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OPTIMAL REGULARITIES

OF THE NORMAL DISTRIBUTION

FOR ESTIMATING THE SAMPLE STATISTICS

OF THE RESULTS OF A PHYSICAL EXPERIMENT

Basic probabilistic principles for the formation of the normal distribution for random fluctu-
ations of physical quantities under the action of independent random factors on the physical
system have been formulated. The emphasis is made on the integrated approach to the proba-
bilistic statistical analysis of a sample of experimental results.
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1. Introduction

It is known that Laplace’s determinism is inherent in
such a complex system as an ideal gas of N parti-
cles in the state of thermal equilibrium. But, as was
shown by Krylov, the collisions of particles with one
another make the motion of a multiparticle system
unstable by Lyapunov: the motion becomes chaotic,
and a deterministic model is not suitable for its de-
scription.

A true role of random factors in the formation of
the equilibrium state in a complex system was under-
stood as long ago as by Maxwell, who substantiated
the physical meaning of the probability function. The
correctness of its essence was confirmed in the exper-
iments carried out by Brown and Perrin, who estab-
lished that, although the average value of the collec-
tive displacement parameter Az for a walking parti-
cle equals zero, (Az) = 0, its average quadratic value

differs from zero, <(A;U)2> # 0. After the fundamen-

tal theoretical works by Maxwell and Boltzmann, the
importance of the role of probabilistic approaches in
physical modeling became ultimately clear.

The central limit theorem is a cornerstone of the
probability theory and mathematical statistics. The
theorem asserts that if a measurable physical quan-
tity is subjected to the action of plenty of random
and independent (or weakly dependent) factors, each
of which does not give a dominant contribution to the

© P. KOSOBUTSKYY, 2018

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 7

common result, then the statistical distribution of the
sample values tends to the normal (Gaussian) distri-
bution characterized by the following parameters: the
mathematical expectation (ME) mx or M[X], and
the mean square deviation (MSD) ox. The variance
Dx = ag( as a characteristic of the random variable
(RV) spread with respect to the ME has a quadratic
dimension, which is not very convenient for statis-
tics. Therefore, the parameter ox was introduced [1].

The normal distribution N(mx,ox) is most often
used to construct physical models in the framework
of the continuous RV method, and this distribution
is considered in a lot of works [2]. The corresponding
theoretical model is the best one developed analyt-
ically. It serves as a basis for the theory of statis-
tical error estimates [3], the Alentsev—Fock method
of spectrum resolution into separate modes [4], and
probabilistic approaches to the study of the dynam-
ics of linear and nonlinear systems [5] and quantum-
mechanical phenomena [6,7]. On its basis, the power-
ful resources for computer simulations of the dynam-
ics of atomic-molecular compounds [8] and for other
purposes [9] were created. On the basis of RVs with
the Gaussian distributions, a whole direction in sta-
tistical optics was developed [10]. The normal distri-
bution was also proved to take place in many chaotic
systems such as the Boltzmann billiards, the Brown-
ian motion in a harmonic potential, and so on.

The normal distribution is stable and can repro-
duce itself. Therefore, it was successfully used for the
statistical simulation in modern high technologies,
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such as laser cooling of atoms [11] and stochastic phe-
nomena in radio engineering systems [12,13]. Further-
more, the Gaussian distribution belongs to distribu-
tions with “heavy tails”!. This circumstance allows
one to assume, on the basis of the central limit the-
orem, that the sum of a sufficiently large number of
small RVs is distributed normally, and the Gaussian
distribution is a limiting case for a rather large num-
ber of distributions, irrespective of the regularities
available for separate errors, because those specific
regularities mutually compensate one another in the
limit of their large number [14]. That is why the class
of normal functions is most often chosen as an ap-
proximate model for the general set of random data;
in this case, it is enough to evaluate only two param-
eters, myx and ox, for their sample. The mixtures of
distributions on their basis, which possess the infinite
differentiability, smoothness, and so forth are widely
used at various simulations [15-19].

The aim of this work is to demonstrate that the sta-
tistical analysis of the samples of experimental results
and the choice of a theoretical model [20, 21] is not
always accompanied by the proper attention to the
basic principles of the probability theory and math-
ematical statistics. This point was marked earlier by
the author in work [22].

2. Basic Principles Used

to Verify the Normal Distribution

of the Values Measured for a Quantity

in the Framework of a Given Physical Model

Physical quantities or conditions of their measure-
ment always undergo random fluctuations. Therefore,
it is more correct to talk about their statistically av-
eraged values. For this purpose, various probabilis-
tic methods for processing the measurement results
are applied, including those developed on the basis

1 The essence of the distribution with a “heavy tail” consists in
that events considered as not frequent — e.g., the impact of
aircrafts — are not actually rare from the viewpoint of the se-
cure system functioning, so that their probability cannot be
neglected. In the Gaussian model, a hypothetical incident
is absent. At the same time, in the power-law model, al-
though it is rare, but possible: P (X > z) 2 2~ % at * — oo,
where the parameter a > 0 describes the rate of distribution
“tail” fading. The asymptotic distribution model is hyper-
bolic. Therefore, it is slower than the exponential one, and
most of the probabilistic measure can be concentrated in the
distribution tail.
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of linear and nonlinear RV transformations. Fluctua-
tions are random deviations of macroscopic variables
from their average (e.g., thermodynamically equilib-
rium) values. In macroscopic systems, fluctuations
are a result of a large number of degrees of freedom,
which have a macroscopic origin. In microscopic sys-
tems, fluctuations are associated with the corpuscu-
lar (atomic) structure of matter and electricity (the
smallest piece of electricity is equal to one electron
charge).

Fluctuations in atomic systems are induced by
thermal vibrations of microparticles — electrons, ions,
and so on — which are associated with the Brownian
motion of atoms and molecules, molecular light scat-
tering in the medium, thermal noise in electrical cir-
cuits, thermal radiation emission, and the fractional
effect in electronics (it is induced by electron flux fluc-
tuations during transfer processes). A chaotic char-
acter is inherent in the process of magnetic domain
reversal in ferromagnetic media.

Under real measurement conditions, the distribu-
tion of the growing number of measured physical data
always tends to the normal one. Here are the most im-
portant arguments for why the Gaussian law should
be applied to the physical modeling:

1) a distribution of the type N(mx;o%) is a good
mathematical model to describe phenomena and pro-
cesses, by using random numbers;

2) arbitrary linear combinations of normally dis-
tributed RVs are also distributed normally;

3) a stochastic Gaussian process can be completely
modeled theoretically with the use of only the first
and second moments, which is not enough for other
distributions;

4) if a normally distributed random signal is trans-

mitted through a linear system, the output signal is
also distributed normally.
Therefore, in the absence of the theoretical and exper-
imental information on the character of a RV distri-
bution (e.g., the measurement noise), it is most often
assumed that a continuous variable is distributed nor-
mally, and a similar discrete one is distributed accord-
ing to the Poisson law, which tends to the Gaussian
distribution with increasing the sample size.

However, other distributions related to the normal
one are also relevant in statistics. In particular, these
are the y2-distribution, Student’s ¢-distribution, and
the Fisher—Snedecor F-distribution. If each of n inde-
pendent random variables &1, &o, ..., &, is distributed
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according to the standard law N(0,1), then the RVs
of the type n = 2 + €2 + ... + &2 are already dis-
tributed accroding to the x2 law with n degrees of
freedom. If each of n + 1 independent random vari-
ables &y, &1, &s, ..., &, is distributed according to the
N(0,0?) law, then the RVs of the type

§

0
17:7

1y e

ni:11

are distributed according to Student’s law with n de-
grees of freedom. If each of n+m independent random
variables &1, &2, ..., &ny Ent1y ooes Entm s distributed ac-
cording to the N(0,02) law, the RVs of the ratio type
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are distributed according to the Fisher—Snedecor law
with n and m degrees of freedom. An RV can of-
ten be converted into a normally distributed one,
by using simple mathematical transformations. For
instance, if a continuous random variable £ is dis-
tributed lognormally with the parameters myx and
0%, then the random variable = In¢ has a normal
two-parameter lognormal distribution LN (mx,o%),
the LN2-distribution. If the LN2-distribution is also
not normal, then a limiting parameter ¥ is introduced
before taking the logarithm. This parameter trans-
forms the distribution into a three-parameter lognor-
mal LN 3-distribution [23], for which the random vari-
able Y = In (X — ¥) has a normal distribution.

The analysis of experimental data in order to verify
their normal distribution by evaluating the variance
0% = Dx and the displacement mx from a sample
of measurement data Q, = {z1,z2,...,2,} is recom-
mended to perform according to the following algo-
rithm. Using the method of moments, the sample
parameters

_ 1 <&

X:mX:gin

and 1i:1

52:2:* Z‘—YQ ].
k=Y (@ - X) 1)

i=1

should be calculated. The calculated arithmetic av-
erage X is a consistent, unshifted, and effective es-
timate of the ME. The sample variance is estimated,
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by using formula (1), which is shifted, since M [S?] =
= (1 — 1) o% # o%. The estimate shift appears due
to the Boltzmann factor 1 — %, but its role is nullified
for sample sizes n > 30. If n < 30, the non-shifted

estimate should be calculated by the formula

nilz(.’[}i—Y)z.

i=1

Dx =

Therefore, for a normally distributed sample, formula
(1) is not efficient. However, if the mathematical ex-
pectation myx is known in advance, estimate (1) is
unshifted, consistent, and effective.

The quality of estimates obtained for the parame-
ters is evaluated on the basis of the estimate accuracy
measure. Among such measures, the most standard
one is the mean-square error. This measure generates
the corresponding criterion for the estimate optimum,
the minimum of the mean-square error. For unshifted
estimates, the variance is a measure of their accu-
racy, and the variance minimum is the criterion of
optimum.

But the parameters describing the position myx of
the extremum on the distribution density curve fx ()
and the distribution spread ox do not determine a
physical quantity, but they characterize the form of
the probability density function fx (z) for its random
values. These notions are convenient for the normal,
exponential, trapezoidal, and other distributions that
use the method of moments, which is valid only if
the integrals in corresponding calculations do not di-
verge. More universal is the concept of a distribution
center, which is defined as the center of gravity of the
distribution or the 50% quantile. The center of grav-
ity of the RV distribution is a mechanical analog of
the ME, if the probabilities of the values are taken as
the masses of points.

In physics on the basis of the center-of-gravity
model, it is substantiated that any body in an in-
definite state tends to an equilibrium state. In ex-
actly the same way, an arbitrary RV tends to its
equilibrium (in the sense of the mean value), pro-
vided a significant number of measurements. Such an
approach demands that only the zero-order moment
and a parameter characterizing the distribution width
should exist. For a symmetric distribution, the cen-
ter of gravity coincides with its mode. But unlike the
mode, the concept of the center of gravity of a dis-
tribution is valid for all distributions. For instance,
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there is no ME for the Cauchy distribution, whereas
the definition of the center of gravity for its distribu-
tion curve is eligible. The mode is also absent for a
uniform distribution.

Fuctuations in chaotic systems are characterized
by the dispersion, which relates the first and second
initial moments to each other and characterizes the
fluctuation intensity, so that the case Dx = 0 has no
physical sense. For example, in an electric circuit, the
dispersion mainly corresponds to the average electric
power released on an active electric resistance by the
alternating component of the electric voltage or cur-
rent. In an alternating electric circuit, the parameter
ox corresponds to the voltmeter or ammeter read-
ings, if the constant component of electric signal is
eliminated by inserting a capacitor into the circuit.

From the viewpoint of a theoretical modeling of
the dispersion in a physical system, it is important to
establish whether the physical quantities, whose val-
ues change randomly, are statistically dependent or
independent. In the infinite interval of the RV value
spread, X € [—o0;+00], the variance is calculated as
the second central moment

Dy = 7 (z - X)* Cx fx (2)dz =
_ 7 (@)2 + X 2&) Cx fx (z)da (2)

and characterizes the spread of values with respect
to the origin of the abscissa axis?. For statistically
independent RVs, integral (2) equals

[o )

DX:CX{/ (@)? fx (2)dz + X / Fx (2)da—

9% / me(x)dx}z)@+X2 / Cx fx(2)dz — 2X°.

(3)

Since the normalization condition has also to be sat-
isfied in this case, the dispersion equation has the

2 In the probability theory, the variance is a measure of the
spread from the mean value. In mathematical statistics, this
parameter characterizes the spread of quantitative values in
a statistical sample with respect to the mean value, i.e. the
ME of the squared deviation of a RV from its ME.
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following form for statistically independent RVs:

Dy=X2-X" (4)

Here, the mathematical expectation mx of the ran-
dom variable X was taken for the mean X as an un-
shifted, substantiated, and consistent estimate. Fur-
thermore, if the distribution has a spread, this pa-
rameter is also an asymptotically normal estimate.
The statistical means X and X2 also play an im-
portant role in physical systems. For example, in the
case of electric circuit, the mean square X2 can be
associated with the time-averaged square of the ran-
dom voltage or current. Then the mean square will be
proportional to the average electric power released on

an active resistance, y/z(t)2. In electrical engineer-
ing, this value is referred to as effective.

On the other hand, when using probabilistic mod-
els for the physical modeling, one should take into
account that, in effect, the magnitudes of physical
quantities are not negative, so that the spread in-
terval of their random values is actually semiinfi-
nite: X € (0,400). As the experience testifies, the
probability distribution density fx(x) decreases pro-
portionally to the exp (facQ) at large deviations =z
from the mean myx, with an extremum at the point
x = 0. Therefore, more suitable for practical applica-
tions is the probability density distribution function,
in which the random variable X is centered by sub-
tracting the mean value mx from the variable:

9(X) =X —mx. ()

In this case, the extremum of the exponential func-
tion fx(z) ~ exp (—(z — mx)?) becomes shifted to
the coordinate © = mx on the scale of the centered
variable.

The change from the scale of the absolute values of
the physical quantity X to the scale of the centered
values X — myx does not distort the Gaussian curve,
so that the centered variable can be normalized:

_X—mX

9(X)=U = =/px (X —mx). (6)

V20x B
This procedure makes it possible to use a dimension-
less exponent in calculations and simplify the normal
N(mx,ox) distribution to the standard one, N(0,1),
with the zero ME and the variance equal to one. It is
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symmetric; its point of symmetry is the mode coordi-
nate, whose value coincides with the center of grav-
ity, i.e. the ME, and the corresponding odd central
moments equal zero, although the inverse statement
is not always true. In particular, the equality of the
third central moment to zero is only a necessary con-
dition for the distribution to be symmetric.

The normalization operation (6) does not change
the coordinate of the maximum of the exponential
function

Therefore, the density function fx(x) has the follow-
ing analytic form:

Ox ()
fX(x) = %O%(e (\/ic'x) =
bx

— exp (=px(z — mx)?). (7)

:CX

The semiinfinite interval X € (0,4o00) for the nor-
mally distributed random variable X corresponds to
the interval U € (—,/pmx, +00) for the centered nor-
malized random variable U, with

2= too = TOO.
(8)

The normalization integral to determine the constant
C'x looks like

x=0:ul,_,=—vpmx, x=400: ul

oo

Cxe(oso / Fx(@)dz = Cxeqoso

0
X PX ox (- - D) dx =
- p (—px(z mX))I*

0

C'XE(O +00) w2
= ZXEO o) Wy = 1.
NG / e " du (9)
—V/Pxmx

From the viewpoint of the geometric interpretation of
a definite integral as an area under the curve fx(z),

/fxe(o,+oo)(=’17)dx< / Jx (o0, +00)(T)d,
0 —00
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because the semiinfinite interval X € [0, +00) is ob-
tained from the infinite interval (—oo, +00), by trun-
cating all negative argument values. Therefore, the
truncated normal distribution is applied to model the
reliability of physical and engineering systems [24—
27], the physical processes of charge transfer in elec-
tronic devices [28,29], and other purposes.

Note that the theory of random processes with a
truncated spread interval for RV values was devel-
oped as long ago as in works by Einstein and Smolu-
chowski [30,31]. It was they who proposed one of the
first mathematical algorithms of data processing to
evaluate the distribution function and the probability
density of empirical dependences, by analyzing a sam-
ple of experimental data. It is convenient to illustrate
the relationship between the Brownian motion and
the Gaussian distribution, by using the well-known
Fokker—Planck equation (or the Kramers equation)
(32, 33]

0 0?

—f(t,2) = D— f(t,x). 10
£ f(t,2) = D (t,) (10)
This equation describes the motion of Brownian par-

ticles with the distribution density

0

t = —P(z,t
flt2) = P, t)
under the action of random forces. Here, P(z,t) is the
probability to find a particle at the point with the co-
ordinate x at the time ¢, and D is the diffusion coef-
ficient. The corresponding solution of Eq. (10) looks
like

c 1 ( x? )
—exp|——)-
VArD Vi 4Dt
Formally, solution (11) resembles the Gaussian func-
tion, if the quantity 2Dt is interpreted as the variance:
o? = 2Dt.

The Gaussian integrals for calculating the statis-
tical means of X and X2 over a truncated interval
of the random variable X are not expressed analyti-
cally in terms of elementary functions. A special non-

elementary tabulated function of errors, erf(z), was
introduced for their calculation [34]:

erf(e) - 2 / &

ftx) = (11)

(12)
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If an RV sample is described by the normal distri-
bution with the standard deviation ox, the value of

erf (ﬁ) is equal to the probability of that the RV

value does not deviate from the mean by more than
mx. The error function is related to the standard dis-
tribution function N (0, 1) by means of the normalized
Laplace function,

o) - / exp (1)

Making use of the function erf(z) and following the
algorithm

(13)

0.5 — erf (mﬁi;“) for x4, <mx

P(X <x,) =
0.5 + erf (%) for =, >my
(14)

the so-called standard of 3o confidence intervals has
been elaborated, and the following rules have been
formulated:

| <ox)=2erf(2) = 0.685,
P (lX — mx| < Ux) = 2€I'f(3) = 09917
| <ox)=2erf(4) = 0.998,

(15)

which allow the parameters of a physical model with
random fluctuations to be simulated with a required
confidence probability.

The importance of the Gaussian function in the
statistical modeling of physical systems is confirmed
by the Maxwellian probabilistic distribution known
in physics. Despite that the Cartesian components of
the velocity vector for the chaotic motion of particles
in an equilibrium system are distributed normally, the
distribution of the particle velocity magnitudes obeys
the Maxwellian distribution

1 m my?
192 = —_ —_ z =
J0=) =\ % 2T &P < QkBT>
P9z 2 m
=, /— —py U = — 16
T exp ( P9z z) =  Dyy 2kBT’ ( )
where py, = ;7. By equating function (16) and

the Gaussian function, we obtain

o om
205 2kgT’
650

so that

kT

gy
z m

Hence, the MSD of the velocity projection onto the
corresponding direction increases proportionally to
the absolute temperature and inversely to the par-
ticle mass.

The probability analogs of the center of mass

_ Zykmk
Ye = =
> my

and the moment of inertia with respect to the center
of mass

Imx = Z (yk - a’)zmk

are the ME and the variance, respectively. Therefore,
it is convenient to use an analogy between the op-
timization of dynamic regularities at the rotation of
a system of material points with the masses m; and
arranged along a massless rod and the algorithm for
minimizing the fluctuation processes (the dispersion)
in a physical system that evolves toward its equilib-
rium state. According to this analogy, in the problem
of optimizing the dynamics of rotational motion of
the system of material points around a selected ro-
tation axis, the optimum value of a parameter a de-
scribing its spatial arrangement is to be determined,
for which the moment of inertia (and, therefore, the
fluctuation dispersion) is minimum. In the rotating
system, every point is located at the rod at the dis-
tance y; reckoned from either of the rod ends taken
at the reference point, with the rotation axis being
perpendicular to the rod.

When rotating, the radius vector y;, describes a cir-
cle with the area Wy,%. Let us calculate the distribu-
tion density of the circle area, fs, (s), characterized
by the parameters mg and og, if the yg-values are
scattered according to the normal law N(my,oy):

1 dyx 1 1
= —/8, |—|=—=+=—. 17
Yi Nz ok dsy 2/ \/Sk (17)
The inverse function of s, = 7yi is two-valued.

Therefore, from the fy, (yr)dyr = fs, (sk)dsk, we ob-
tain

fsi(sk) = fri (yn) (18)

dy’“‘ — i ()

1
dsi, 2./T s
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The absolute value of the derivative was taken to
make allowance for the change of the derivative sign.

Therefore,
Fouln) = 505t {exp (py (Vi = VEmy)?) +

+ exp (—py (Vor + Vamy)?)},

(19)

where
1 1

pyzm, ps, =

T
20 5

The area has positive values, and the statistical mean

mg, equals

e—Py (Ver—ymmy)? +e—py(ﬁ+ﬁmy>2}dsk

Py (VIR—VEmY)? 4 ey (VIRHVEmY)?) dgy

o
4py \/py

emi VT
2,/py

e
f—H =

} =7 (032/ + m%/)
(20)

Let us analogously calculate the statistical mean ?i:

57]% =
+fo;i {efpy(\/s*r\/?myf + efpv(ﬁh/?rmvf}dsk
_ 0 —
N +f?€—py(\/§—\/7rmy)2 + e~ Py (Vs tVamy)? gy B
0
— 22 (30% 4 m + GoZm). (21)
Hence, the MSD equals
os, = m(30% +my + 60mi —my —
— 0¥ = 203m3)? = 2oy (0 +2m3)V2. (22)

Since the mean-square deviation og, and the mathe-
matical expectation mg, are no more independent of
each other, the both being dependent on the statisti-
cally independent my and oy, it seems that the state
with minimum MSD can be optimized only through
the optimization of the my- and oy-values of the
Gaussian RVs.

Finally, let us point out the following. When mod-
eling a physical system with random influences, there

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 7

arises a challenging issue concerning the sample vol-
ume of experimental data that was taken for the sta-
tistical analysis. According to the Lyapunov theorem
[35], the probabilistic calculations are inapplicable,
if the sample size n < 20--30. If the sample size is
small (n < 30), the estimate of the distribution MSD
is unreliable. In this case, Student’s distribution is
used. This distribution is used to calculate the prob-
ability of that the deviation of X from mx does not
exceed a certain value o

p (_UY < Y myx < +Uy) =

\f m7gxexp< (X - mX)2>dX.

22
mx—ox

(23)

Then a deviation of the arithmetic mean from the
true value of the measured quantity does not exceed
the following value:

S
\f

with the accuracy of the approximate equality X ~
~ mx growing, as the n-value increases. However,
this conclusion does not imply that, in order to in-
crease the accuracy of final results, one must, first
of all, try to increase the accuracy of separate mea-
surements. Student’s coeflicients ¢, are tabulated for
various probability values P and degrees of freedom
k = n — 1. The limiting cases of Student’s distribu-
tion are the Cauchy distribution at & = 1 (there is
no MSD and variance, because the integral diverges,
and no efficient estimation of the distribution cen-
ter can be made; therefore, the median is used to
determine the center) and the Gaussian distribution
at k — oo. The Cauchy distribution (or the Lorentz
distribution, or the Wigner—Breit distribution) plays
an important role at the physical modeling. In par-
ticular, in the well-known Ohm and Hooke (or other)
laws, provided that the volume of independent mea-
surements is sufficient, the relationship between the
voltage drop Ugr across an active resistance R and
the current through the latter or between the defor-
mation Az of a body and the force Fx applied to
the latter is linear, which provides the normal dis-
tribution of their fluctuations. At the same time, the
distributions of random changes of the proportional-
ity coefficients R = T &oand k= & ‘A~ obey the Cauchy
distribution. The proper attentlon is not always paid
to this circumstance.

Ap =t,5% = (24)
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3. Conclusions

From the viewpoint of creating a perfect statistical
portrait of a physical model, the regularities discussed
above can serve as a first step to establishing the
distribution origin of the values of stochastic quan-
tities obtained as a result of experimental measure-
ments. But this step is mandatory.

The estimation of a distribution law to a given con-
fidence probability requires that the spectrum of sta-
tistical probabilistic researches to be expanded, in-
cluding the overlapping degree of distribution inter-
vals [36, 37|, the parameter of the distance between
them [38], simulation with the help of generalized
[39, 40] and mixed [41,42] distribution methods, and
others. It is the complex approach to processing the
experimental data that made it possible to success-
fully imply such high-tech methods of complex object
visualization as the atomic force and tunneling micro-
scopies, the nuclear magnetic resonance spectroscopy
[43,44], and others.

However, by no means, one should come to a con-
clusion that the stochastic regularities of physical
quantities have to satisfy the normal distribution.
There are physical processes, in which the stochastic
regularities confirm the applicability of other laws,
e.g., the exponential law? for the radioactive decay
[45], the power law in the phenomena of synergetics
and fractal dynamics [46,47], the lognormal law in the
optimal forecasting of mineral localization on the ba-
sis of geophysical observations [48], and so forth. But
this is a topic of another work.
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I1. Kocobyuvrui

OIITUMAJIBHI 3BAKOHOMIPHOCTI
HOPMAJIBHOT'O PO3IIOAIIY 3 TOYKN 30PY
OIIHKU CTATUCTUKU BUBIPKN PE3VJIBTATIB
PISMYHOI'O EKCIIEPUMEHTY

Peszmowme

Ha mincrasi anasisy jiTepaTypHHX JpKepes CHHTE30BaHi Ga-
30Bi fiMOBipHicHI i npuHIKMIN GHOPMYBaHHS HOPMAJIBHOTO PO3-
MOy BUIAIKOBUX PO3CisiHb 3HAa4YeHb (DISUYHUX BEJUYUH B
yMOBaxX He3aJIeXKHUX BHUIIQIKOBUX Al Ha Gisuduny cucremy.
3pobJieHnit HAroJ0C Ha KOMILIEKCHOMY WiJIxoji HMOBipHIiCHO-
CTaTUCTUIHOI'O aHAJI3y BUOIPKYU PE3y/IbTATIB €KCIIEPUMEHTAIb-
HUX BUMIipPIOBAHb.

653



