on the basis of the known
set of irreducible integrals, but with the help of the
corresponding convergence radius 𝑧𝐺 from Eq. (4),
rather than the recursive relation (2).

Unfortunately, a considerable limitation of the set
of known irreducible integrals (virial coefficients) al-
lows VESA and SVESA to reproduce the phase tran-
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sition in the lattice gas more or less adequately only
at the qualitative level. A comparison with the ex-
act Lee–Yang solution [3] in the case of the two-
dimensional lattice-gas model with a square-well po-
tential (when each absolutely hard particle attracts
only the particles in the nearest four cells of the
square lattice) demonstrates rather significant quan-
titative deviations [18], so that even the pressure val-
ues at the phase transition differ substantially from
each other in VESA and SVESA. Of course, an in-
crease in the number of accounted reducible inte-
grals gradually changes the convergence radius 𝑧𝐺
in Eq. (4) and brings the calculated phase transition
points [18] closer to the Lee–Yang solution. However,
those changes, as well as the convergence to the exact
solution, turned out very slow. The results obtained
in work [18] indicate that even if dozens of irreducible
integrals, whose calculation still remains a technically
impossible task for today, are taken into account, the
situation will not be much improved.

At the same time, an exact expression was ob-
tained quite recently for the convergence radius of
power series in VESA and SVESA on the basis of
the same “particle-hole” symmetry in the lattice-gas
models [14],

𝑧0 = 𝜌0 exp

(︂
𝑢0

𝑘B𝑇

)︂
, (6)

which opens basically new possibilities for the deter-
mination of the set of cluster integrals for any lattice-
gas model (the geometry of the model and the pa-
rameters of the intermolecular interaction potential
are completely determined by the quantity 𝑢0).

On the one hand, the set of irreducible integrals
{𝛽𝑘} that are already known to a certain order 𝑘max

allows one to exactly determine the reducible inte-
grals {𝑏𝑛} only to the order 𝑛max = 𝑘max + 1. All
other reducible integrals (𝑛 > 𝑛max) can also be de-
termined with the help of the same recursion formula
(2), but with a certain systematic error (in the ap-
proximation that all their irreducible components of
the orders higher than 𝑘max simply vanish). On the
other hand, if the exact value of the convergence ra-
dius 𝑧0 in Eq. (6) is known, this allows the asymptotic
values of reducible integrals of very high orders to
be directly determined using the Cauchy–Hadamard
theorem [31],

lim
𝑛→∞

(︀
𝑛2𝑏𝑛

)︀
= 𝑧

−(𝑛−1)
0 , (7)

similarly to what was proposed in work [19] for the
approximate value of the convergence radius 𝑧𝐺 from
Eq. (4) determined on the basis of a limited set of
known irreducible integrals.

The direct application of Eq. (7) is proper only for
integrals of very high orders. Therefore, there arises
a logical question: Which orders 𝑛 can be regarded
as sufficiently high? In this situation, only a rela-
tively small number of reducible integrals of the low-
est orders (up to the order 𝑛max inclusive), as well as
the asymptotic values of the highest-order (thermo-
dynamic) integrals, are known exactly. At the same
time, the values of reducible integrals of intermediate
orders remain, in essence, unknown.

In order to approximately reproduce the actual
behavior of reducible cluster integrals with the or-
ders changing from 𝑛max to very large values, the
dependences of some already known reducible inte-
grals

{︀
𝑏0𝑛
}︀

on 𝑛, which were calculated on the basis
of a limited set of irreducible integrals {𝛽𝑘}, can be
used. Hence, we propose to rescale every 𝑏0𝑛 in such
a way that the asymptotic behavior of the resulting
series of reducible integrals {𝑏𝑛} should correspond to
the exact convergence radius 𝑧0 from Eq. (6) rather
than the approximate one 𝑧𝐺 from Eq. (4), which was
determined on the basis of a finite series of irreducible
integrals. Namely,

𝑏𝑛 = 𝑏0𝑛

(︂
𝑧𝐺
𝑧0

)︂𝑛−1

, (8)

and this rescaling should be applied only to all “doub-
tful” integrals 𝑏0𝑛 with the orders higher than 𝑛max.

Certainly, the proposed approach can pretend in
no way on the absolute precision. In particular, the
transition from the exact integral 𝑏0𝑛max

to a few next
𝑏𝑛-values looks rather doubtful (see Fig. 1). But, nev-
ertheless, it can still be regarded as the first approxi-
mation, which should adequately describe, in general,
the behavior of reducible integrals of rather high or-
ders and, at least, guarantee the asymptotic (𝑛 → ∞)
convergence of the reducible integrals to exact values,
which correspond to the exact value of the conver-
gence radius 𝑧0.

3. Numerical Analysis

The application of the proposed approach to the de-
termination of reducible integrals {𝑏𝑛} in the frame-
work of a definite lattice-gas model involves several
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steps. First, on the basis of the set of irreducible in-
tegrals {𝛽𝑘} that are known for this model (at a cer-
tain temperature), a set of reducible integrals

{︀
𝑏0𝑛
}︀

is determined to the maximum possible order with
the help of the recursive relation (2). Then, with the
help of the same limited set of irreducible integrals,
the density 𝜌𝐺 at the saturation point is determined
from Eq. (3), and the approximate convergence radius
𝑧𝐺 from Eq. (4). Finally, the set of reducible integrals{︀
𝑏0𝑛
}︀

is rescaled, starting from the order 𝑛max+1, into
the set {𝑏𝑛} by applying Eq. (8) and making use of
known values for 𝑧𝐺 and the exact convergence radius
𝑧0 from Eq. (6). The resulting set {𝑏𝑛} can be imme-
diately used in Eqs. (1) (VESA) and (5) (SVESA) for
the calculation of lattice gas isotherms.

On the basis of this algorithm, the VESA and
SVESA isotherms were calculated with regard for
various numbers of power coefficients (reducible inte-
grals) in those equations for various lattice-gas mod-
els in a wide temperature interval. The results ob-
tained for VESA and SVESA in the calculations in-
cluding 10000 reducible integrals are partially pre-
sented in Figs. 2 to 5. The account for a larger
number of integrals leads to very small changes,
which are practically indistinguishable on the pre-
sented scale.

For comparison, the exact phase transition param-
eters are shown in Figs. 2 and 3 for the two-dimensio-
nal lattice gas with a square-well potential calculated
according to the Lee–Yang solution [3]. Figure 2 also
exhibits VESA and SVESA isotherms with the cor-
responding set of reducible integrals

{︀
𝑏0𝑛
}︀

that were
not transformed by Eq. (8).

First of all, the calculation results demonstrate that
both VESA (1) and SVESA (5) with the set of re-
ducible integrals {𝑏𝑛} approximated by Eq. (8 ) have
a much better convergence to the exact solution in
comparison with the same equations, in which the
non-rescaled set

{︀
𝑏0𝑛
}︀

was used [it was determined
on the basis of a limited set of irreducible integrals
{𝛽𝑘} with the help of relation (2)]. In particular, the
points, at which the density begins to change drasti-
cally (VESA and SVESA give a divergence, a density
jump) are much closer to the saturation and boil-
ing points (𝜌𝐺 and 𝜌𝐿) of the Lee–Yang solution just
in the case of equations with the approximated set
{𝑏𝑛}. Moreover, the pressure values given by VESA
and SVESA for this density jump (during the phase
transition) are much closer to each other and to the

Fig. 2. VESA (Eq. (1), left) and SVESA (Eq. (5), right)
isotherms with reducible integrals calculated from five first irre-
ducible integrals (dashed curves) and approximated by Eq. (8)
(solid lines) for the Lee–Yang model. Points correspond to the
exact solution [3]

Fig. 3. VESA (Eq. (1), left) and SVESA (Eq. (5), right)
isotherms for the Lee–Yang model (𝑇 = 0.5𝜀/𝑘B) with re-
ducible integrals approximated by Eq. (8) on the basis of var-
ious sets of irreducible integrals (virial coefficients): 𝑛max = 6

(solid curves), 4 (dotted curves), and 2 (dash-dotted curves).
Points correspond to the exact solution [3] . The pressure axis
scale is mich larger in comparison with Fig. 2)
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Fig. 4. Critical temperature 𝑇C normalized by 𝑇 0
C calculated

for the Lee–Yang model (𝑎) and for the three-dimensional cu-
bic lattice gas (𝑏) with various numbers of irreducible inte-
grals (𝑛max is the maximum order of corresponding virial co-
efficients) as a temperature, at which 𝜌𝐺 for VRSA [Eq. (1)]
and 𝜌𝐿 for SVESA [Eq. (5)] reach a density value of 𝜌0/2. The
value of the temperature 𝑇 0

C for the three-dimensional case cor-
responds to results of a simulation in work [32]

Fig. 5. VESA (Eq. (1), left) and SVESA (Eq. (5), right)
isotherms with reducible integrals approximated by Eq. (8)
on the basis of three first irreducible integrals for the three-
dimensional model of cubic lattice gas with a square-well po-
tential

Fig. 6. VESA (Eq. (1), left) and SVESA (Eq. (5), right) iso-
therms with reducible integrals approximated by Eq. (8) on the
basis of four first irreducible integrals for the two-dimensional
model of cubic lattice gas with a complicated interaction poten-
tial including both the additional finite repulsion (the barrier
height 𝜀) and attraction (the well depth 2𝜀); its form is depicted
in the inset

exact solution (see Fig. 2) in comparison with the re-
sults of previous calculations [18] performed, by using
no information about the exact convergence radius 𝑧0,
i.e. making no approximation of reducible integrals
with the help of Eq. (8).

Such a behavior confirms once more the correct-
ness of all conclusions concerning the convergence ra-
dius of VESA and SVESA, the divergence character
of those equations, and the physical meaning of the
quantities𝜌𝐺 and 𝜌𝐿, which were obtained analyti-
cally in [14] and [9–12,24]. Fur thermore, the very ac-
curacy of the results obtained on the basis of a rather
crude approximation of the medium-order cluster in-
tegrals (the low-order reducible integrals are calcu-
lated on the basis of the exact information about the
irreducible integrals of the corresponding low orders,
and the asymptotics of the integrals of very high or-
ders must also be determined rather precisely by the
convergence radius 𝑧0) may indirectly confirm con-
clusions made in works [13, 15, 18, 20] about the real
influence of cluster integrals with various orders on
the partition function behavior.
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At temperatures lower than the critical one (for the
two-dimensional Lee–Yang model, 𝑇C = 0.5673𝜀/𝑘B,
where 𝜀 is the depth of the square-well potential),
the influence of cluster integrals of relatively low or-
ders (both reducible and irreducible) is crucial only
in dilute states up to the saturation point (or sym-
metrically for SVESA, for low “hole” concentration
values above the boiling point). In a vicinity of the
saturation point (and, the more so, above this point),
the contribution of the highest-order integrals to the
partition function becomes dominating. These are a
few first integrals and the highest ones that deter-
mine, to a large extent, the phase transition param-
eters (the pressure and the density at the saturation
and boiling points). Even significant changes in the
number of irreducible integrals that were taken into
account did not considerably affect the results ob-
tained (see Fig. 3).

On the other hand, as the temperature increases
and approaches the critical one, the situation beco-
mes somewhat different. In particular, the deviations
from the exact Lee–Yang solution grow, and the de-
pendence on the number of irreducible integrals that
were taken into consideration (i.e. the dependence on
the number of exactly determined reducible integrals)
becomes stronger. For example, the calculated values
of 𝜌𝐺 and 𝜌𝐿 differ more and more from those deter-
mined by the exact solution, and the critical temper-
ature values are considerably higher than both the
exact 𝑇 0

C value in the Lee–Yang model (see curve 𝑎
in Fig. 4) and the known critical temperature for
a similar three-dimensional model [32] (curve 𝑏 in
Fig. 4). The calculations showed that, in a vicinity
of the critical temperature, the VESA and SVESA
isotherms gradually approach the exact solution, as
the number of irreversible integrals that were taken
into account grows. The calculated critical tempera-
ture also shifts down toward the exact one (see Fig. 4),
but this convergence is rather slow, and the observed
significant deviations testify that, for the theoretical
description of the lattice gas behavior in a vicinity of
the critical point to be exact, the information is re-
quired about irreducible integrals (virial coefficients)
of considerably higher orders.

It should be emphasized that similar results (the
pressure values at the boiling and saturation points
that are closer to each other by orders of magnitude
for the approximated set of reducible integrals {𝑏𝑛}
in comparison with those for the usual set

{︀
𝑏0𝑛
}︀
) take

place for quite different models of lattice gas: with
different dimensionalities (the relevant calculations
were carried out for both two- and three-dimensional
models), an arbitrary geometry (triangular or square
cells), and various interaction potentials. For exam-
ple, Fig. 5 illustrates the behavior of the VESA and
SVESA isotherms for a three-dimensional lattice gas
with a square-well potential, when each absolutely
hard particle attracts only particles located in the
nearest six cells of the cubic lattice. Figure 6 demon-
strates the same, but for a two-dimensional square
lattice gas with a complicated interaction poten-
tial. Namely, the nearest four particles are repulsed
(the corresponding barrier height equals 𝜀), and next
sixteen particles in the “second coordination sphere”
are attracted (the well depth equals −2𝜀) by the cen-
tral particle. At the qualitative level, this behavior
does not differ in essence from that described above
for the two-dimensional Lee–Yang model. This cir-
cumstance, in turn, makes it possible to apply the
proposed method of reducible integral approximation,
while researching a wide range of lattice-gas models,
for which there is no reliable information from other
sources.

4. Conclusions

The analysis of modern approaches to the statisti-
cal description of the behavior of non-ideal gases in
general and the first-order phase transitions in par-
ticular allows a conclusion to be drawn that, despite
the considerable recent progress in those issues of sta-
tistical theory as a whole, a reliable quantitative de-
scription of the condensation on the basis of the in-
formation about the intermolecular interaction still
remains problematic even for the simplest models of
real substances. In this work, a method is developed
that allows a set of reducible cluster integrals {𝑏𝑛}
to be approximated for a wide range of lattice-gas
models on the basis of the information concerning a
limited set of virial coefficients (a few first irreducible
cluster integrals {𝛽𝑘}) and the known convergence ra-
dius 𝑧0 of the corresponding virial power expansions
in the activity (a method for the exact determina-
tion of this convergence radius for various lattice-gas
models was recently proposed in work [14]). The re-
ducible integrals obtained in the framework of this
approximation can be directly used in the correspond-
ing equations of state – VESA (1) and SVESA (5) –
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to describe the lattice gas behavior at subcritical
temperatures in the density interval extending from
dilute to condensed states (including the condensa-
tion region).

The numerical studies showed a relatively high ac-
curacy of the proposed approximation in comparison
with traditional methods used to determine reducible
integrals. In particular, for various lattice gas mod-
els, both the VESA and SVESA equations with the
approximated set {𝑏𝑛} give similar pressure values at
the theoretical saturation and boiling points. For the
two-dimensional lattice-gas model with a square-well
potential, both the indicated pressure values and the
density values at the saturation (𝜌𝐺) and boiling (𝜌𝐿)
points coincide well with the known exact Lee–Yang
solution [3].

Furthermore, our researches confirm previously ob-
tained theoretical results concerning the origin of di-
vergence for the virial expansions in powers of activ-
ity (VESA and SVESA), the influence of cluster inte-
grals of various orders on the behavior of the partition
function in dense states, and the statistical descrip-
tion of the physical phenomenon of condensation in
whole. One of the promising directions for the fur-
ther development of the proposed approach may be
the solution of the inverse problem, i.e. the analysis of
the behavior of high-order irreducible integrals (virial
coefficients) on the basis of the information about re-
ducible ones.
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В.М.Сисоєв, Д.А. Гаврюшенко

АПРОКСИМАЦIЯ ГРУПОВИХ IНТЕГРАЛIВ
ДЛЯ РIЗНИХ МОДЕЛЕЙ ҐРАТКОВОГО ГАЗУ

Р е з ю м е

В роботi пропонується апроксимацiя звiдних групових iнте-
гралiв необмежено високих порядкiв для вiдомої статисти-
чної моделi ґраткового газу довiльної геометрiї та вимiрно-
стi. Апроксимацiя ґрунтується на нещодавно отриманiй то-
чнiй iнформацiї стосовно радiусу збiжностi вiрiальних серiй
для тиску й густини за степенями активностi. У порiвняннi
з попереднiми дослiдженнями симетричних вiрiальних роз-
кладiв у газоподiбних та конденсованих станах ґраткового
газу, запропонована апроксимацiя робить значення тиску у
вiдповiдних точках насичення та кипiння суттєво ближчи-
ми одне до одного, а для моделi ґраткового газу Лi–Янга
значно пiдвищує збiжнiсть до вiдомого точного розв’язку.

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 12 1075


